summaryrefslogtreecommitdiffstats
path: root/kernel/bpf/hashtab.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* bpf: pre-allocate hash map elementsAlexei Starovoitov2016-03-081-73/+167
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If kprobe is placed on spin_unlock then calling kmalloc/kfree from bpf programs is not safe, since the following dead lock is possible: kfree->spin_lock(kmem_cache_node->lock)...spin_unlock->kprobe-> bpf_prog->map_update->kmalloc->spin_lock(of the same kmem_cache_node->lock) and deadlocks. The following solutions were considered and some implemented, but eventually discarded - kmem_cache_create for every map - add recursion check to slow-path of slub - use reserved memory in bpf_map_update for in_irq or in preempt_disabled - kmalloc via irq_work At the end pre-allocation of all map elements turned out to be the simplest solution and since the user is charged upfront for all the memory, such pre-allocation doesn't affect the user space visible behavior. Since it's impossible to tell whether kprobe is triggered in a safe location from kmalloc point of view, use pre-allocation by default and introduce new BPF_F_NO_PREALLOC flag. While testing of per-cpu hash maps it was discovered that alloc_percpu(GFP_ATOMIC) has odd corner cases and often fails to allocate memory even when 90% of it is free. The pre-allocation of per-cpu hash elements solves this problem as well. Turned out that bpf_map_update() quickly followed by bpf_map_lookup()+bpf_map_delete() is very common pattern used in many of iovisor/bcc/tools, so there is additional benefit of pre-allocation, since such use cases are must faster. Since all hash map elements are now pre-allocated we can remove atomic increment of htab->count and save few more cycles. Also add bpf_map_precharge_memlock() to check rlimit_memlock early to avoid large malloc/free done by users who don't have sufficient limits. Pre-allocation is done with vmalloc and alloc/free is done via percpu_freelist. Here are performance numbers for different pre-allocation algorithms that were implemented, but discarded in favor of percpu_freelist: 1 cpu: pcpu_ida 2.1M pcpu_ida nolock 2.3M bt 2.4M kmalloc 1.8M hlist+spinlock 2.3M pcpu_freelist 2.6M 4 cpu: pcpu_ida 1.5M pcpu_ida nolock 1.8M bt w/smp_align 1.7M bt no/smp_align 1.1M kmalloc 0.7M hlist+spinlock 0.2M pcpu_freelist 2.0M 8 cpu: pcpu_ida 0.7M bt w/smp_align 0.8M kmalloc 0.4M pcpu_freelist 1.5M 32 cpu: kmalloc 0.13M pcpu_freelist 0.49M pcpu_ida nolock is a modified percpu_ida algorithm without percpu_ida_cpu locks and without cross-cpu tag stealing. It's faster than existing percpu_ida, but not as fast as pcpu_freelist. bt is a variant of block/blk-mq-tag.c simlified and customized for bpf use case. bt w/smp_align is using cache line for every 'long' (similar to blk-mq-tag). bt no/smp_align allocates 'long' bitmasks continuously to save memory. It's comparable to percpu_ida and in some cases faster, but slower than percpu_freelist hlist+spinlock is the simplest free list with single spinlock. As expeceted it has very bad scaling in SMP. kmalloc is existing implementation which is still available via BPF_F_NO_PREALLOC flag. It's significantly slower in single cpu and in 8 cpu setup it's 3 times slower than pre-allocation with pcpu_freelist, but saves memory, so in cases where map->max_entries can be large and number of map update/delete per second is low, it may make sense to use it. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: grab rcu read lock for bpf_percpu_hash_updateSasha Levin2016-02-191-1/+7
| | | | | | | | | | | bpf_percpu_hash_update() expects rcu lock to be held and warns if it's not, which pointed out a missing rcu read lock. Fixes: 15a07b338 ("bpf: add lookup/update support for per-cpu hash and array maps") Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: add lookup/update support for per-cpu hash and array mapsAlexei Starovoitov2016-02-061-9/+74
| | | | | | | | | | | | | | | | | | | | | | | | | The functions bpf_map_lookup_elem(map, key, value) and bpf_map_update_elem(map, key, value, flags) need to get/set values from all-cpus for per-cpu hash and array maps, so that user space can aggregate/update them as necessary. Example of single counter aggregation in user space: unsigned int nr_cpus = sysconf(_SC_NPROCESSORS_CONF); long values[nr_cpus]; long value = 0; bpf_lookup_elem(fd, key, values); for (i = 0; i < nr_cpus; i++) value += values[i]; The user space must provide round_up(value_size, 8) * nr_cpus array to get/set values, since kernel will use 'long' copy of per-cpu values to try to copy good counters atomically. It's a best-effort, since bpf programs and user space are racing to access the same memory. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: introduce BPF_MAP_TYPE_PERCPU_HASH mapAlexei Starovoitov2016-02-061-47/+228
