summaryrefslogtreecommitdiffstats
path: root/kernel/bpf (follow)
Commit message (Collapse)AuthorAgeFilesLines
* bpf: allow networking programs to use bpf_trace_printk() for debuggingAlexei Starovoitov2015-06-161-0/+4
| | | | | | | | | | | bpf_trace_printk() is a helper function used to debug eBPF programs. Let socket and TC programs use it as well. Note, it's DEBUG ONLY helper. If it's used in the program, the kernel will print warning banner to make sure users don't use it in production. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: introduce current->pid, tgid, uid, gid, comm accessorsAlexei Starovoitov2015-06-162-0/+61
| | | | | | | | | | | | | | | | | | | | | | | eBPF programs attached to kprobes need to filter based on current->pid, uid and other fields, so introduce helper functions: u64 bpf_get_current_pid_tgid(void) Return: current->tgid << 32 | current->pid u64 bpf_get_current_uid_gid(void) Return: current_gid << 32 | current_uid bpf_get_current_comm(char *buf, int size_of_buf) stores current->comm into buf They can be used from the programs attached to TC as well to classify packets based on current task fields. Update tracex2 example to print histogram of write syscalls for each process instead of aggregated for all. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: allow programs to write to certain skb fieldsAlexei Starovoitov2015-06-071-9/+28
| | | | | | | | | | | | | | | | | | | allow programs read/write skb->mark, tc_index fields and ((struct qdisc_skb_cb *)cb)->data. mark and tc_index are generically useful in TC. cb[0]-cb[4] are primarily used to pass arguments from one program to another called via bpf_tail_call() which can be seen in sockex3_kern.c example. All fields of 'struct __sk_buff' are readable to socket and tc_cls_act progs. mark, tc_index are writeable from tc_cls_act only. cb[0]-cb[4] are writeable by both sockets and tc_cls_act. Add verifier tests and improve sample code. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* ebpf: misc core cleanupDaniel Borkmann2015-06-012-48/+58
| | | | | | | | | | | Besides others, move bpf_tail_call_proto to the remaining definitions of other protos, improve comments a bit (i.e. remove some obvious ones, where the code is already self-documenting, add objectives for others), simplify bpf_prog_array_compatible() a bit. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* ebpf: allow bpf_ktime_get_ns_proto also for networkingDaniel Borkmann2015-06-012-0/+14
| | | | | | | | | | | | As this is already exported from tracing side via commit d9847d310ab4 ("tracing: Allow BPF programs to call bpf_ktime_get_ns()"), we might as well want to move it to the core, so also networking users can make use of it, e.g. to measure diffs for certain flows from ingress/egress. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@plumgrid.com> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: add missing rcu protection when releasing programs from prog_arrayAlexei Starovoitov2015-05-312-3/+20
| | | | | | | | | | | | | | | | | Normally the program attachment place (like sockets, qdiscs) takes care of rcu protection and calls bpf_prog_put() after a grace period. The programs stored inside prog_array may not be attached anywhere, so prog_array needs to take care of preserving rcu protection. Otherwise bpf_tail_call() will race with bpf_prog_put(). To solve that introduce bpf_prog_put_rcu() helper function and use it in 3 places where unattached program can decrement refcnt: closing program fd, deleting/replacing program in prog_array. Fixes: 04fd61ab36ec ("bpf: allow bpf programs to tail-call other bpf programs") Reported-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: allow bpf programs to tail-call other bpf programsAlexei Starovoitov2015-05-214-8/+218
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | introduce bpf_tail_call(ctx, &jmp_table, index) helper function which can be used from BPF programs like: int bpf_prog(struct pt_regs *ctx) { ... bpf_tail_call(ctx, &jmp_table, index); ... } that is roughly equivalent to: int bpf_prog(struct pt_regs *ctx) { ... if (jmp_table[index]) return (*jmp_table[index])(ctx); ... } The important detail that it's not a normal call, but a tail call. The kernel stack is precious, so this helper reuses the current stack frame and jumps into another BPF program without adding extra call frame. It's trivially done in interpreter and a bit trickier in JITs. In case of x64 JIT the bigger part of generated assembler prologue is common for all programs, so it is simply skipped while jumping. Other JITs can do similar prologue-skipping optimization or do stack unwind before jumping into the next program. bpf_tail_call() arguments: ctx - context pointer jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table index - index in the jump table Since all BPF programs are idenitified by file descriptor, user space need to populate the jmp_table with FDs of other BPF programs. If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere and program execution continues as normal. New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can populate this jmp_table array with FDs of other bpf programs. Programs can share the same jmp_table array or use multiple jmp_tables. The chain of tail calls can form unpredictable dynamic loops therefore tail_call_cnt is used to limit the number of calls and currently is set to 32. Use cases: Acked-by: Daniel Borkmann <daniel@iogearbox.net> ========== - simplify complex programs by splitting them into a sequence of small programs - dispatch routine For tracing and future seccomp the program may be triggered on all system calls, but processing of syscall arguments will be different. It's more efficient to implement them as: int syscall_entry(struct seccomp_data *ctx) { bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */); ... default: process unknown syscall ... } int sys_write_event(struct seccomp_data *ctx) {...} int sys_read_event(struct seccomp_data *ctx) {...} syscall_jmp_table[__NR_write] = sys_write_event; syscall_jmp_table[__NR_read] = sys_read_event; For networking the program may call into different parsers depending on packet format, like: int packet_parser(struct __sk_buff *skb) { ... parse L2, L3 here ... __u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol)); bpf_tail_call(skb, &ipproto_jmp_table, ipproto); ... default: process unknown protocol ... } int parse_tcp(struct __sk_buff *skb) {...} int parse_udp(struct __sk_buff *skb) {...