| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The below race is observed on a PFN which falls into the device memory
region with the system memory configuration where PFN's are such that
[ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL]. Since normal zone start and end
pfn contains the device memory PFN's as well, the compaction triggered
will try on the device memory PFN's too though they end up in NOP(because
pfn_to_online_page() returns NULL for ZONE_DEVICE memory sections). When
from other core, the section mappings are being removed for the
ZONE_DEVICE region, that the PFN in question belongs to, on which
compaction is currently being operated is resulting into the kernel crash
with CONFIG_SPASEMEM_VMEMAP enabled. The crash logs can be seen at [1].
compact_zone() memunmap_pages
------------- ---------------
__pageblock_pfn_to_page
......
(a)pfn_valid():
valid_section()//return true
(b)__remove_pages()->
sparse_remove_section()->
section_deactivate():
[Free the array ms->usage and set
ms->usage = NULL]
pfn_section_valid()
[Access ms->usage which
is NULL]
NOTE: From the above it can be said that the race is reduced to between
the pfn_valid()/pfn_section_valid() and the section deactivate with
SPASEMEM_VMEMAP enabled.
The commit b943f045a9af("mm/sparse: fix kernel crash with
pfn_section_valid check") tried to address the same problem by clearing
the SECTION_HAS_MEM_MAP with the expectation of valid_section() returns
false thus ms->usage is not accessed.
Fix this issue by the below steps:
a) Clear SECTION_HAS_MEM_MAP before freeing the ->usage.
b) RCU protected read side critical section will either return NULL
when SECTION_HAS_MEM_MAP is cleared or can successfully access ->usage.
c) Free the ->usage with kfree_rcu() and set ms->usage = NULL. No
attempt will be made to access ->usage after this as the
SECTION_HAS_MEM_MAP is cleared thus valid_section() return false.
Thanks to David/Pavan for their inputs on this patch.
[1] https://lore.kernel.org/linux-mm/994410bb-89aa-d987-1f50-f514903c55aa@quicinc.com/
On Snapdragon SoC, with the mentioned memory configuration of PFN's as
[ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL], we are able to see bunch of
issues daily while testing on a device farm.
For this particular issue below is the log. Though the below log is
not directly pointing to the pfn_section_valid(){ ms->usage;}, when we
loaded this dump on T32 lauterbach tool, it is pointing.
[ 540.578056] Unable to handle kernel NULL pointer dereference at
virtual address 0000000000000000
[ 540.578068] Mem abort info:
[ 540.578070] ESR = 0x0000000096000005
[ 540.578073] EC = 0x25: DABT (current EL), IL = 32 bits
[ 540.578077] SET = 0, FnV = 0
[ 540.578080] EA = 0, S1PTW = 0
[ 540.578082] FSC = 0x05: level 1 translation fault
[ 540.578085] Data abort info:
[ 540.578086] ISV = 0, ISS = 0x00000005
[ 540.578088] CM = 0, WnR = 0
[ 540.579431] pstate: 82400005 (Nzcv daif +PAN -UAO +TCO -DIT -SSBSBTYPE=--)
[ 540.579436] pc : __pageblock_pfn_to_page+0x6c/0x14c
[ 540.579454] lr : compact_zone+0x994/0x1058
[ 540.579460] sp : ffffffc03579b510
[ 540.579463] x29: ffffffc03579b510 x28: 0000000000235800 x27:000000000000000c
[ 540.579470] x26: 0000000000235c00 x25: 0000000000000068 x24:ffffffc03579b640
[ 540.579477] x23: 0000000000000001 x22: ffffffc03579b660 x21:0000000000000000
[ 540.579483] x20: 0000000000235bff x19: ffffffdebf7e3940 x18:ffffffdebf66d140
[ 540.579489] x17: 00000000739ba063 x16: 00000000739ba063 x15:00000000009f4bff
[ 540.579495] x14: 0000008000000000 x13: 0000000000000000 x12:0000000000000001
[ 540.579501] x11: 0000000000000000 x10: 0000000000000000 x9 :ffffff897d2cd440
[ 540.579507] x8 : 0000000000000000 x7 : 0000000000000000 x6 :ffffffc03579b5b4
[ 540.579512] x5 : 0000000000027f25 x4 : ffffffc03579b5b8 x3 :0000000000000001
[ 540.579518] x2 : ffffffdebf7e3940 x1 : 0000000000235c00 x0 :0000000000235800
[ 540.579524] Call trace:
[ 540.579527] __pageblock_pfn_to_page+0x6c/0x14c
[ 540.579533] compact_zone+0x994/0x1058
[ 540.579536] try_to_compact_pages+0x128/0x378
[ 540.579540] __alloc_pages_direct_compact+0x80/0x2b0
[ 540.579544] __alloc_pages_slowpath+0x5c0/0xe10
[ 540.579547] __alloc_pages+0x250/0x2d0
[ 540.579550] __iommu_dma_alloc_noncontiguous+0x13c/0x3fc
[ 540.579561] iommu_dma_alloc+0xa0/0x320
[ 540.579565] dma_alloc_attrs+0xd4/0x108
[quic_charante@quicinc.com: use kfree_rcu() in place of synchronize_rcu(), per David]
Link: https://lkml.kernel.org/r/1698403778-20938-1-git-send-email-quic_charante@quicinc.com
Link: https://lkml.kernel.org/r/1697202267-23600-1-git-send-email-quic_charante@quicinc.com
Fixes: f46edbd1b151 ("mm/sparsemem: add helpers track active portions of a section at boot")
Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit e6be37b2e7bd ("mm/huge_memory.c: add missing read-only THP checking
in transparent_hugepage_enabled()") introduced the VM_EXEC requirement,
which is not strictly needed.
lld's default --rosegment option and GNU ld's -z separate-code option
(default on Linux/x86 since binutils 2.31) create a read-only PT_LOAD
segment without the PF_X flag, which should be eligible for THP.
Certain architectures support medium and large code models, where .lrodata
may be placed in a separate read-only PT_LOAD segment, which should be
eligible for THP as well.
Link: https://lkml.kernel.org/r/20231220054123.1266001-1-maskray@google.com
Signed-off-by: Fangrui Song <maskray@google.com>
Acked-by: Yang Shi <shy828301@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As stack traces can now be evicted from the stack depot, remove the
comment saying that they are never removed.
Link: https://lkml.kernel.org/r/0ebe712d91f8d302a8947d3c9e9123bc2b1b8440.1703020707.git.andreyknvl@google.com
Fixes: 108be8def46e ("lib/stackdepot: allow users to evict stack traces")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rename kasan_unpoison_object_data to kasan_unpoison_new_object and add a
documentation comment. Do the same for kasan_poison_object_data.
The new names and the comments should suggest the users that these hooks
are intended for internal use by the slab allocator.
The following patch will remove non-slab-internal uses of these hooks.
No functional changes.