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Introduce BPF_MAP_TYPE_PERCPU_HASH map type which is used to do accurate counters without need to use BPF_XADD instruction which turned out to be too costly for high-performance network monitoring. In the typical use case the 'key' is the flow tuple or other long living object that sees a lot of events per second. bpf_map_lookup_elem() returns per-cpu area. Example: struct { u32 packets; u32 bytes; } * ptr = bpf_map_lookup_elem(&map, &key); /* ptr points to this_cpu area of the value, so the following * increments will not collide with other cpus */ ptr->packets ++; ptr->bytes += skb->len; bpf_update_elem() atomically creates a new element where all per-cpu values are zero initialized and this_cpu value is populated with given 'value'. Note that non-per-cpu hash map always allocates new element and then deletes old after rcu grace period to maintain atomicity of update. Per-cpu hash map updates element values in-place. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: hash: use per-bucket spinlocktom.leiming@gmail.com2015-12-291-18/+32
| | | | | | | | | | | | | | | | Both htab_map_update_elem() and htab_map_delete_elem() can be called from eBPF program, and they may be in kernel hot path, so it isn't efficient to use a per-hashtable lock in this two helpers. The per-hashtable spinlock is used for protecting bucket's hlist, and per-bucket lock is just enough. This patch converts the per-hashtable lock into per-bucket spinlock, so that contention can be decreased a lot. Signed-off-by: Ming Lei <tom.leiming@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: hash: move select_bucket() out of htab's spinlocktom.leiming@gmail.com2015-12-291-4/+2
| | | | | | | | | The spinlock is just used for protecting the per-bucket hlist, so it isn't needed for selecting bucket. Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Ming Lei <tom.leiming@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: hash: use atomic counttom.leiming@gmail.com2015-12-291-6/+6
| | | | | | | | | Preparing for removing global per-hashtable lock, so the counter need to be defined as aotmic_t first. Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Ming Lei <tom.leiming@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: fix allocation warnings in bpf maps and integer overflowAlexei Starovoitov2015-12-031-9/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For large map->value_size the user space can trigger memory allocation warnings like: WARNING: CPU: 2 PID: 11122 at mm/page_alloc.c:2989 __alloc_pages_nodemask+0x695/0x14e0() Call Trace: [< inline >] __dump_stack lib/dump_stack.c:15 [<ffffffff82743b56>] dump_stack+0x68/0x92 lib/dump_stack.c:50 [<ffffffff81244ec9>] warn_slowpath_common+0xd9/0x140 kernel/panic.c:460 [<ffffffff812450f9>] warn_slowpath_null+0x29/0x30 kernel/panic.c:493 [< inline >] __alloc_pages_slowpath mm/page_alloc.c:2989 [<ffffffff81554e95>] __alloc_pages_nodemask+0x695/0x14e0 mm/page_alloc.c:3235 [<ffffffff816188fe>] alloc_pages_current+0xee/0x340 mm/mempolicy.c:2055 [< inline >] alloc_pages include/linux/gfp.h:451 [<ffffffff81550706>] alloc_kmem_pages+0x16/0xf0 mm/page_alloc.c:3414 [<ffffffff815a1c89>] kmalloc_order+0x19/0x60 mm/slab_common.c:1007 [<ffffffff815a1cef>] kmalloc_order_trace+0x1f/0xa0 mm/slab_common.c:1018 [< inline >] kmalloc_large include/linux/slab.h:390 [<ffffffff81627784>] __kmalloc+0x234/0x250 mm/slub.c:3525 [< inline >] kmalloc include/linux/slab.h:463 [< inline >] map_update_elem kernel/bpf/syscall.c:288 [< inline >] SYSC_bpf kernel/bpf/syscall.c:744 To avoid never succeeding kmalloc with order >= MAX_ORDER check that elem->value_size and computed elem_size are within limits for both hash and array type maps. Also add __GFP_NOWARN to kmalloc(value_size | elem_size) to avoid OOM warnings. Note kmalloc(key_size) is highly unlikely to trigger OOM, since key_size <= 512, so keep those kmalloc-s as-is. Large value_size can cause integer overflows in elem_size and map.pages formulas, so check for that as well. Fixes: aaac3ba95e4c ("bpf: charge user for creation of BPF maps and programs") Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: convert hashtab lock to raw lockYang Shi2015-11-021-7/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When running bpf samples on rt kernel, it reports the below warning: BUG: sleeping function called from invalid context at kernel/locking/rtmutex.c:917 in_atomic(): 1, irqs_disabled(): 128, pid: 477, name: ping Preemption disabled at:[<ffff80000017db58>] kprobe_perf_func+0x30/0x228 CPU: 3 PID: 477 Comm: ping Not tainted 4.1.10-rt8 #4 Hardware name: Freescale Layerscape 2085a RDB Board (DT) Call trace: [<ffff80000008a5b0>] dump_backtrace+0x0/0x128 [<ffff80000008a6f8>] show_stack+0x20/0x30 [<ffff8000007da90c>] dump_stack+0x7c/0xa0 [<ffff8000000e4830>] ___might_sleep+0x188/0x1a0 [<ffff8000007e2200>] rt_spin_lock+0x28/0x40 [<ffff80000018bf9c>] htab_map_update_elem+0x124/0x320 [<ffff80000018c718>] bpf_map_update_elem+0x40/0x58 [<ffff800000187658>] __bpf_prog_run+0xd48/0x1640 [<ffff80000017ca6c>] trace_call_bpf+0x8c/0x100 [<ffff80000017db58>] kprobe_perf_func+0x30/0x228 [<ffff80000017dd84>] kprobe_dispatcher+0x34/0x58 [<ffff8000007e399c>] kprobe_handler+0x114/0x250 [<ffff8000007e3bf4>] kprobe_breakpoint_handler+0x1c/0x30 [<ffff800000085b80>] brk_handler+0x88/0x98 [<ffff8000000822f0>] do_debug_exception+0x50/0xb8 Exception stack(0xffff808349687460 to 0xffff808349687580) 7460: 4ca2b600 ffff8083 4a3a7000 ffff8083 49687620 ffff8083 0069c5f8 ffff8000 7480: 00000001 00000000 007e0628 ffff8000 496874b0 ffff8083 007e1de8 ffff8000 74a0: 496874d0 ffff8083 0008e04c ffff8000 00000001 00000000 4ca2b600 ffff8083 74c0: 00ba2e80 ffff8000 49687528 ffff8083 49687510 ffff8083 000e5c70 ffff8000 74e0: 00c22348 ffff8000 00000000 ffff8083 49687510 ffff8083 000e5c74 ffff8000 7500: 4ca2b600 ffff8083 49401800 ffff8083 00000001 00000000 00000000 00000000 7520: 496874d0 ffff8083 00000000 00000000 00000000 00000000 00000000 00000000 7540: 2f2e2d2c 33323130 00000000 00000000 4c944500 ffff8083 00000000 00000000 7560: 00000000 00000000 008751e0 ffff8000 00000001 00000000 124e2d1d 00107b77 Convert hashtab lock to raw lock to avoid such warning. Signed-off-by: Yang Shi <yang.shi@linaro.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: charge user for creation of BPF maps and programsAlexei Starovoitov2015-10-131-0/+4
| | | | | | | | | | | | | | | | since eBPF programs and maps use kernel memory consider it 'locked' memory from user accounting point of view and charge it against RLIMIT_MEMLOCK limit. This limit is typically set to 64Kbytes by distros, so almost all bpf+tracing programs would need to increase it, since they use maps, but kernel charges maximum map size upfront. For example the hash map of 1024 elements will be charged as 64Kbyte. It's inconvenient for current users and changes current behavior for root, but probably worth doing to be consistent root vs non-root. Similar accounting logic is done by mmap of perf_event. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* ebpf: constify various function pointer structsDaniel Borkmann2015-03-011-3/+3
| | | | | | | | | We can move bpf_map_ops and bpf_verifier_ops and other structs into ro section, bpf_map_type_list and bpf_prog_type_list into read mostly. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: fix arraymap NULL deref and missing overflow and zero size checksAlexei Starovoitov2014-11-191-0/+5
| | | | | | | | | | | | | | | | | | | | | | - fix NULL pointer dereference: kernel/bpf/arraymap.c:41 array_map_alloc() error: potential null dereference 'array'. (kzalloc returns null) kernel/bpf/arraymap.c:41 array_map_alloc() error: we previously assumed 'array' could be null (see line 40) - integer overflow check was missing in arraymap (hashmap checks for overflow via kmalloc_array()) - arraymap can round_up(value_size, 8) to zero. check was missing. - hashmap was missing zero size check as well, since roundup_pow_of_two() can truncate into zero - found a typo in the arraymap comment and unnecessary empty line Fix all of these issues and make both overflow checks explicit U32 in size. Reported-by: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: add hashtable type of eBPF mapsAlexei Starovoitov2014-11-181-0/+362
add new map type BPF_MAP_TYPE_HASH and its implementation - maps are created/destroyed by userspace. Both userspace and eBPF programs can lookup/update/delete elements from the map - eBPF programs can be called in_irq(), so use spin_lock_irqsave() mechanism for concurrent updates - key/value are opaque range of bytes (aligned to 8 bytes) - user space provides 3 configuration attributes via BPF syscall: key_size, value_size, max_entries - map takes care of allocating/freeing key/value pairs - map_update_elem() must fail to insert new element when max_entries limit is reached to make sure that eBPF programs cannot exhaust memory - map_update_elem() replaces elements in an atomic way - optimized for speed of lookup() which can be called multiple times from eBPF program which itself is triggered by high volume of events . in the future JIT compiler may recognize lookup() call and optimize it further, since key_size is constant for life of eBPF program Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>