} ipproto_jmp_table[IPPROTO_TCP] = parse_tcp; ipproto_jmp_table[IPPROTO_UDP] = parse_udp; - for TC use case, bpf_tail_call() allows to implement reclassify-like logic - bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table are atomic, so user space can build chains of BPF programs on the fly Implementation details: ======================= - high performance of bpf_tail_call() is the goal. It could have been implemented without JIT changes as a wrapper on top of BPF_PROG_RUN() macro, but with two downsides: . all programs would have to pay performance penalty for this feature and tail call itself would be slower, since mandatory stack unwind, return, stack allocate would be done for every tailcall. . tailcall would be limited to programs running preempt_disabled, since generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would need to be either global per_cpu variable accessed by helper and by wrapper or global variable protected by locks. In this implementation x64 JIT bypasses stack unwind and jumps into the callee program after prologue. - bpf_prog_array_compatible() ensures that prog_type of callee and caller are the same and JITed/non-JITed flag is the same, since calling JITed program from non-JITed is invalid, since stack frames are different. Similarly calling kprobe type program from socket type program is invalid. - jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map' abstraction, its user space API and all of verifier logic. It's in the existing arraymap.c file, since several functions are shared with regular array map. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: fix 64-bit divideAlexei Starovoitov2015-04-281-6/+6
| | | | | | | | | | | | | ALU64_DIV instruction should be dividing 64-bit by 64-bit, whereas do_div() does 64-bit by 32-bit divide. x64 and arm64 JITs correctly implement 64 by 64 unsigned divide. llvm BPF backend emits code assuming that ALU64_DIV does 64 by 64. Fixes: 89aa075832b0 ("net: sock: allow eBPF programs to be attached to sockets") Reported-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: fix two bugs in verification logic when accessing 'ctx' pointerAlexei Starovoitov2015-04-161-2/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1. first bug is a silly mistake. It broke tracing examples and prevented simple bpf programs from loading. In the following code: if (insn->imm == 0 && BPF_SIZE(insn->code) == BPF_W) { } else if (...) { // this part should have been executed when // insn->code == BPF_W and insn->imm != 0 } Obviously it's not doing that. So simple instructions like: r2 = *(u64 *)(r1 + 8) will be rejected. Note the comments in the code around these branches were and still valid and indicate the true intent. Replace it with: if (BPF_SIZE(insn->code) != BPF_W) continue; if (insn->imm == 0) { } else if (...) { // now this code will be executed when // insn->code == BPF_W and insn->imm != 0 } 2. second bug is more subtle. If malicious code is using the same dest register as source register, the checks designed to prevent the same instruction to be used with different pointer types will fail to trigger, since we were assigning src_reg_type when it was already overwritten by check_mem_access(). The fix is trivial. Just move line: src_reg_type = regs[insn->src_reg].type; before check_mem_access(). Add new 'access skb fields bad4' test to check this case. Fixes: 9bac3d6d548e ("bpf: allow extended BPF programs access skb fields") Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: fix verifier memory corruptionAlexei Starovoitov2015-04-161-1/+2
| | | | | | | | | | | | | | | | | | | | Due to missing bounds check the DAG pass of the BPF verifier can corrupt the memory which can cause random crashes during program loading: [8.449451] BUG: unable to handle kernel paging request at ffffffffffffffff [8.451293] IP: [<ffffffff811de33d>] kmem_cache_alloc_trace+0x8d/0x2f0 [8.452329] Oops: 0000 [#1] SMP [8.452329] Call Trace: [8.452329] [<ffffffff8116cc82>] bpf_check+0x852/0x2000 [8.452329] [<ffffffff8116b7e4>] bpf_prog_load+0x1e4/0x310 [8.452329] [<ffffffff811b190f>] ? might_fault+0x5f/0xb0 [8.452329] [<ffffffff8116c206>] SyS_bpf+0x806/0xa30 Fixes: f1bca824dabb ("bpf: add search pruning optimization to verifier") Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-nextLinus Torvalds2015-04-158-115/+204
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull networking updates from David Miller: 1) Add BQL support to via-rhine, from Tino Reichardt. 2) Integrate SWITCHDEV layer support into the DSA layer, so DSA drivers can support hw switch offloading. From Floria Fainelli. 3) Allow 'ip address' commands to initiate multicast group join/leave, from Madhu Challa. 4) Many ipv4 FIB lookup optimizations from Alexander Duyck. 5) Support EBPF in cls_bpf classifier and act_bpf action, from Daniel Borkmann. 6) Remove the ugly compat support in ARP for ugly layers like ax25, rose, etc. And use this to clean up the neigh layer, then use it to implement MPLS support. All from Eric Biederman. 7) Support L3 forwarding offloading in switches, from Scott Feldman. 8) Collapse the LOCAL and MAIN ipv4 FIB tables when possible, to speed up route lookups even further. From Alexander Duyck. 9) Many improvements and bug fixes to the rhashtable implementation, from Herbert Xu and Thomas Graf. In particular, in the case where an rhashtable user bulk adds a large number of items into an empty table, we expand the table much more sanely. 10) Don't make the tcp_metrics hash table per-namespace, from Eric Biederman. 11) Extend EBPF to access SKB fields, from Alexei Starovoitov. 12) Split out new connection request sockets so that they can be established in the main hash table. Much less false sharing since hash lookups go direct to the request sockets instead of having to go first to the listener then to the request socks hashed underneath. From Eric Dumazet. 13) Add async I/O support for crytpo AF_ALG sockets, from Tadeusz Struk. 14) Support stable privacy address generation for RFC7217 in IPV6. From Hannes Frederic Sowa. 15) Hash network namespace into IP frag IDs, also from Hannes Frederic Sowa. 16) Convert PTP get/set methods to use 64-bit time, from Richard Cochran. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1816 commits) fm10k: Bump driver version to 0.15.2 fm10k: corrected VF multicast update fm10k: mbx_update_max_size does not drop all oversized messages fm10k: reset head instead of calling update_max_size fm10k: renamed mbx_tx_dropped to mbx_tx_oversized fm10k: update xcast mode before synchronizing multicast addresses fm10k: start service timer on probe fm10k: fix function header comment fm10k: comment next_vf_mbx flow fm10k: don't handle mailbox events in iov_event path and always process mailbox fm10k: use separate workqueue for fm10k driver fm10k: Set PF queues to unlimited bandwidth during virtualization fm10k: expose tx_timeout_count as an ethtool stat fm10k: only increment tx_timeout_count in Tx hang path fm10k: remove extraneous "Reset interface" message fm10k: separate PF only stats so that VF does not display them fm10k: use hw->mac.max_queues for stats fm10k: only show actual queues, not the maximum in hardware fm10k: allow creation of VLAN on default vid fm10k: fix unused warnings ...
