summaryrefslogtreecommitdiffstats
path: root/kernel/time/tick-sched.h (follow)
Commit message (Collapse)AuthorAgeFilesLines
* nohz: Fix collision between tick and other hrtimers, againFrederic Weisbecker2017-05-171-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This restores commit: 24b91e360ef5: ("nohz: Fix collision between tick and other hrtimers") ... which got reverted by commit: 558e8e27e73f: ('Revert "nohz: Fix collision between tick and other hrtimers"') ... due to a regression where CPUs spuriously stopped ticking. The bug happened when a tick fired too early past its expected expiration: on IRQ exit the tick was scheduled again to the same deadline but skipped reprogramming because ts->next_tick still kept in cache the deadline. This has been fixed now with resetting ts->next_tick from the tick itself. Extra care has also been taken to prevent from obsolete values throughout CPU hotplug operations. When the tick is stopped and an interrupt occurs afterward, we check on that interrupt exit if the next tick needs to be rescheduled. If it doesn't need any update, we don't want to do anything. In order to check if the tick needs an update, we compare it against the clockevent device deadline. Now that's a problem because the clockevent device is at a lower level than the tick itself if it is implemented on top of hrtimer. Every hrtimer share this clockevent device. So comparing the next tick deadline against the clockevent device deadline is wrong because the device may be programmed for another hrtimer whose deadline collides with the tick. As a result we may end up not reprogramming the tick accidentally. In a worst case scenario under full dynticks mode, the tick stops firing as it is supposed to every 1hz, leaving /proc/stat stalled: Task in a full dynticks CPU ---------------------------- * hrtimer A is queued 2 seconds ahead * the tick is stopped, scheduled 1 second ahead * tick fires 1 second later * on tick exit, nohz schedules the tick 1 second ahead but sees the clockevent device is already programmed to that deadline, fooled by hrtimer A, the tick isn't rescheduled. * hrtimer A is cancelled before its deadline * tick never fires again until an interrupt happens... In order to fix this, store the next tick deadline to the tick_sched local structure and reuse that value later to check whether we need to reprogram the clock after an interrupt. On the other hand, ts->sleep_length still wants to know about the next clock event and not just the tick, so we want to improve the related comment to avoid confusion. Reported-and-tested-by: Tim Wright <tim@binbash.co.uk> Reported-and-tested-by: Pavel Machek <pavel@ucw.cz> Reported-by: James Hartsock <hartsjc@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/1492783255-5051-2-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Revert "nohz: Fix collision between tick and other hrtimers"Linus Torvalds2017-02-161-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | This reverts commit 24b91e360ef521a2808771633d76ebc68bd5604b and commit 7bdb59f1ad47 ("tick/nohz: Fix possible missing clock reprog after tick soft restart") that depends on it, Pavel reports that it causes occasional boot hangs for him that seem to depend on just how the machine was booted. In particular, his machine hangs at around the PCI fixups of the EHCI USB host controller, but only hangs from cold boot, not from a warm boot. Thomas Gleixner suspecs it's a CPU hotplug interaction, particularly since Pavel also saw suspend/resume issues that seem to be related. We're reverting for now while trying to figure out the root cause. Reported-bisected-and-tested-by: Pavel Machek <pavel@ucw.cz> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@kernel.org # reverted commits were marked for stable Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* nohz: Fix collision between tick and other hrtimersFrederic Weisbecker2017-01-111-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When the tick is stopped and an interrupt occurs afterward, we check on that interrupt exit if the next tick needs to be rescheduled. If it doesn't need any update, we don't want to do anything. In order to check if the tick needs an update, we compare it against the clockevent device deadline. Now that's a problem because the clockevent device is at a lower level than the tick itself if it is implemented on top of hrtimer. Every hrtimer share this clockevent device. So comparing the next tick deadline against the clockevent device deadline is wrong because the device may be programmed for another hrtimer whose deadline collides with the tick. As a result we may end up not reprogramming the tick accidentally. In a worst case scenario under full dynticks mode, the tick stops firing as it is supposed to every 1hz, leaving /proc/stat stalled: Task in a full dynticks CPU ---------------------------- * hrtimer A is queued 2 seconds ahead * the tick is stopped, scheduled 1 second ahead * tick fires 1 second later * on tick exit, nohz schedules the tick 1 second ahead but sees the clockevent device is already programmed to that deadline, fooled by hrtimer A, the tick isn't rescheduled. * hrtimer A is cancelled before its deadline * tick never fires again until an interrupt happens... In order to fix this, store the next tick deadline to the tick_sched local structure and reuse that value later to check whether we need to reprogram the clock after an interrupt. On the other hand, ts->sleep_length still wants to know about the next clock event and not just the tick, so we want to improve the related comment to avoid confusion. Reported-by: James Hartsock <hartsjc@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Rik van Riel <riel@redhat.com> Link: http://lkml.kernel.org/r/1483539124-5693-1-git-send-email-fweisbec@gmail.com Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* timers/nohz: Convert tick dependency mask to atomic_tFrederic Weisbecker2016-03-291-1/+1