[andreyknvl@google.com: update references to renamed functions in comments]
Link: https://lkml.kernel.org/r/20231221180637.105098-1-andrey.konovalov@linux.dev
Link: https://lkml.kernel.org/r/eab156ebbd635f9635ef67d1a4271f716994e628.1703024586.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Lobakin <alobakin@pm.me>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Breno Leitao <leitao@debian.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce a new mempool_alloc_preallocated API that asks the mempool to
only use the elements preallocated during the mempool's creation when
allocating and to not attempt allocating new ones from the underlying
allocator.
This API is required to test the KASAN poisoning/unpoisoning functionality
in KASAN tests, but it might be also useful on its own.
Link: https://lkml.kernel.org/r/a14d809dbdfd04cc33bcacc632fee2abd6b83c00.1703024586.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Lobakin <alobakin@pm.me>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Breno Leitao <leitao@debian.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Update kasan_mempool_unpoison_object to properly poison the redzone and
save alloc strack traces for kmalloc and slab pools.
As a part of this change, split out and use a unpoison_slab_object helper
function from __kasan_slab_alloc.
[nathan@kernel.org: mark unpoison_slab_object() as static]
Link: https://lkml.kernel.org/r/20231221180042.104694-1-andrey.konovalov@linux.dev
Link: https://lkml.kernel.org/r/05ad235da8347cfe14d496d01b2aaf074b4f607c.1703024586.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Cc: Alexander Lobakin <alobakin@pm.me>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Breno Leitao <leitao@debian.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Make kasan_mempool_poison_object save free stack traces for slab and
kmalloc mempools when the object is freed into the mempool.
Also simplify and rename ____kasan_slab_free to poison_slab_object and do
a few other reability changes.
Link: https://lkml.kernel.org/r/413a7c7c3344fb56809853339ffaabc9e4905e94.1703024586.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Lobakin <alobakin@pm.me>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Breno Leitao <leitao@debian.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce and document a new kasan_mempool_unpoison_pages hook to be used
by the mempool code instead of kasan_unpoison_pages.
This hook is not functionally different from kasan_unpoison_pages, but
using it improves the mempool code readability.
Link: https://lkml.kernel.org/r/239bd9af6176f2cc59f5c25893eb36143184daff.1703024586.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Lobakin <alobakin@pm.me>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Breno Leitao <leitao@debian.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce and document a kasan_mempool_poison_pages hook to be used by the
mempool code instead of kasan_poison_pages.
Compated to kasan_poison_pages, the new hook:
1. For the tag-based modes, skips checking and poisoning allocations that
were not tagged due to sampling.
2. Checks for double-free and invalid-free bugs.
In the future, kasan_poison_pages can also be updated to handle #2, but
this is out-of-scope of this series.
Link: https://lkml.kernel.org/r/88dc7340cce28249abf789f6e0c792c317df9ba5.1703024586.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Lobakin <alobakin@pm.me>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Breno Leitao <leitao@debian.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce and document a kasan_mempool_unpoison_object hook.
This hook serves as a replacement for the generic kasan_unpoison_range
that the mempool code relies on right now. mempool will be updated to use
the new hook in one of the following patches.
For now, define the new hook to be identical to kasan_unpoison_range. One
of the following patches will update it to add stack trace collection.
Link: https://lkml.kernel.org/r/dae25f0e18ed8fd50efe509c5b71a0592de5c18d.1703024586.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Lobakin <alobakin@pm.me>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Breno Leitao <leitao@debian.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a return value for kasan_mempool_poison_object that lets the caller
know whether the allocation is affected by a double-free or an
invalid-free bug. The caller can use this return value to stop operating
on the object.
Also introduce a check_page_allocation helper function to improve the code
readability.
Link: https://lkml.kernel.org/r/618af65273875fb9f56954285443279b15f1fcd9.1703024586.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Lobakin <alobakin@pm.me>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Breno Leitao <leitao@debian.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add documentation comment for kasan_mempool_poison_object.
Link: https://lkml.kernel.org/r/af33ba8cabfa1ad731fe23a3f874bfc8d3b7fed4.1703024586.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Lobakin <alobakin@pm.me>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Breno Leitao <leitao@debian.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move kasan_mempool_poison_object after all slab-related KASAN hooks.
This is a preparatory change for the following patches in this series.
No functional changes.
Link: https://lkml.kernel.org/r/23ea215409f43c13cdf9ecc454501a264c107d67.1703024586.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Lobakin <alobakin@pm.me>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Breno Leitao <leitao@debian.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "kasan: save mempool stack traces".
This series updates KASAN to save alloc and free stack traces for
secondary-level allocators that cache and reuse allocations internally
instead of giving them back to the underlying allocator (e.g. mempool).
As a part of this change, introduce and document a set of KASAN hooks:
bool kasan_mempool_poison_pages(struct page *page, unsigned int order);
void kasan_mempool_unpoison_pages(struct page *page, unsigned int order);
bool kasan_mempool_poison_object(void *ptr);
void kasan_mempool_unpoison_object(void *ptr, size_t size);
and use them in the mempool code.
Besides mempool, skbuff and io_uring also cache allocations and already
use KASAN hooks to poison those. Their code is updated to use the new
mempool hooks.
The new hooks save alloc and free stack traces (for normal kmalloc and
slab objects; stack traces for large kmalloc objects and page_alloc are
not supported by KASAN yet), improve the readability of the users' code,
and also allow the users to prevent double-free and invalid-free bugs; see
the patches for the details.
This patch (of 21):
Rename kasan_slab_free_mempool to kasan_mempool_poison_object.
kasan_slab_free_mempool is a slightly confusing name: it is unclear
whether this function poisons the object when it is freed into mempool or
does something when the object is freed from mempool to the underlying
allocator.
The new name also aligns with other mempool-related KASAN hooks added in
the following patches in this series.
Link: https://lkml.kernel.org/r/cover.1703024586.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/c5618685abb7cdbf9fb4897f565e7759f601da84.1703024586.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Lobakin <alobakin@pm.me>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Breno Leitao <leitao@debian.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
All callers are passing end_buffer_async_write as this argument, so we can
hardcode references to it within __block_write_full_folio(). That lets us
make end_buffer_async_write() static.
Link: https://lkml.kernel.org/r/20231215200245.748418-15-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Convert the function to be compatible with writepage_t so that it can be
passed to write_cache_pages() by blkdev. This removes a call to
compound_head(). We can also remove the function export as both callers
are built-in.
Link: https://lkml.kernel.org/r/20231215200245.748418-14-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "Clean up the writeback paths".
Most of these patches verge on the trivial, converting filesystems that
just use block_write_full_page() to use mpage_writepages(). But as we saw
with Christoph's earlier patchset, there can be some "interesting"
gotchas, and I clearly haven't tested the majority of filesystems I've
touched here.
Patches 3 & 4 get rid of a lot of stack usage on architectures with larger
page sizes; 1024 bytes on 64-bit systems with 64KiB pages. It starts to
open the door to larger folio sizes on all architectures, but it's
certainly not enough yet.
Patch 14 is kind of trivial, but it's nice to get that simplification in.
This patch (of 14):
This function has been unused since the removal of bdev_write_page().