| * tc: bpf: generalize pedit actionAlexei Starovoitov2015-03-291-0/+2
| | | | | | | | | | | | | | | | | | | | | | existing TC action 'pedit' can munge any bits of the packet. Generalize it for use in bpf programs attached as cls_bpf and act_bpf via bpf_skb_store_bytes() helper function. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Jiri Pirko <jiri@resnulli.us> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
| * ebpf: add sched_act_type and map it to sk_filter's verifier opsDaniel Borkmann2015-03-211-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In order to prepare eBPF support for tc action, we need to add sched_act_type, so that the eBPF verifier is aware of what helper function act_bpf may use, that it can load skb data and read out currently available skb fields. This is bascially analogous to 96be4325f443 ("ebpf: add sched_cls_type and map it to sk_filter's verifier ops"). BPF_PROG_TYPE_SCHED_CLS and BPF_PROG_TYPE_SCHED_ACT need to be separate since both will have a different set of functionality in future (classifier vs action), thus we won't run into ABI troubles when the point in time comes to diverge functionality from the classifier. The future plan for act_bpf would be that it will be able to write into skb->data and alter selected fields mirrored in struct __sk_buff. For an initial support, it's sufficient to map it to sk_filter_ops. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Jiri Pirko <jiri@resnulli.us> Reviewed-by: Jiri Pirko <jiri@resnulli.us> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
| * bpf: allow extended BPF programs access skb fieldsAlexei Starovoitov2015-03-162-17/+137
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | introduce user accessible mirror of in-kernel 'struct sk_buff': struct __sk_buff { __u32 len; __u32 pkt_type; __u32 mark; __u32 queue_mapping; }; bpf programs can do: int bpf_prog(struct __sk_buff *skb) { __u32 var = skb->pkt_type; which will be compiled to bpf assembler as: dst_reg = *(u32 *)(src_reg + 4) // 4 == offsetof(struct __sk_buff, pkt_type) bpf verifier will check validity of access and will convert it to: dst_reg = *(u8 *)(src_reg + offsetof(struct sk_buff, __pkt_type_offset)) dst_reg &= 7 since skb->pkt_type is a bitfield. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
| * ebpf: add helper for obtaining current processor idDaniel Borkmann2015-03-162-0/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds the possibility to obtain raw_smp_processor_id() in eBPF. Currently, this is only possible in classic BPF where commit da2033c28226 ("filter: add SKF_AD_RXHASH and SKF_AD_CPU") has added facilities for this. Perhaps most importantly, this would also allow us to track per CPU statistics with eBPF maps, or to implement a poor-man's per CPU data structure through eBPF maps. Example function proto-type looks like: u32 (*smp_processor_id)(void) = (void *)BPF_FUNC_get_smp_processor_id; Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
| * ebpf: add prandom helper for packet samplingDaniel Borkmann2015-03-162-0/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This work is similar to commit 4cd3675ebf74 ("filter: added BPF random opcode") and adds a possibility for packet sampling in eBPF. Currently, this is only possible in classic BPF and useful to combine sampling with f.e. packet sockets, possible also with tc. Example function proto-type looks like: u32 (*prandom_u32)(void) = (void *)BPF_FUNC_get_prandom_u32; Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
| * ebpf: verifier: check that call reg with ARG_ANYTHING is initializedDaniel Borkmann2015-03-121-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I noticed that a helper function with argument type ARG_ANYTHING does not need to have an initialized value (register). This can worst case lead to unintented stack memory leakage in future helper functions if they are not carefully designed, or unintended application behaviour in case the application developer was not careful enough to match a correct helper function signature in the API. The underlying issue is that ARG_ANYTHING should actually be split into two different semantics: 1) ARG_DONTCARE for function arguments that the helper function does not care about (in other words: the default for unused function arguments), and 2) ARG_ANYTHING that is an argument actually being used by a helper function and *guaranteed* to be an initialized register. The current risk is low: ARG_ANYTHING is only used for the 'flags' argument (r4) in bpf_map_update_elem() that internally does strict checking. Fixes: 17a5267067f3 ("bpf: verifier (add verifier core)") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
| * ebpf: bpf_map_*: fix linker error on avr32 and openrisc archDaniel Borkmann2015-03-071-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fengguang reported, that on openrisc and avr32 architectures, we get the following linker errors on *_defconfig builds that have no bpf syscall support: net/built-in.o:(.rodata+0x1cd0): undefined reference to `bpf_map_lookup_elem_proto' net/built-in.o:(.rodata+0x1cd4): undefined reference to `bpf_map_update_elem_proto' net/built-in.o:(.rodata+0x1cd8): undefined reference to `bpf_map_delete_elem_proto' Fix it up by providing built-in weak definitions of the symbols, so they can be overridden when the syscall is enabled. I think the issue might be that gcc is not able to optimize all that away. This patch fixes the linker errors for me, tested with Fengguang's make.cross [1] script. [1] https://git.kernel.org/cgit/linux/kernel/git/wfg/lkp-tests.git/plain/sbin/make.cross Reported-by: Fengguang Wu <fengguang.wu@intel.com> Fixes: d4052c4aea0c ("ebpf: remove CONFIG_BPF_SYSCALL ifdefs in socket filter code") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