| | | | | | | | | | | | | | | | | | The tick dependency mask was intially unsigned long because this is the type on which clear_bit() operates on and fetch_or() accepts it. But now that we have atomic_fetch_or(), we can instead use atomic_andnot() to clear the bit. This consolidates the type of our tick dependency mask, reduce its size on structures and benefit from possible architecture optimizations on atomic_t operations. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1458830281-4255-3-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* nohz: New tick dependency maskFrederic Weisbecker2016-03-021-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The tick dependency is evaluated on every IRQ and context switch. This consists is a batch of checks which determine whether it is safe to stop the tick or not. These checks are often split in many details: posix cpu timers, scheduler, sched clock, perf events.... each of which are made of smaller details: posix cpu timer involves checking process wide timers then thread wide timers. Perf involves checking freq events then more per cpu details. Checking these informations asynchronously every time we update the full dynticks state bring avoidable overhead and a messy layout. Let's introduce instead tick dependency masks: one for system wide dependency (unstable sched clock, freq based perf events), one for CPU wide dependency (sched, throttling perf events), and task/signal level dependencies (posix cpu timers). The subsystems are responsible for setting and clearing their dependency through a set of APIs that will take care of concurrent dependency mask modifications and kick targets to restart the relevant CPU tick whenever needed. This new dependency engine stays beside the old one until all subsystems having a tick dependency are converted to it. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Suggested-by: Peter Zijlstra <peterz@infradead.org> Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
* tick/broadcast: Make idle check independent from mode and configThomas Gleixner2015-07-071-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently the broadcast busy check, which prevents the idle code from going into deep idle, works only in one shot mode. If NOHZ and HIGHRES are off (config or command line) there is no sanity check at all, so under certain conditions cpus are allowed to go into deep idle, where the local timer stops, and are not woken up again because there is no broadcast timer installed or a hrtimer based broadcast device is not evaluated. Move tick_broadcast_oneshot_control() into the common code and provide proper subfunctions for the various config combinations. The common check in tick_broadcast_oneshot_control() is for the C3STOP misfeature flag of the local clock event device. If its not set, idle can proceed. If set, further checks are necessary. Provide checks for the trivial cases: - If broadcast is disabled in the config, then return busy - If oneshot mode (NOHZ/HIGHES) is disabled in the config, return busy if the broadcast device is hrtimer based. - If oneshot mode is enabled in the config call the original tick_broadcast_oneshot_control() function. That function needs extra checks which will be implemented in seperate patches. [ Split out from a larger combo patch ] Reported-and-tested-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Suzuki Poulose <Suzuki.Poulose@arm.com> Cc: Lorenzo Pieralisi <Lorenzo.Pieralisi@arm.com> Cc: Catalin Marinas <Catalin.Marinas@arm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1507070929360.3916@nanos
* tick: Nohz: Rework next timer evaluationThomas Gleixner2015-04-221-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The evaluation of the next timer in the nohz code is based on jiffies while all the tick internals are nano seconds based. We have also to convert hrtimer nanoseconds to jiffies in the !highres case. That's just wrong and introduces interesting corner cases. Turn it around and convert the next timer wheel timer expiry and the rcu event to clock monotonic and base all calculations on nanoseconds. That identifies the case where no timer is pending clearly with an absolute expiry value of KTIME_MAX. Makes the code more readable and gets rid of the jiffies magic in the nohz code. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Link: http://lkml.kernel.org/r/20150414203502.184198593@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* arm/bL_switcher: Kill tick suspend hackeryThomas Gleixner2015-04-011-0/+10
| | | | | | | | | | | | | | | | | | | | | Use the new tick_suspend/resume_local() and get rid of the homebrewn implementation of these in the ARM bL switcher. The check for the cpumask is completely pointless. There is no harm to suspend a per cpu tick device unconditionally. If that's a real issue then we fix it proper at the core level and not with some completely undocumented hacks in some random core code. Move the tick internals to the core code, now that this nuisance is gone. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> [ rjw: Rebase, changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Nicolas Pitre <nicolas.pitre@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Link: http://lkml.kernel.org/r/1655112.Ws17YsMfN7@vostro.rjw.lan Signed-off-by: Ingo Molnar <mingo@kernel.org>
* tick: Move core only declarations and functions to coreThomas Gleixner2015-04-011-0/+64
No point to expose everything to the world. People just believe such functions can be abused for whatever purposes. Sigh. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> [ Rebased on top of 4.0-rc5 ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Nicolas Pitre <nico@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/28017337.VbCUc39Gme@vostro.rjw.lan [ Merged to latest timers/core ] Signed-off-by: Ingo Molnar <mingo@kernel.org>