Link: https://lkml.kernel.org/r/20231215200245.748418-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20231215200245.748418-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
| |
It's more efficient to get the swap_info_struct by calling
swp_swap_info() directly.
Link: https://lkml.kernel.org/r/20231213215842.671461-12-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
| |
All callers have a folio, so pass it in. Saves a couple of calls to
compound_head().
Link: https://lkml.kernel.org/r/20231213215842.671461-10-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "More swap folio conversions".
These all seem like fairly straightforward conversions to me. A lot of
compound_head() calls get removed. And page_swap_info(), which is nice.
This patch (of 13):
Move the folio->page conversion into the callers that actually want that.
Most of the callers are happier with the folio anyway. If the
page_allocated boolean is set, the folio allocated is of order-0, so it is
safe to pass the page directly to swap_readpage().
Link: https://lkml.kernel.org/r/20231213215842.671461-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20231213215842.671461-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
First of all, we need to rename acomp_ctx->dstmem field to buffer, since
we are now using for purposes other than compression.
Then we change per-cpu mutex and buffer to per-acomp_ctx, since them
belong to the acomp_ctx and are necessary parts when used in the
compress/decompress contexts.
So we can remove the old per-cpu mutex and dstmem.
Link: https://lkml.kernel.org/r/20231213-zswap-dstmem-v5-5-9382162bbf05@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Chris Li <chrisl@kernel.org> (Google)
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a new tracepoint for the ksm advisor. It reports the last scan
time, the new setting of the pages_to_scan parameter and the average cpu
percent usage of the ksmd background thread for the last scan.
Link: https://lkml.kernel.org/r/20231218231054.1625219-4-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
| |
All callers have now been converted to folio_add_new_anon_rmap() and
folio_add_lru_vma() so we can remove the wrapper.
Link: https://lkml.kernel.org/r/20231211162214.2146080-10-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "Finish two folio conversions".
Most callers of page_add_new_anon_rmap() and
lru_cache_add_inactive_or_unevictable() have been converted to their folio
equivalents, but there are still a few stragglers. There's a bit of
preparatory work in ksm and unuse_pte(), but after that it's pretty
mechanical.
This patch (of 9):
Accept a folio as an argument and return a folio result. Removes a call
to compound_head() in do_swap_page(), and prevents folio & page from
getting out of sync in unuse_pte().
Reviewed-by: David Hildenbrand <david@redhat.com>
[willy@infradead.org: fix smatch warning]
Link: https://lkml.kernel.org/r/ZXnPtblC6A1IkyAB@casper.infradead.org
[david@redhat.com: only adjust the page if the folio changed]
Link: https://lkml.kernel.org/r/6a8f2110-fa91-4c10-9eae-88315309a6e3@redhat.com
Link: https://lkml.kernel.org/r/20231211162214.2146080-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20231211162214.2146080-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement the uABI of UFFDIO_MOVE ioctl.
UFFDIO_COPY performs ~20% better than UFFDIO_MOVE when the application
needs pages to be allocated [1]. However, with UFFDIO_MOVE, if pages are
available (in userspace) for recycling, as is usually the case in heap
compaction algorithms, then we can avoid the page allocation and memcpy
(done by UFFDIO_COPY). Also, since the pages are recycled in the
userspace, we avoid the need to release (via madvise) the pages back to
the kernel [2].
We see over 40% reduction (on a Google pixel 6 device) in the compacting
thread's completion time by using UFFDIO_MOVE vs. UFFDIO_COPY. This was
measured using a benchmark that emulates a heap compaction implementation
using userfaultfd (to allow concurrent accesses by application threads).
More details of the usecase are explained in [2]. Furthermore,
UFFDIO_MOVE enables moving swapped-out pages without touching them within
the same vma. Today, it can only be done by mremap, however it forces
splitting the vma.
[1] https://lore.kernel.org/all/1425575884-2574-1-git-send-email-aarcange@redhat.com/
[2] https://lore.kernel.org/linux-mm/CA+EESO4uO84SSnBhArH4HvLNhaUQ5nZKNKXqxRCyjniNVjp0Aw@mail.gmail.com/
Update for the ioctl_userfaultfd(2) manpage:
UFFDIO_MOVE
(Since Linux xxx) Move a continuous memory chunk into the
userfault registered range and optionally wake up the blocked
thread. The source and destination addresses and the number of
bytes to move are specified by the src, dst, and len fields of
the uffdio_move structure pointed to by argp:
struct uffdio_move {
__u64 dst; /* Destination of move */
__u64 src; /* Source of move */
__u64 len; /* Number of bytes to move */
__u64 mode; /* Flags controlling behavior of move */
__s64 move; /* Number of bytes moved, or negated error */
};
The following value may be bitwise ORed in mode to change the
behavior of the UFFDIO_MOVE operation:
UFFDIO_MOVE_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault
resolution
UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES
Allow holes in the source virtual range that is being moved.
When not specified, the holes will result in ENOENT error.
When specified, the holes will be accounted as successfully
moved memory. This is mostly useful to move hugepage aligned
virtual regions without knowing if there are transparent
hugepages in the regions or not, but preventing the risk of
having to split the hugepage during the operation.
The move field is used by the kernel to return the number of
bytes that was actually moved, or an error (a negated errno-
style value). If the value returned in move doesn't match the
value that was specified in len, the operation fails with the
error EAGAIN. The move field is output-only; it is not read by
the UFFDIO_MOVE operation.
The operation may fail for various reasons. Usually, remapping of
pages that are not exclusive to the given process fail; once KSM
might deduplicate pages or fork() COW-shares pages during fork()
with child processes, they are no longer exclusive. Further, the
kernel might only perform lightweight checks for detecting whether
the pages are exclusive, and return -EBUSY in case that check fails.
To make the operation more likely to succeed, KSM should be
disabled, fork() should be avoided or MADV_DONTFORK should be
configured for the source VMA before fork().
This ioctl(2) operation returns 0 on success. In this case, the
entire area was moved. On error, -1 is returned and errno is
set to indicate the error. Possible errors include:
EAGAIN The number of bytes moved (i.e., the value returned in
the move field) does not equal the value that was
specified in the len field.
EINVAL Either dst or len was not a multiple of the system page
size, or the range specified by src and len or dst and len
was invalid.
EINVAL An invalid bit was specified in the mode field.
ENOENT
The source virtual memory range has unmapped holes and
UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES is not set.
EEXIST
The destination virtual memory range is fully or partially
mapped.
EBUSY
The pages in the source virtual memory range are either
pinned or not exclusive to the process. The kernel might
only perform lightweight checks for detecting whether the
pages are exclusive. To make the operation more likely to
succeed, KSM should be disabled, fork() should be avoided
or MADV_DONTFORK should be configured for the source virtual
memory area before fork().
ENOMEM Allocating memory needed for the operation failed.
ESRCH
The target process has exited at the time of a UFFDIO_MOVE
operation.