| * cls_bpf: add initial eBPF support for programmable classifiersDaniel Borkmann2015-03-011-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This work extends the "classic" BPF programmable tc classifier by extending its scope also to native eBPF code! This allows for user space to implement own custom, 'safe' C like classifiers (or whatever other frontend language LLVM et al may provide in future), that can then be compiled with the LLVM eBPF backend to an eBPF elf file. The result of this can be loaded into the kernel via iproute2's tc. In the kernel, they can be JITed on major archs and thus run in native performance. Simple, minimal toy example to demonstrate the workflow: #include <linux/ip.h> #include <linux/if_ether.h> #include <linux/bpf.h> #include "tc_bpf_api.h" __section("classify") int cls_main(struct sk_buff *skb) { return (0x800 << 16) | load_byte(skb, ETH_HLEN + __builtin_offsetof(struct iphdr, tos)); } char __license[] __section("license") = "GPL"; The classifier can then be compiled into eBPF opcodes and loaded via tc, for example: clang -O2 -emit-llvm -c cls.c -o - | llc -march=bpf -filetype=obj -o cls.o tc filter add dev em1 parent 1: bpf cls.o [...] As it has been demonstrated, the scope can even reach up to a fully fledged flow dissector (similarly as in samples/bpf/sockex2_kern.c). For tc, maps are allowed to be used, but from kernel context only, in other words, eBPF code can keep state across filter invocations. In future, we perhaps may reattach from a different application to those maps e.g., to read out collected statistics/state. Similarly as in socket filters, we may extend functionality for eBPF classifiers over time depending on the use cases. For that purpose, cls_bpf programs are using BPF_PROG_TYPE_SCHED_CLS program type, so we can allow additional functions/accessors (e.g. an ABI compatible offset translation to skb fields/metadata). For an initial cls_bpf support, we allow the same set of helper functions as eBPF socket filters, but we could diverge at some point in time w/o problem. I was wondering whether cls_bpf and act_bpf could share C programs, I can imagine that at some point, we introduce i) further common handlers for both (or even beyond their scope), and/or if truly needed ii) some restricted function space for each of them. Both can be abstracted easily through struct bpf_verifier_ops in future. The context of cls_bpf versus act_bpf is slightly different though: a cls_bpf program will return a specific classid whereas act_bpf a drop/non-drop return code, latter may also in future mangle skbs. That said, we can surely have a "classify" and "action" section in a single object file, or considered mentioned constraint add a possibility of a shared section. The workflow for getting native eBPF running from tc [1] is as follows: for f_bpf, I've added a slightly modified ELF parser code from Alexei's kernel sample, which reads out the LLVM compiled object, sets up maps (and dynamically fixes up map fds) if any, and loads the eBPF instructions all centrally through the bpf syscall. The resulting fd from the loaded program itself is being passed down to cls_bpf, which looks up struct bpf_prog from the fd store, and holds reference, so that it stays available also after tc program lifetime. On tc filter destruction, it will then drop its reference. Moreover, I've also added the optional possibility to annotate an eBPF filter with a name (e.g. path to object file, or something else if preferred) so that when tc dumps currently installed filters, some more context can be given to an admin for a given instance (as opposed to just the file descriptor number). Last but not least, bpf_prog_get() and bpf_prog_put() needed to be exported, so that eBPF can be used from cls_bpf built as a module. Thanks to 60a3b2253c41 ("net: bpf: make eBPF interpreter images read-only") I think this is of no concern since anything wanting to alter eBPF opcode after verification stage would crash the kernel. [1] http://git.breakpoint.cc/cgit/dborkman/iproute2.git/log/?h=ebpf Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Jiri Pirko <jiri@resnulli.us> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
| * ebpf: move read-only fields to bpf_prog and shrink bpf_prog_auxDaniel Borkmann2015-03-012-6/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | is_gpl_compatible and prog_type should be moved directly into bpf_prog as they stay immutable during bpf_prog's lifetime, are core attributes and they can be locked as read-only later on via bpf_prog_select_runtime(). With a bit of rearranging, this also allows us to shrink bpf_prog_aux to exactly 1 cacheline. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
