summaryrefslogtreecommitdiffstats
path: root/include/net/libeth (follow)
Commit message (Collapse)AuthorAgeFilesLines
* libeth: add Tx buffer completion helpersAlexander Lobakin2024-09-092-0/+154
| | | | | | | | | | | | | | Software-side Tx buffers for storing DMA, frame size, skb pointers etc. are pretty much generic and every driver defines them the same way. The same can be said for software Tx completions -- same napi_consume_skb()s and all that... Add a couple simple wrappers for doing that to stop repeating the old tale at least within the Intel code. Drivers are free to use 'priv' member at the end of the structure. Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: Alexander Lobakin <aleksander.lobakin@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
* libeth: support different types of buffers for RxAlexander Lobakin2024-07-101-0/+19
| | | | | | | | | | | | | | | Unlike previous generations, idpf requires more buffer types for optimal performance. This includes: header buffers, short buffers, and no-overhead buffers (w/o headroom and tailroom, for TCP zerocopy when the header split is enabled). Introduce libeth Rx buffer type and calculate page_pool params accordingly. All the HW-related details like buffer alignment are still accounted. For the header buffers, pick 256 bytes as in most places in the kernel (have you ever seen frames with bigger headers?). Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: Alexander Lobakin <aleksander.lobakin@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
* libeth: add cacheline / struct layout assertion helpersAlexander Lobakin2024-07-101-0/+66
| | | | | | | | | | | | | Add helpers to assert struct field layout, a bit more crazy and networking-specific than in <linux/cache.h>. They assume you have 3 CL-aligned groups (read-mostly, read-write, cold) in a struct you want to assert, and nothing besides them. For 64-bit with 64-byte cachelines, the assertions are as strict as possible, as the size can then be easily predicted. For the rest, make sure they don't cross the specified bound. Signed-off-by: Alexander Lobakin <aleksander.lobakin@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
* libeth: add Rx buffer managementAlexander Lobakin2024-04-241-0/+117
| | | | | | | | | | | | | | | | | | | | | Add a couple intuitive helpers to hide Rx buffer implementation details in the library and not multiplicate it between drivers. The settings are sorta optimized for 100G+ NICs, but nothing really HW-specific here. Use the new page_pool_dev_alloc() to dynamically switch between split-page and full-page modes depending on MTU, page size, required headroom etc. For example, on x86_64 with the default driver settings each page is shared between 2 buffers. Turning on XDP (not in this series) -> increasing headroom requirement pushes truesize out of 2048 boundary, leading to that each buffer starts getting a full page. The "ceiling" limit is %PAGE_SIZE, as only order-0 pages are used to avoid compound overhead. For the above architecture, this means maximum linear frame size of 3712 w/o XDP. Not that &libeth_buf_queue is not a complete queue/ring structure for now, rather a shim, but eventually the libeth-enabled drivers will move to it, with iavf being the first one. Signed-off-by: Alexander Lobakin <aleksander.lobakin@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
* net: intel: introduce {, Intel} Ethernet common libraryAlexander Lobakin2024-04-241-0/+125
Not a secret there's a ton of code duplication between two and more Intel ethernet modules. Before introducing new changes, which would need to be copied over again, start decoupling the already existing duplicate functionality into a new module, which will be shared between several Intel Ethernet drivers. Add the lookup table which converts 8/10-bit hardware packet type into a parsed bitfield structure for easy checking packet format parameters, such as payload level, IP version, etc. This is currently used by i40e, ice and iavf and it's all the same in all three drivers. The only difference introduced in this implementation is that instead of defining a 256 (or 1024 in case of ice) element array, add unlikely() condition to limit the input to 154 (current maximum non-reserved packet type). There's no reason to waste 600 (or even 3600) bytes only to not hurt very unlikely exception packets. The hash computation function now takes payload level directly as a pkt_hash_type. There's a couple cases when non-IP ptypes are marked as L3 payload and in the previous versions their hash level would be 2, not 3. But skb_set_hash() only sees difference between L4 and non-L4, thus this won't change anything at all. The module is behind the hidden Kconfig symbol, which the drivers will select when needed. The exports are behind 'LIBIE' namespace to limit the scope of the functions. Not that non-HW-specific symbols will live in yet another module, libeth. This is done to easily distinguish pretty generic code ready for reusing by any other vendor and/or for moving the layer up from the code useful in Intel's 1-100G drivers only. Signed-off-by: Alexander Lobakin <aleksander.lobakin@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>