Link: https://lkml.kernel.org/r/20231206103702.3873743-3-surenb@google.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Nicolas Geoffray <ngeoffray@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: ZhangPeng <zhangpeng362@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
| |
Correct typos/spellos and punctutation.
Link: https://lkml.kernel.org/r/20231213043316.10128-1-rdunlap@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "mm/damon: misc updates for 6.8".
Update comments, tests, and documents for DAMON.
This patch (of 6):
SeongJae is using his kernel.org account for DAMON development. Update
the old email addresses on the comments of DAMON source files.
Link: https://lkml.kernel.org/r/20231213190338.54146-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20231213190338.54146-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce the logic to allow THP to be configured (through the new sysfs
interface we just added) to allocate large folios to back anonymous
memory, which are larger than the base page size but smaller than
PMD-size. We call this new THP extension "multi-size THP" (mTHP).
mTHP continues to be PTE-mapped, but in many cases can still provide
similar benefits to traditional PMD-sized THP: Page faults are
significantly reduced (by a factor of e.g. 4, 8, 16, etc. depending on
the configured order), but latency spikes are much less prominent because
the size of each page isn't as huge as the PMD-sized variant and there is
less memory to clear in each page fault. The number of per-page
operations (e.g. ref counting, rmap management, lru list management) are
also significantly reduced since those ops now become per-folio.
Some architectures also employ TLB compression mechanisms to squeeze more
entries in when a set of PTEs are virtually and physically contiguous and
approporiately aligned. In this case, TLB misses will occur less often.
The new behaviour is disabled by default, but can be enabled at runtime by
writing to /sys/kernel/mm/transparent_hugepage/hugepage-XXkb/enabled (see
documentation in previous commit). The long term aim is to change the
default to include suitable lower orders, but there are some risks around
internal fragmentation that need to be better understood first.
[ryan.roberts@arm.com: resolve some multi-size THP review nits]
Link: https://lkml.kernel.org/r/20231214160251.3574571-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20231207161211.2374093-5-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Tested-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Itaru Kitayama <itaru.kitayama@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation for adding support for anonymous multi-size THP, introduce
new sysfs structure that will be used to control the new behaviours. A
new directory is added under transparent_hugepage for each supported THP
size, and contains an `enabled` file, which can be set to "inherit" (to
inherit the global setting), "always", "madvise" or "never". For now, the
kernel still only supports PMD-sized anonymous THP, so only 1 directory is
populated.
The first half of the change converts transhuge_vma_suitable() and
hugepage_vma_check() so that they take a bitfield of orders for which the
user wants to determine support, and the functions filter out all the
orders that can't be supported, given the current sysfs configuration and
the VMA dimensions. The resulting functions are renamed to
thp_vma_suitable_orders() and thp_vma_allowable_orders() respectively.
Convenience functions that take a single, unencoded order and return a
boolean are also defined as thp_vma_suitable_order() and
thp_vma_allowable_order().
The second half of the change implements the new sysfs interface. It has
been done so that each supported THP size has a `struct thpsize`, which
describes the relevant metadata and is itself a kobject. This is pretty
minimal for now, but should make it easy to add new per-thpsize files to
the interface if needed in future (e.g. per-size defrag). Rather than
keep the `enabled` state directly in the struct thpsize, I've elected to
directly encode it into huge_anon_orders_[always|madvise|inherit]
bitfields since this reduces the amount of work required in
thp_vma_allowable_orders() which is called for every page fault.
See Documentation/admin-guide/mm/transhuge.rst, as modified by this
commit, for details of how the new sysfs interface works.
[ryan.roberts@arm.com: fix build warning when CONFIG_SYSFS is disabled]
Link: https://lkml.kernel.org/r/20231211125320.3997543-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20231207161211.2374093-4-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Barry Song <v-songbaohua@oppo.com>
Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Tested-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Itaru Kitayama <itaru.kitayama@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Stats flushing for memcg currently follows the following rules:
- Always flush the entire memcg hierarchy (i.e. flush the root).
- Only one flusher is allowed at a time. If someone else tries to flush
concurrently, they skip and return immediately.
- A periodic flusher flushes all the stats every 2 seconds.
The reason this approach is followed is because all flushes are serialized
by a global rstat spinlock. On the memcg side, flushing is invoked from
userspace reads as well as in-kernel flushers (e.g. reclaim, refault,
etc). This approach aims to avoid serializing all flushers on the global
lock, which can cause a significant performance hit under high
concurrency.
This approach has the following problems:
- Occasionally a userspace read of the stats of a non-root cgroup will
be too expensive as it has to flush the entire hierarchy [1].
- Sometimes the stats accuracy are compromised if there is an ongoing
flush, and we skip and return before the subtree of interest is
actually flushed, yielding stale stats (by up to 2s due to periodic
flushing). This is more visible when reading stats from userspace,
but can also affect in-kernel flushers.
The latter problem is particulary a concern when userspace reads stats
after an event occurs, but gets stats from before the event. Examples:
- When memory usage / pressure spikes, a userspace OOM handler may look
at the stats of different memcgs to select a victim based on various
heuristics (e.g. how much private memory will be freed by killing
this). Reading stale stats from before the usage spike in this case
may cause a wrongful OOM kill.
- A proactive reclaimer may read the stats after writing to
memory.reclaim to measure the success of the reclaim operation. Stale
stats from before reclaim may give a false negative.
- Reading the stats of a parent and a child memcg may be inconsistent
(child larger than parent), if the flush doesn't happen when the
parent is read, but happens when the child is read.
As for in-kernel flushers, they will occasionally get stale stats. No
regressions are currently known from this, but if there are regressions,
they would be very difficult to debug and link to the source of the
problem.
This patch aims to fix these problems by restoring subtree flushing, and
removing the unified/coalesced flushing logic that skips flushing if there
is an ongoing flush. This change would introduce a significant regression
with global stats flushing thresholds. With per-memcg stats flushing
thresholds, this seems to perform really well. The thresholds protect the
underlying lock from unnecessary contention.
This patch was tested in two ways to ensure the latency of flushing is
up to par, on a machine with 384 cpus:
- A synthetic test with 5000 concurrent workers in 500 cgroups doing
allocations and reclaim, as well as 1000 readers for memory.stat
(variation of [2]). No regressions were noticed in the total runtime.
Note that significant regressions in this test are observed with
global stats thresholds, but not with per-memcg thresholds.
- A synthetic stress test for concurrently reading memcg stats while
memory allocation/freeing workers are running in the background,
provided by Wei Xu [3]. With 250k threads reading the stats every
100ms in 50k cgroups, 99.9% of reads take <= 50us. Less than 0.01%
of reads take more than 1ms, and no reads take more than 100ms.