| * ebpf: add sched_cls_type and map it to sk_filter's verifier opsDaniel Borkmann2015-03-011-2/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As discussed recently and at netconf/netdev01, we want to prevent making bpf_verifier_ops registration available for modules, but have them at a controlled place inside the kernel instead. The reason for this is, that out-of-tree modules can go crazy and define and register any verfifier ops they want, doing all sorts of crap, even bypassing available GPLed eBPF helper functions. We don't want to offer such a shiny playground, of course, but keep strict control to ourselves inside the core kernel. This also encourages us to design eBPF user helpers carefully and generically, so they can be shared among various subsystems using eBPF. For the eBPF traffic classifier (cls_bpf), it's a good start to share the same helper facilities as we currently do in eBPF for socket filters. That way, we have BPF_PROG_TYPE_SCHED_CLS look like it's own type, thus one day if there's a good reason to diverge the set of helper functions from the set available to socket filters, we keep ABI compatibility. In future, we could place all bpf_prog_type_list at a central place, perhaps. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
| * ebpf: constify various function pointer structsDaniel Borkmann2015-03-013-9/+9
| | | | | | | | | | | | | | | | | | We can move bpf_map_ops and bpf_verifier_ops and other structs into ro section, bpf_map_type_list and bpf_prog_type_list into read mostly. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
| * ebpf: remove kernel test stubsDaniel Borkmann2015-03-012-81/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | Now that we have BPF_PROG_TYPE_SOCKET_FILTER up and running, we can remove the test stubs which were added to get the verifier suite up. We can just let the test cases probe under socket filter type instead. In the fill/spill test case, we cannot (yet) access fields from the context (skb), but we may adapt that test case in future. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* | tracing, perf: Implement BPF programs attached to kprobesAlexei Starovoitov2015-04-021-1/+6
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | BPF programs, attached to kprobes, provide a safe way to execute user-defined BPF byte-code programs without being able to crash or hang the kernel in any way. The BPF engine makes sure that such programs have a finite execution time and that they cannot break out of their sandbox. The user interface is to attach to a kprobe via the perf syscall: struct perf_event_attr attr = { .type = PERF_TYPE_TRACEPOINT, .config = event_id, ... }; event_fd = perf_event_open(&attr,...); ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd); 'prog_fd' is a file descriptor associated with BPF program previously loaded. 'event_id' is an ID of the kprobe created. Closing 'event_fd': close(event_fd); ... automatically detaches BPF program from it. BPF programs can call in-kernel helper functions to: - lookup/update/delete elements in maps - probe_read - wraper of probe_kernel_read() used to access any kernel data structures BPF programs receive 'struct pt_regs *' as an input ('struct pt_regs' is architecture dependent) and return 0 to ignore the event and 1 to store kprobe event into the ring buffer. Note, kprobes are a fundamentally _not_ a stable kernel ABI, so BPF programs attached to kprobes must be recompiled for every kernel version and user must supply correct LINUX_VERSION_CODE in attr.kern_version during bpf_prog_load() call. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David S. Miller <davem@davemloft.net> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1427312966-8434-4-git-send-email-ast@plumgrid.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netLinus Torvalds2015-01-271-8/+17
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull networking fixes from David Miller: 1) Don't OOPS on socket AIO, from Christoph Hellwig. 2) Scheduled scans should be aborted upon RFKILL, from Emmanuel Grumbach. 3) Fix sleep in atomic context in kvaser_usb, from Ahmed S Darwish. 4) Fix RCU locking across copy_to_user() in bpf code, from Alexei Starovoitov. 5) Lots of crash, memory leak, short TX packet et al bug fixes in sh_eth from Ben Hutchings. 6) Fix memory corruption in SCTP wrt. INIT collitions, from Daniel Borkmann. 7) Fix return value logic for poll handlers in netxen, enic, and bnx2x. From Eric Dumazet and Govindarajulu Varadarajan. 8) Header length calculation fix in mac80211 from Fred Chou. 9) mv643xx_eth doesn't handle highmem correctly in non-TSO code paths. From Ezequiel Garcia. 10) udp_diag has bogus logic in it's hash chain skipping, copy same fix tcp diag used. From Herbert Xu. 11) amd-xgbe programs wrong rx flow control register, from Thomas Lendacky. 12) Fix race leading to use after free in ping receive path, from Subash Abhinov Kasiviswanathan. 13) Cache redirect routes otherwise we can get a heavy backlog of rcu jobs liberating DST_NOCACHE entries. From Hannes Frederic Sowa. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (48 commits) net: don't OOPS on socket aio stmmac: prevent probe drivers to crash kernel bnx2x: fix napi poll return value for repoll ipv6: replacing a rt6_info needs to purge possible propagated rt6_infos too sh_eth: Fix DMA-API usage for RX buffers sh_eth: Check for DMA mapping errors on transmit sh_eth: Ensure DMA engines are stopped before freeing buffers sh_eth: Remove RX overflow log messages ping: Fix race in free in receive path udp_diag: Fix socket skipping within chain can: kvaser_usb: Fix state handling upon BUS_ERROR events can: kvaser_usb: Retry the first bulk transfer on -ETIMEDOUT can: kvaser_usb: Send correct context to URB completion can: kvaser_usb: Do not sleep in atomic context ipv4: try to cache dst_entries which would cause a redirect samples: bpf: relax test_maps check bpf: rcu lock must not be held when calling copy_to_user() net: sctp: fix slab corruption from use after free on INIT collisions net: mv643xx_eth: Fix highmem support in non-TSO egress path sh_eth: Fix serialisation of interrupt disable with interrupt & NAPI handlers ...