[1] https://lore.kernel.org/lkml/CABWYdi0c6__rh-K7dcM_pkf9BJdTRtAU08M43KO9ME4-dsgfoQ@mail.gmail.com/
[2] https://lore.kernel.org/lkml/CAJD7tka13M-zVZTyQJYL1iUAYvuQ1fcHbCjcOBZcz6POYTV-4g@mail.gmail.com/
[3] https://lore.kernel.org/lkml/CAAPL-u9D2b=iF5Lf_cRnKxUfkiEe0AMDTu6yhrUAzX0b6a6rDg@mail.gmail.com/
[akpm@linux-foundation.org: fix mm/zswap.c]
[yosryahmed@google.com: remove stats flushing mutex]
Link: https://lkml.kernel.org/r/CAJD7tkZgP3m-VVPn+fF_YuvXeQYK=tZZjJHj=dzD=CcSSpp2qg@mail.gmail.com
Link: https://lkml.kernel.org/r/20231129032154.3710765-6-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Tested-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ivan Babrou <ivan@cloudflare.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutny <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Wei Xu <weixugc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In the effort to reduce zombie memcgs [1], it was discovered that the
memcg LRU doesn't apply enough pressure on offlined memcgs. Specifically,
instead of rotating them to the tail of the current generation
(MEMCG_LRU_TAIL) for a second attempt, it moves them to the next
generation (MEMCG_LRU_YOUNG) after the first attempt.
Not applying enough pressure on offlined memcgs can cause them to build
up, and this can be particularly harmful to memory-constrained systems.
On Pixel 8 Pro, launching apps for 50 cycles:
Before After Change
Zombie memcgs 45 35 -22%
[1] https://lore.kernel.org/CABdmKX2M6koq4Q0Cmp_-=wbP0Qa190HdEGGaHfxNS05gAkUtPA@mail.gmail.com/
Link: https://lkml.kernel.org/r/20231208061407.2125867-4-yuzhao@google.com
Fixes: e4dde56cd208 ("mm: multi-gen LRU: per-node lru_gen_folio lists")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reported-by: T.J. Mercier <tjmercier@google.com>
Tested-by: T.J. Mercier <tjmercier@google.com>
Cc: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jaroslav Pulchart <jaroslav.pulchart@gooddata.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
While investigating kswapd "consuming 100% CPU" [1] (also see "mm/mglru:
try to stop at high watermarks"), it was discovered that the memcg LRU can
breach the thrashing protection imposed by min_ttl_ms.
Before the memcg LRU:
kswapd()
shrink_node_memcgs()
mem_cgroup_iter()
inc_max_seq() // always hit a different memcg
lru_gen_age_node()
mem_cgroup_iter()
check the timestamp of the oldest generation
After the memcg LRU:
kswapd()
shrink_many()
restart:
iterate the memcg LRU:
inc_max_seq() // occasionally hit the same memcg
if raced with lru_gen_rotate_memcg():
goto restart
lru_gen_age_node()
mem_cgroup_iter()
check the timestamp of the oldest generation
Specifically, when the restart happens in shrink_many(), it needs to stick
with the (memcg LRU) generation it began with. In other words, it should
neither re-read memcg_lru->seq nor age an lruvec of a different
generation. Otherwise it can hit the same memcg multiple times without
giving lru_gen_age_node() a chance to check the timestamp of that memcg's
oldest generation (against min_ttl_ms).
[1] https://lore.kernel.org/CAK8fFZ4DY+GtBA40Pm7Nn5xCHy+51w3sfxPqkqpqakSXYyX+Wg@mail.gmail.com/
Link: https://lkml.kernel.org/r/20231208061407.2125867-3-yuzhao@google.com
Fixes: e4dde56cd208 ("mm: multi-gen LRU: per-node lru_gen_folio lists")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Tested-by: T.J. Mercier <tjmercier@google.com>
Cc: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jaroslav Pulchart <jaroslav.pulchart@gooddata.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Unmapped folios accessed through file descriptors can be underprotected.
Those folios are added to the oldest generation based on:
1. The fact that they are less costly to reclaim (no need to walk the
rmap and flush the TLB) and have less impact on performance (don't
cause major PFs and can be non-blocking if needed again).
2. The observation that they are likely to be single-use. E.g., for
client use cases like Android, its apps parse configuration files
and store the data in heap (anon); for server use cases like MySQL,
it reads from InnoDB files and holds the cached data for tables in
buffer pools (anon).
However, the oldest generation can be very short lived, and if so, it
doesn't provide the PID controller with enough time to respond to a surge
of refaults. (Note that the PID controller uses weighted refaults and
those from evicted generations only take a half of the whole weight.) In
other words, for a short lived generation, the moving average smooths out
the spike quickly.
To fix the problem:
1. For folios that are already on LRU, if they can be beyond the
tracking range of tiers, i.e., five accesses through file
descriptors, move them to the second oldest generation to give them
more time to age. (Note that tiers are used by the PID controller
to statistically determine whether folios accessed multiple times
through file descriptors are worth protecting.)
2. When adding unmapped folios to LRU, adjust the placement of them so
that they are not too close to the tail. The effect of this is
similar to the above.
On Android, launching 55 apps sequentially:
Before After Change
workingset_refault_anon 25641024 25598972 0%
workingset_refault_file 115016834 106178438 -8%
Link: https://lkml.kernel.org/r/20231208061407.2125867-1-yuzhao@google.com
Fixes: ac35a4902374 ("mm: multi-gen LRU: minimal implementation")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reported-by: Charan Teja Kalla <quic_charante@quicinc.com>
Tested-by: Kalesh Singh <kaleshsingh@google.com>
Cc: T.J. Mercier <tjmercier@google.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jaroslav Pulchart <jaroslav.pulchart@gooddata.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The cleanup tasks of kdamond threads including reset of corresponding
DAMON context's ->kdamond field and decrease of global nr_running_ctxs
counter is supposed to be executed by kdamond_fn(). However, commit
0f91d13366a4 ("mm/damon: simplify stop mechanism") made neither
damon_start() nor damon_stop() ensure the corresponding kdamond has
started the execution of kdamond_fn().
As a result, the cleanup can be skipped if damon_stop() is called fast
enough after the previous damon_start(). Especially the skipped reset
of ->kdamond could cause a use-after-free.
Fix it by waiting for start of kdamond_fn() execution from
damon_start().
Link: https://lkml.kernel.org/r/20231208175018.63880-1-sj@kernel.org
Fixes: 0f91d13366a4 ("mm/damon: simplify stop mechanism")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Jakub Acs <acsjakub@amazon.de>
Cc: Changbin Du <changbin.du@intel.com>
Cc: Jakub Acs <acsjakub@amazon.de>
Cc: <stable@vger.kernel.org> # 5.15.x
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
After converting selinux to VMA heap check helper, the gcl triggers an
execheap SELinux denial, which is caused by a changed logic check.
Previously selinux only checked that the VMA range was within the VMA heap
range, and the implementation checks the intersection between the two
ranges, but the corner case (vm_end=start_brk, brk=vm_start) isn't handled
correctly.
Since commit 11250fd12eb8 ("mm: factor out VMA stack and heap checks") was
only a function extraction, it seems that the issue was introduced by
commit 0db0c01b53a1 ("procfs: fix /proc/<pid>/maps heap check"). Let's
fix above corner cases, meanwhile, correct the wrong indentation of the
stack and heap check helpers.