| * bpf: rcu lock must not be held when calling copy_to_user()Alexei Starovoitov2015-01-271-8/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | BUG: sleeping function called from invalid context at mm/memory.c:3732 in_atomic(): 0, irqs_disabled(): 0, pid: 671, name: test_maps 1 lock held by test_maps/671: #0: (rcu_read_lock){......}, at: [<0000000000264190>] map_lookup_elem+0xe8/0x260 Call Trace: ([<0000000000115b7e>] show_trace+0x12e/0x150) [<0000000000115c40>] show_stack+0xa0/0x100 [<00000000009b163c>] dump_stack+0x74/0xc8 [<000000000017424a>] ___might_sleep+0x23a/0x248 [<00000000002b58e8>] might_fault+0x70/0xe8 [<0000000000264230>] map_lookup_elem+0x188/0x260 [<0000000000264716>] SyS_bpf+0x20e/0x840 Fix it by allocating temporary buffer to store map element value. Fixes: db20fd2b0108 ("bpf: add lookup/update/delete/iterate methods to BPF maps") Reported-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* | module: remove mod arg from module_free, rename module_memfree().Rusty Russell2015-01-201-1/+1
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Nothing needs the module pointer any more, and the next patch will call it from RCU, where the module itself might no longer exist. Removing the arg is the safest approach. This just codifies the use of the module_alloc/module_free pattern which ftrace and bpf use. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: Mikael Starvik <starvik@axis.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Ley Foon Tan <lftan@altera.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: x86@kernel.org Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: linux-cris-kernel@axis.com Cc: linux-kernel@vger.kernel.org Cc: linux-mips@linux-mips.org Cc: nios2-dev@lists.rocketboards.org Cc: linuxppc-dev@lists.ozlabs.org Cc: sparclinux@vger.kernel.org Cc: netdev@vger.kernel.org
* bpf: verifier: add checks for BPF_ABS | BPF_IND instructionsAlexei Starovoitov2014-12-061-2/+68
| | | | | | | | | | | | | introduce program type BPF_PROG_TYPE_SOCKET_FILTER that is used for attaching programs to sockets where ctx == skb. add verifier checks for ABS/IND instructions which can only be seen in socket filters, therefore the check: if (env->prog->aux->prog_type != BPF_PROG_TYPE_SOCKET_FILTER) verbose("BPF_LD_ABS|IND instructions are only allowed in socket filters\n"); Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: fix arraymap NULL deref and missing overflow and zero size checksAlexei Starovoitov2014-11-192-6/+16
| | | | | | | | | | | | | | | | | | | | | | - fix NULL pointer dereference: kernel/bpf/arraymap.c:41 array_map_alloc() error: potential null dereference 'array'. (kzalloc returns null) kernel/bpf/arraymap.c:41 array_map_alloc() error: we previously assumed 'array' could be null (see line 40) - integer overflow check was missing in arraymap (hashmap checks for overflow via kmalloc_array()) - arraymap can round_up(value_size, 8) to zero. check was missing. - hashmap was missing zero size check as well, since roundup_pow_of_two() can truncate into zero - found a typo in the arraymap comment and unnecessary empty line Fix all of these issues and make both overflow checks explicit U32 in size. Reported-by: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: remove test map scaffolding and user proper typesAlexei Starovoitov2014-11-181-47/+9
| | | | | | | | proper types and function helpers are ready. Use them in verifier testsuite. Remove temporary stubs Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: allow eBPF programs to use mapsAlexei Starovoitov2014-11-182-1/+90
| | | | | | | | expose bpf_map_lookup_elem(), bpf_map_update_elem(), bpf_map_delete_elem() map accessors to eBPF programs Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: fix BPF_MAP_LOOKUP_ELEM command return codeAlexei Starovoitov2014-11-181-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | fix errno of BPF_MAP_LOOKUP_ELEM command as bpf manpage described it in commit b4fc1a460f30("Merge branch 'bpf-next'"): ----- BPF_MAP_LOOKUP_ELEM int bpf_lookup_elem(int fd, void *key, void *value) { union bpf_attr attr = { .map_fd = fd, .key = ptr_to_u64(key), .value = ptr_to_u64(value), }; return bpf(BPF_MAP_LOOKUP_ELEM, &attr, sizeof(attr)); } bpf() syscall looks up an element with given key in a map fd. If element is found it returns zero and stores element's value into value. If element is not found it returns -1 and sets errno to ENOENT. and further down in manpage: ENOENT For BPF_MAP_LOOKUP_ELEM or BPF_MAP_DELETE_ELEM, indicates that element with given key was not found. ----- In general all BPF commands return ENOENT when map element is not found (including BPF_MAP_GET_NEXT_KEY and BPF_MAP_UPDATE_ELEM with flags == BPF_MAP_UPDATE_ONLY) Subsequent patch adds a testsuite to check return values for all of these combinations. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: add array type of eBPF mapsAlexei Starovoitov2014-11-182-1/+152
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | add new map type BPF_MAP_TYPE_ARRAY and its implementation - optimized for fastest possible lookup() . in the future verifier/JIT may recognize lookup() with constant key and optimize it into constant pointer. Can optimize non-constant key into direct pointer arithmetic as well, since pointers and value_size are constant for the life of the eBPF program. In other words array_map_lookup_elem() may be 'inlined' by verifier/JIT while preserving concurrent access to this map from user space - two main use cases for array type: . 'global' eBPF variables: array of 1 element with key=0 and value is a collection of 'global' variables which programs can use to keep the state between events . aggregation of tracing events into fixed set of buckets - all array elements pre-allocated and zero initialized at init time - key as an index in array and can only be 4 byte - map_delete_elem() returns EINVAL, since elements cannot be deleted - map_update_elem() replaces elements in an non-atomic way (for atomic updates hashtable type should be used instead) Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: add hashtable type of eBPF mapsAlexei Starovoitov2014-11-182-1/+363