Fixes: 11250fd12eb8 ("mm: factor out VMA stack and heap checks")
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reported-by: Ondrej Mosnacek <omosnace@redhat.com>
Closes: https://lore.kernel.org/selinux/CAFqZXNv0SVT0fkOK6neP9AXbj3nxJ61JAY4+zJzvxqJaeuhbFw@mail.gmail.com/
Tested-by: Ondrej Mosnacek <omosnace@redhat.com>
Link: https://lkml.kernel.org/r/20231207152525.2607420-1-wangkefeng.wang@huawei.com
Cc: David Hildenbrand <david@redhat.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <stephen.smalley.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Running my yearly branch profiler to see where likely/unlikely annotation
may be added or removed, I discovered this:
correct incorrect % Function File Line
------- --------- - -------- ---- ----
0 457918 100 page_try_dup_anon_rmap rmap.h 264
[..]
458021 0 0 page_try_dup_anon_rmap rmap.h 265
I thought it was interesting that line 264 of rmap.h had a 100% incorrect
annotation, but the line directly below it was 100% correct. Looking at the
code:
if (likely(!is_device_private_page(page) &&
unlikely(page_needs_cow_for_dma(vma, page))))
It didn't make sense. The "likely()" was around the entire if statement
(not just the "!is_device_private_page(page)"), which also included the
"unlikely()" portion of that if condition.
If the unlikely portion is unlikely to be true, that would make the entire
if condition unlikely to be true, so it made no sense at all to say the
entire if condition is true.
What is more likely to be likely is just the first part of the if statement
before the && operation. It's likely to be a misplaced parenthesis. And
after making the if condition broken into a likely() && unlikely(), both
now appear to be correct!
Link: https://lkml.kernel.org/r/20231201145936.5ddfdb50@gandalf.local.home
Fixes:fb3d824d1a46c ("mm/rmap: split page_dup_rmap() into page_dup_file_rmap() and page_try_dup_anon_rmap()")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch series "mm: cleanup and use more folio in page fault", v3.
Rename page_copy_prealloc() to folio_prealloc(), which is used by more
functions, also do more folio conversion in page fault.
This patch (of 5):
Since ksm only support normal page, no swapout/in for ksm large folio too,
add large folio check in ksm_might_need_to_copy(), also convert
page->index to folio->index as page->index is going away.
Then convert ksm_might_need_to_copy() to use more folio api to save nine
compound_head() calls, short 'address' to reduce max-line-length.
Link: https://lkml.kernel.org/r/20231118023232.1409103-1-wangkefeng.wang@huawei.com
Link: https://lkml.kernel.org/r/20231118023232.1409103-2-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch series "mm/damon: let users feed and tame/auto-tune DAMOS".
Introduce Aim-oriented Feedback-driven DAMOS Aggressiveness Auto-tuning.
It makes DAMOS self-tuned with periodic simple user feedback.
Background: DAMOS Control Difficulty
====================================
DAMOS helps users easily implement access pattern aware system operations.
However, controlling DAMOS in the wild is not that easy.
The basic way for DAMOS control is specifying the target access pattern.
In this approach, the user is assumed to well understand the access
pattern and the characteristics of the system and the workloads. Though
there are useful tools for that, it takes time and effort depending on the
complexity and the dynamicity of the system and the workloads. After all,
the access pattern consists of three ranges, namely the size, the access
rate, and the age of the regions. It means users need to tune six
parameters, which is anyway not a simple task.
One of the worst cases would be DAMOS being too aggressive like a
berserker, and therefore consuming too much system resource and making
unwanted radical system operations. To let users avoid such cases, DAMOS
allows users to set the upper-limit of the schemes' aggressiveness, namely
DAMOS quota. DAMOS further provides its best-effort under the limit by
prioritizing regions based on the access pattern of the regions. For
example, users can ask DAMOS to page out up to 100 MiB of memory regions
per second. Then DAMOS pages out regions that are not accessed for a
longer time (colder) first under the limit. This allows users to set the
target access pattern a bit naive with wider ranges, and focus on tuning
only one parameter, the quota. In other words, the number of parameters
to tune can be reduced from six to one.
Still, however, the optimum value for the quota depends on the system and
the workloads' characteristics, so not that simple. The number of
parameters to tune can also increase again if the user needs to run
multiple schemes.
Aim-oriented Feedback-driven DAMOS Aggressiveness Auto Tuning
=============================================================
Users would use DAMOS since they want to achieve something with it. They
will likely have measurable metrics representing the achievement and the
target number of the metric like SLO, and continuously measure that
anyway. While the additional cost of getting the information is nearly
zero, it could be useful for DAMOS to understand how appropriate its
current aggressiveness is set, and adjust it on its own to make the metric
value more close to the target.
Based on this idea, we introduce a new way of tuning DAMOS with nearly
zero additional effort, namely Aim-oriented Feedback-driven DAMOS
Aggressiveness Auto Tuning. It asks users to provide feedback
representing how well DAMOS is doing relative to the users' aim. Then
DAMOS adjusts its aggressiveness, specifically the quota that provides
the best effort result under the limit, based on the current level of
the aggressiveness and the users' feedback.
Implementation
==============
The implementation asks users to represent the feedback with score
numbers. The scores could be anything including user-space specific
metrics including latency and throughput of special user-space workloads,
and system metrics including free memory ratio, memory pressure stall time
(PSI), and active to inactive LRU lists size ratio. The feedback scores
and the aggressiveness of the given DAMOS scheme are assumed to be
positively proportional, though. Selecting metrics of the assumption is
the users' responsibility.
The core logic uses the below simple feedback loop algorithm to calculate
the next aggressiveness level of the scheme from the current
aggressiveness level and the current feedback (target_score and
current_score). It calculates the compensation for next aggressiveness as
a proportion of current aggressiveness and distance to the target score.
As a result, it arrives at the near-goal state in a short time using big
steps when it's far from the goal, but avoids making unnecessarily radical
changes that could turn out to be a bad decision using small steps when
its near to the goal.
f(n) = max(1, f(n - 1) * ((target_score - current_score) / target_score + 1))
Note that the compensation value becomes negative when it's over
achieving the goal. That's why the feedback metric and the
aggressiveness of the scheme should be positively proportional. The
distance-adaptive speed manipulation is simply applied.
Example Use Cases
=================
If users want to reduce the memory footprint of the system as much as
possible as long as the time spent for handling the resulting memory
pressure is within a threshold, they could use DAMOS scheme that reclaims
cold memory regions aiming for a little level of memory pressure stall
time.
If users want the active/inactive LRU lists well balanced to reduce the
performance impact due to possible future memory pressure, they could use
two schemes. The first one would be set to locate hot pages in the active
LRU list, aiming for a specific active-to-inactive LRU list size ratio,
say, 70%. The second one would be to locate cold pages in the inactive
LRU list, aiming for a specific inactive-to-active LRU list size ratio,
say, 30%. Then, DAMOS will balance the two schemes based on the goal and
feedback.
This aim-oriented auto tuning could also be useful for general
balancing-required access aware system operations such as system memory
auto scaling[3] and tiered memory management[4]. These two example usages
are not what current DAMOS implementation is already supporting, but
require additional DAMOS action developments, though.
Evaluation: subtle memory pressure aiming proactive reclamation
===============================================================
To show if the implementation works as expected, we prepare four different
system configurations on AWS i3.metal instances. The first setup
(original) runs the workload without any DAMOS scheme. The second setup
(not-tuned) runs the workload with a virtual address space-based proactive
reclamation scheme that pages out memory regions that are not accessed for
five seconds or more. The third setup (offline-tuned) runs the same
proactive reclamation DAMOS scheme, but after making it tuned for each
workload offline, using our previous user-space driven automatic tuning
approach, namely DAMOOS[1]. The fourth and final setup (AFDAA) runs the
scheme that is the same as that of 'not-tuned' setup, but aims to keep
0.5% of 'some' memory pressure stall time (PSI) for the last 10 seconds
using the aiming-oriented auto tuning.
For each setup, we run realistic workloads from PARSEC3 and SPLASH-2X
benchmark suites. For each run, we measure RSS and runtime of the
workload, and 'some' memory pressure stall time (PSI) of the system. We
repeat the runs five times and use averaged measurements.
For simple comparison of the results, we normalize the measurements to
those of 'original'. In the case of the PSI, though, the measurement for
'original' was zero, so we normalize the value to that of 'not-tuned'
scheme's result. The normalized results are shown below.
Not-tuned Offline-tuned AFDAA
RSS 0.622688178226118 0.787950678944904 0.740093483278979
runtime 1.11767826657912 1.0564674983585 1.0910833880499
PSI 1 0.727521443794069 0.308498846350299
The 'not-tuned' scheme achieves about 38.7% memory saving but incur about
11.7% runtime slowdown. The 'offline-tuned' scheme achieves about 22.2%
memory saving with about 5.5% runtime slowdown. It also achieves about
28.2% memory pressure stall time saving. AFDAA achieves about 26% memory
saving with about 9.1% runtime slowdown. It also achieves about 69.1%
memory pressure stall time saving. We repeat this test multiple times,
and get consistent results. AFDAA is now integrated in our daily DAMON
performance test setup.
Apparently the aggressiveness of 'AFDAA' setup is somewhere between those
of 'not-tuned' and 'offline-tuned' setup, since its memory saving and
runtime overhead are between those of the other two setups. Actually we
set the memory pressure stall time goal aiming for this middle
aggressiveness. The difference in the two metrics are not significant,
though. However, it shows significant saving of the memory pressure stall
time, which was the goal of the auto-tuning, over the two variants.
Hence, we conclude the automatic tuning is working as expected.
Please note that the AFDAA setup is only for the evaluation, and
therefore intentionally set a bit aggressive. It might not be
appropriate for production environments.
The test code is also available[2], so you could reproduce it on your
system and workloads.
Patches Sequence
================
The first four patches implement the core logic and user interfaces for
the auto tuning. The first patch implements the core logic for the auto
tuning, and the API for DAMOS users in the kernel space. The second
patch implements basic file operations of DAMON sysfs directories and
files that will be used for setting the goals and providing the
feedback. The third patch connects the quota goals files inputs to the
DAMOS core logic. Finally the fourth patch implements a dedicated DAMOS
sysfs command for efficiently committing the quota goals feedback.
Two patches for simple tests of the logic and interfaces follow. The
fifth patch implements the core logic unit test. The sixth patch
implements a selftest for the DAMON Sysfs interface for the goals.
Finally, three patches for documentation follows. The seventh patch
documents the design of the feature. The eighth patch updates the API
doc for the new sysfs files. The final eighth patch updates the usage
document for the features.
References
==========
[1] DAOS paper:
https://www.amazon.science/publications/daos-data-access-aware-operating-system
[2] Evaluation code:
https://github.com/damonitor/damon-tests/commit/3f884e61193f0166b8724554b6d06b0c449a712d
[3] Memory auto scaling RFC idea:
https://lore.kernel.org/damon/20231112195114.61474-1-sj@kernel.org/
[4] DAMON-based tiered memory management RFC idea:
https://lore.kernel.org/damon/20231112195602.61525-1-sj@kernel.org/
This patch (of 9)
Users can effectively control the upper-limit aggressiveness of DAMOS
schemes using the quota feature. The quota provides best result under the
limit by prioritizing regions based on the access pattern. That said,
finding the best value, which could depend on dynamic characteristics of
the system and the workloads, is still challenging.
Implement a simple feedback-driven tuning mechanism and use it for
automatic tuning of DAMOS quota. The implementation allows users to
provide the feedback by setting a feedback score returning callback
function. Then DAMOS periodically calls the function back and adjusts the
quota based on the return value of the callback and current quota value.
Note that the absolute-value based time/size quotas still work as the
maximum hard limits of the scheme's aggressiveness. The feedback-driven
auto-tuned quota is applied only if it is not exceeding the manually set
maximum limits. Same for the scheme-target access pattern and filters
like other features.
[sj@kernel.org: document get_score_arg field of struct damos_quota]
Link: https://lkml.kernel.org/r/20231204170106.60992-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20231130023652.50284-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20231130023652.50284-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Gow <davidgow@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently, we only shrink the zswap pool when the user-defined limit is
hit. This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed ahead
of time, as this depends on the workload (specifically, on factors such as
memory access patterns and compressibility of the memory pages).
This patch implements a memcg- and NUMA-aware shrinker for zswap, that is
initiated when there is memory pressure. The shrinker does not have any
parameter that must be tuned by the user, and can be opted in or out on a
per-memcg basis.
Furthermore, to make it more robust for many workloads and prevent
overshrinking (i.e evicting warm pages that might be refaulted into
memory), we build in the following heuristics:
* Estimate the number of warm pages residing in zswap, and attempt to
protect this region of the zswap LRU.
* Scale the number of freeable objects by an estimate of the memory
saving factor. The better zswap compresses the data, the fewer pages
we will evict to swap (as we will otherwise incur IO for relatively
small memory saving).
* During reclaim, if the shrinker encounters a page that is also being
brought into memory, the shrinker will cautiously terminate its
shrinking action, as this is a sign that it is touching the warmer
region of the zswap LRU.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
[nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing]
Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since zswap now writes back pages from memcg-specific LRUs, we now need a
new stat to show writebacks count for each memcg.
[nphamcs@gmail.com: rename ZSWP_WB to ZSWPWB]
Link: https://lkml.kernel.org/r/20231205193307.2432803-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-5-nphamcs@gmail.com
Suggested-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently, we only have a single global LRU for zswap. This makes it
impossible to perform worload-specific shrinking - an memcg cannot
determine which pages in the pool it owns, and often ends up writing pages
from other memcgs. This issue has been previously observed in practice
and mitigated by simply disabling memcg-initiated shrinking:
https://lore.kernel.org/all/20230530232435.3097106-1-nphamcs@gmail.com/T/#u
This patch fully resolves the issue by replacing the global zswap LRU
with memcg- and NUMA-specific LRUs, and modify the reclaim logic:
a) When a store attempt hits an memcg limit, it now triggers a
synchronous reclaim attempt that, if successful, allows the new
hotter page to be accepted by zswap.
b) If the store attempt instead hits the global zswap limit, it will
trigger an asynchronous reclaim attempt, in which an memcg is
selected for reclaim in a round-robin-like fashion.