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | add new map type BPF_MAP_TYPE_HASH and its implementation - maps are created/destroyed by userspace. Both userspace and eBPF programs can lookup/update/delete elements from the map - eBPF programs can be called in_irq(), so use spin_lock_irqsave() mechanism for concurrent updates - key/value are opaque range of bytes (aligned to 8 bytes) - user space provides 3 configuration attributes via BPF syscall: key_size, value_size, max_entries - map takes care of allocating/freeing key/value pairs - map_update_elem() must fail to insert new element when max_entries limit is reached to make sure that eBPF programs cannot exhaust memory - map_update_elem() replaces elements in an atomic way - optimized for speed of lookup() which can be called multiple times from eBPF program which itself is triggered by high volume of events . in the future JIT compiler may recognize lookup() call and optimize it further, since key_size is constant for life of eBPF program Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: add 'flags' attribute to BPF_MAP_UPDATE_ELEM commandAlexei Starovoitov2014-11-181-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | the current meaning of BPF_MAP_UPDATE_ELEM syscall command is: either update existing map element or create a new one. Initially the plan was to add a new command to handle the case of 'create new element if it didn't exist', but 'flags' style looks cleaner and overall diff is much smaller (more code reused), so add 'flags' attribute to BPF_MAP_UPDATE_ELEM command with the following meaning: #define BPF_ANY 0 /* create new element or update existing */ #define BPF_NOEXIST 1 /* create new element if it didn't exist */ #define BPF_EXIST 2 /* update existing element */ bpf_update_elem(fd, key, value, BPF_NOEXIST) call can fail with EEXIST if element already exists. bpf_update_elem(fd, key, value, BPF_EXIST) can fail with ENOENT if element doesn't exist. Userspace will call it as: int bpf_update_elem(int fd, void *key, void *value, __u64 flags) { union bpf_attr attr = { .map_fd = fd, .key = ptr_to_u64(key), .value = ptr_to_u64(value), .flags = flags; }; return bpf(BPF_MAP_UPDATE_ELEM, &attr, sizeof(attr)); } First two bits of 'flags' are used to encode style of bpf_update_elem() command. Bits 2-63 are reserved for future use. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller2014-11-012-3/+12
|\ | | | | | | | | | | | | | | | | Conflicts: drivers/net/phy/marvell.c Simple overlapping changes in drivers/net/phy/marvell.c Signed-off-by: David S. Miller <davem@davemloft.net>
| * bpf: split eBPF out of NETAlexei Starovoitov2014-10-282-3/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | introduce two configs: - hidden CONFIG_BPF to select eBPF interpreter that classic socket filters depend on - visible CONFIG_BPF_SYSCALL (default off) that tracing and sockets can use that solves several problems: - tracing and others that wish to use eBPF don't need to depend on NET. They can use BPF_SYSCALL to allow loading from userspace or select BPF to use it directly from kernel in NET-less configs. - in 3.18 programs cannot be attached to events yet, so don't force it on - when the rest of eBPF infra is there in 3.19+, it's still useful to switch it off to minimize kernel size bloat-o-meter on x64 shows: add/remove: 0/60 grow/shrink: 0/2 up/down: 0/-15601 (-15601) tested with many different config combinations. Hopefully didn't miss anything. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* | bpf: reduce verifier memory consumptionAlexei Starovoitov2014-10-301-44/+57
|/ | | | | | | | | | | | | | | | | | | | | | verifier keeps track of register state spilled to stack. registers are 8-byte wide and always aligned, so instead of tracking them in every byte-sized stack slot, use MAX_BPF_STACK / 8 array to track spilled register state. Though verifier runs in user context and its state freed immediately after verification, it makes sense to reduce its memory usage. This optimization reduces sizeof(struct verifier_state) from 12464 to 1712 on 64-bit and from 6232 to 1112 on 32-bit. Note, this patch doesn't change existing limits, which are there to bound time and memory during verification: 4k total number of insns in a program, 1k number of jumps (states to visit) and 32k number of processed insn (since an insn may be visited multiple times). Theoretical worst case memory during verification is 1712 * 1k = 17Mbyte. Out-of-memory situation triggers cleanup and rejects the program. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: fix bug in eBPF verifierAlexei Starovoitov2014-10-221-1/+2
| | | | | | | | | | | | while comparing for verifier state equivalency the comparison was missing a check for uninitialized register. Make sure it does so and add a testcase. Fixes: f1bca824dabb ("bpf: add search pruning optimization to verifier") Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: add search pruning optimization to verifierAlexei Starovoitov2014-10-021-0/+146
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: mini eBPF library, test stubs and verifier testsuiteAlexei Starovoitov2014-09-262-0/+120
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1. the library includes a trivial set of BPF syscall wrappers: int bpf_create_map(int key_size, int value_size, int max_entries); int bpf_update_elem(int fd, void *key, void *value); int bpf_lookup_elem(int fd, void *key, void *value); int bpf_delete_elem(int fd, void *key); int bpf_get_next_key(int fd, void *key, void *next_key); int bpf_prog_load(enum bpf_prog_type prog_type, const struct sock_filter_int *insns, int insn_len, const char *license); bpf_prog_load() stores verifier log into global bpf_log_buf[] array and BPF_*() macros to build instructions 2. test stubs configure eBPF infra with 'unspec' map and program types. These are fake types used by user space testsuite only. 3. verifier tests valid and invalid programs and expects predefined error log messages from kernel. 40 tests so far. $ sudo ./test_verifier #0 add+sub+mul OK #1 unreachable OK #2 unreachable2 OK #3 out of range jump OK #4 out of range jump2 OK #5 test1 ld_imm64 OK ... Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: verifier (add verifier core)Alexei Starovoitov2014-09-261-1/+1074
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: verifier (add branch/goto checks)Alexei Starovoitov2014-09-261-0/+189
| | | | | | | | | | | | | check that control flow graph of eBPF program is a directed acyclic graph check_cfg() does: - detect loops - detect unreachable instructions - check that program terminates with BPF_EXIT insn - check that all branches are within program boundary Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: handle pseudo BPF_LD_IMM64 insnAlexei Starovoitov2014-09-261-0/+147
| | | | | | | | | | | | | | eBPF programs passed from userspace are using pseudo BPF_LD_IMM64 instructions to refer to process-local map_fd. Scan the program for such instructions and if FDs are valid, convert them to 'struct bpf_map' pointers which will be used by verifier to check access to maps in bpf_map_lookup/update() calls. If program passes verifier, convert pseudo BPF_LD_IMM64 into generic by dropping BPF_PSEUDO_MAP_FD flag. Note that eBPF interpreter is generic and knows nothing about pseudo insns. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: verifier (add ability to receive verification log)Alexei Starovoitov2014-09-262-1/+236
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | add optional attributes for BPF_PROG_LOAD syscall: union bpf_attr { struct { ... __u32 log_level; /* verbosity level of eBPF verifier */ __u32 log_size; /* size of user buffer */ __aligned_u64 log_buf; /* user supplied 'char *buffer' */ }; }; when log_level > 0 the verifier will return its verification log in the user supplied buffer 'log_buf' which can be used by program author to analyze why verifier rejected given program. 'Understanding eBPF verifier messages' section of Documentation/networking/filter.txt provides several examples of these messages, like the program: BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_CALL_FUNC(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 4, 0), BPF_EXIT_INSN(), will be rejected with the following multi-line message in log_buf: 0: (7a) *(u64 *)(r10 -8) = 0 1: (bf) r2 = r10 2: (07) r2 += -8 3: (b7) r1 = 0 4: (85) call 1 5: (15) if r0 == 0x0 goto pc+1 R0=map_ptr R10=fp 6: (7a) *(u64 *)(r0 +4) = 0 misaligned access off 4 size 8 The format of the output can change at any time as verifier evolves. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: verifier (add docs)Alexei Starovoitov2014-09-263-2/+135
| | | | | | | | | | | | | | | | | | | | | | this patch adds all of eBPF verfier documentation and empty bpf_check() The end goal for the verifier is to statically check safety of the program. Verifier will catch: - loops - out of range jumps - unreachable instructions - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention More details in Documentation/networking/filter.txt Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: handle pseudo BPF_CALL insnAlexei Starovoitov2014-09-261-0/+37
| | | | | | | | | | | | | | in native eBPF programs userspace is using pseudo BPF_CALL instructions which encode one of 'enum bpf_func_id' inside insn->imm field. Verifier checks that program using correct function arguments to given func_id. If all checks passed, kernel needs to fixup BPF_CALL->imm fields by replacing func_id with in-kernel function pointer. eBPF interpreter just calls the function. In-kernel eBPF users continue to use generic BPF_CALL. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: expand BPF syscall with program load/unloadAlexei Starovoitov2014-09-262-14/+180
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | eBPF programs are similar to kernel modules. They are loaded by the user process and automatically unloaded when process exits. Each eBPF program is a safe run-to-completion set of instructions. eBPF verifier statically determines that the program terminates and is safe to execute. The following syscall wrapper can be used to load the program: int bpf_prog_load(enum bpf_prog_type prog_type, const struct bpf_insn *insns, int insn_cnt, const char *license) { union bpf_attr attr = { .prog_type = prog_type, .insns = ptr_to_u64(insns), .insn_cnt = insn_cnt, .license = ptr_to_u64(license), }; return bpf(BPF_PROG_LOAD, &attr, sizeof(attr)); } where 'insns' is an array of eBPF instructions and 'license' is a string that must be GPL compatible to call helper functions marked gpl_only Upon succesful load the syscall returns prog_fd. Use close(prog_fd) to unload the program. User space tests and examples follow in the later patches Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: add lookup/update/delete/iterate methods to BPF mapsAlexei Starovoitov2014-09-261-0/+235
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 'maps' is a generic storage of different types for sharing data between kernel and userspace. The maps are accessed from user space via BPF syscall, which has commands: - create a map with given type and attributes fd = bpf(BPF_MAP_CREATE, union bpf_attr *attr, u32 size) returns fd or negative error - lookup key in a given map referenced by fd err = bpf(BPF_MAP_LOOKUP_ELEM, union bpf_attr *attr, u32 size) using attr->map_fd, attr->key, attr->value returns zero and stores found elem into value or negative error - create or update key/value pair in a given map err = bpf(BPF_MAP_UPDATE_ELEM, union bpf_attr *attr, u32 size) using attr->map_fd, attr->key, attr->value returns zero or negative error - find and delete element by key in a given map err = bpf(BPF_MAP_DELETE_ELEM, union bpf_attr *attr, u32 size) using attr->map_fd, attr->key - iterate map elements (based on input key return next_key) err = bpf(BPF_MAP_GET_NEXT_KEY, union bpf_attr *attr, u32 size) using attr->map_fd, attr->key, attr->next_key - close(fd) deletes the map Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* bpf: introduce BPF syscall and mapsAlexei Starovoitov2014-09-262-1/+170
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | BPF syscall is a multiplexor for a range of different operations on eBPF. This patch introduces syscall with single command to create a map. Next patch adds commands to access maps. 'maps' is a generic storage of different types for sharing data between kernel and userspace. Userspace example: /* this syscall wrapper creates a map with given type and attributes * and returns map_fd on success. * use close(map_fd) to delete the map */ int bpf_create_map(enum bpf_map_type map_type, int key_size, int value_size, int max_entries) { union bpf_attr attr = { .map_type = map_type, .key_size = key_size, .value_size = value_size, .max_entries = max_entries }; return bpf(BPF_MAP_CREATE, &attr, sizeof(attr)); } 'union bpf_attr' is backwards compatible with future extensions. More details in Documentation/networking/filter.txt and in manpage Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>