[nphamcs@gmail.com: use correct function for the onlineness check, use mem_cgroup_iter_break()]
Link: https://lkml.kernel.org/r/20231205195419.2563217-1-nphamcs@gmail.com
[nphamcs@gmail.com: drop the pool's reference at the end of the writeback step]
Link: https://lkml.kernel.org/r/20231206030627.4155634-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-4-nphamcs@gmail.com
Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Co-developed-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch implements a helper function that try to get a reference to an
memcg's css, as well as checking if it is online. This new function is
almost exactly the same as the existing mem_cgroup_tryget(), except for
the onlineness check. In the !CONFIG_MEMCG case, it always returns true,
analogous to mem_cgroup_tryget(). This is useful for e.g to the new zswap
writeback scheme, where we need to select the next online memcg as a
candidate for the global limit reclaim.
Link: https://lkml.kernel.org/r/20231130194023.4102148-3-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch series "workload-specific and memory pressure-driven zswap
writeback", v8.
There are currently several issues with zswap writeback:
1. There is only a single global LRU for zswap, making it impossible to
perform worload-specific shrinking - an memcg under memory pressure
cannot determine which pages in the pool it owns, and often ends up
writing pages from other memcgs. This issue has been previously
observed in practice and mitigated by simply disabling
memcg-initiated shrinking:
https://lore.kernel.org/all/20230530232435.3097106-1-nphamcs@gmail.com/T/#u
But this solution leaves a lot to be desired, as we still do not
have an avenue for an memcg to free up its own memory locked up in
the zswap pool.
2. We only shrink the zswap pool when the user-defined limit is hit.
This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed
ahead of time, as this depends on the workload (specifically, on
factors such as memory access patterns and compressibility of the
memory pages).
This patch series solves these issues by separating the global zswap LRU
into per-memcg and per-NUMA LRUs, and performs workload-specific (i.e
memcg- and NUMA-aware) zswap writeback under memory pressure. The new
shrinker does not have any parameter that must be tuned by the user, and
can be opted in or out on a per-memcg basis.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
This patch (of 6):
The interface of list_lru is based on the assumption that the list node
and the data it represents belong to the same allocated on the correct
node/memcg. While this assumption is valid for existing slab objects LRU
such as dentries and inodes, it is undocumented, and rather inflexible for
certain potential list_lru users (such as the upcoming zswap shrinker and
the THP shrinker). It has caused us a lot of issues during our
development.
This patch changes list_lru interface so that the caller must explicitly
specify numa node and memcg when adding and removing objects. The old
list_lru_add() and list_lru_del() are renamed to list_lru_add_obj() and
list_lru_del_obj(), respectively.
It also extends the list_lru API with a new function, list_lru_putback,
which undoes a previous list_lru_isolate call. Unlike list_lru_add, it
does not increment the LRU node count (as list_lru_isolate does not
decrement the node count). list_lru_putback also allows for explicit
memcg and NUMA node selection.
Link: https://lkml.kernel.org/r/20231130194023.4102148-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-2-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
ma_wr_state was previously tracking the end of the node for writing.
Since the implementation of the ma_state end tracking, this is duplicated
work. This patch removes the maple write state tracking of the end of the
node and uses the maple state end instead.
Link: https://lkml.kernel.org/r/20231101171629.3612299-11-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Peng Zhang <zhangpeng.00@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The maple tree node is overloaded to keep status as well as the active
node. This, unfortunately, results in a re-walk on underflow or overflow.
Since the maple state has room, the status can be placed in its own enum
in the structure. Once an underflow/overflow is detected, certain modes
can restore the status to active and others may need to re-walk just that
one node to see the entry.
The status being an enum has the benefit of detecting unhandled status in
switch statements.
[Liam.Howlett@oracle.com: fix comments about MAS_*]
Link: https://lkml.kernel.org/r/20231106154124.614247-1-Liam.Howlett@oracle.com
[Liam.Howlett@oracle.com: update forking to separate maple state and node]
Link: https://lkml.kernel.org/r/20231106154551.615042-1-Liam.Howlett@oracle.com
[Liam.Howlett@oracle.com: fix mas_prev() state separation code]
Link: https://lkml.kernel.org/r/20231207193319.4025462-1-Liam.Howlett@oracle.com
Link: https://lkml.kernel.org/r/20231101171629.3612299-9-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Peng Zhang <zhangpeng.00@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Analysis of the mas_for_each() iteration showed that there is a
significant time spent finding the end of a node. This time can be
greatly reduced if the end of the node is cached in the maple state. Care
must be taken to update & invalidate as necessary.
Link: https://lkml.kernel.org/r/20231101171629.3612299-5-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Peng Zhang <zhangpeng.00@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
__mas_set_range() was created to shortcut resetting the maple state and a
debug check was added to the caller (the vma iterator) to ensure the
internal maple state remains safe to use. Move the debug check from the
vma iterator into the maple tree itself so other users do not incorrectly
use the advanced maple state modification.
Fallout from this change include a large amount of debug setup needed to
be moved to earlier in the header, and the maple_tree.h radix-tree test
code needed to move the inclusion of the header to after the atomic
define. None of those changes have functional changes.
Link: https://lkml.kernel.org/r/20231101171629.3612299-4-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Peng Zhang <zhangpeng.00@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
kernel-doc is not happy about documentation in list_lru.h:
list_lru.h:90: warning: Function parameter or member 'lru' not described in 'list_lru_add'
list_lru.h:90: warning: Excess function parameter 'list_lru' description in 'list_lru_add'
list_lru.h:90: warning: No description found for return value of 'list_lru_add'
list_lru.h:103: warning: Function parameter or member 'lru' not described in 'list_lru_del'
list_lru.h:103: warning: Excess function parameter 'list_lru' description in 'list_lru_del'
list_lru.h:103: warning: No description found for return value of 'list_lru_del'
list_lru.h:116: warning: No description found for return value of 'list_lru_count_one'
list_lru.h:168: warning: No description found for return value of 'list_lru_walk_one'
list_lru.h:185: warning: No description found for return value of 'list_lru_walk_one_irq'
Fix the documentation accordingly.
While at it, fix the references to the parameters in functions
inside the long descriptions, on which the above script is not
complaining (yet?).
Link: https://lkml.kernel.org/r/20231123172320.2434780-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Rename ptdesc _refcount field to __page_refcount similar to the other
unused page fields.
Link: https://lkml.kernel.org/r/982bdc652ba79a606c3d01c905766e7e076b3315.1700594815.git.agordeev@linux.ibm.com
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Suggested-by: Vishal Moola <vishal.moola@gmail.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|