summaryrefslogtreecommitdiffstats
path: root/kernel/time (follow)
Commit message (Collapse)AuthorAgeFilesLines
* Merge tag 'ptrace-cleanups-for-v5.18' of ↵Linus Torvalds2022-03-291-0/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull ptrace cleanups from Eric Biederman: "This set of changes removes tracehook.h, moves modification of all of the ptrace fields inside of siglock to remove races, adds a missing permission check to ptrace.c The removal of tracehook.h is quite significant as it has been a major source of confusion in recent years. Much of that confusion was around task_work and TIF_NOTIFY_SIGNAL (which I have now decoupled making the semantics clearer). For people who don't know tracehook.h is a vestiage of an attempt to implement uprobes like functionality that was never fully merged, and was later superseeded by uprobes when uprobes was merged. For many years now we have been removing what tracehook functionaly a little bit at a time. To the point where anything left in tracehook.h was some weird strange thing that was difficult to understand" * tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: ptrace: Remove duplicated include in ptrace.c ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZE ptrace: Return the signal to continue with from ptrace_stop ptrace: Move setting/clearing ptrace_message into ptrace_stop tracehook: Remove tracehook.h resume_user_mode: Move to resume_user_mode.h resume_user_mode: Remove #ifdef TIF_NOTIFY_RESUME in set_notify_resume signal: Move set_notify_signal and clear_notify_signal into sched/signal.h task_work: Decouple TIF_NOTIFY_SIGNAL and task_work task_work: Call tracehook_notify_signal from get_signal on all architectures task_work: Introduce task_work_pending task_work: Remove unnecessary include from posix_timers.h ptrace: Remove tracehook_signal_handler ptrace: Remove arch_syscall_{enter,exit}_tracehook ptrace: Create ptrace_report_syscall_{entry,exit} in ptrace.h ptrace/arm: Rename tracehook_report_syscall report_syscall ptrace: Move ptrace_report_syscall into ptrace.h
| * task_work: Remove unnecessary include from posix_timers.hEric W. Biederman2022-03-101-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Break a header file circular dependency by removing the unnecessary include of task_work.h from posix_timers.h. sched.h -> posix-timers.h posix-timers.h -> task_work.h task_work.h -> sched.h Add missing includes of task_work.h to: arch/x86/mm/tlb.c kernel/time/posix-cpu-timers.c Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20220309162454.123006-6-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* | Merge tag 'prlimit-tasklist_lock-for-v5.18' of ↵Linus Torvalds2022-03-241-3/+9
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull tasklist_lock optimizations from Eric Biederman: "prlimit and getpriority tasklist_lock optimizations The tasklist_lock popped up as a scalability bottleneck on some testing workloads. The readlocks in do_prlimit and set/getpriority are not necessary in all cases. Based on a cycles profile, it looked like ~87% of the time was spent in the kernel, ~42% of which was just trying to get *some* spinlock (queued_spin_lock_slowpath, not necessarily the tasklist_lock). The big offenders (with rough percentages in cycles of the overall trace): - do_wait 11% - setpriority 8% (done previously in commit 7f8ca0edfe07) - kill 8% - do_exit 5% - clone 3% - prlimit64 2% (this patchset) - getrlimit 1% (this patchset) I can't easily test this patchset on the original workload for various reasons. Instead, I used the microbenchmark below to at least verify there was some improvement. This patchset had a 28% speedup (12% from baseline to set/getprio, then another 14% for prlimit). This series used to do the setpriority case, but an almost identical change was merged as commit 7f8ca0edfe07 ("kernel/sys.c: only take tasklist_lock for get/setpriority(PRIO_PGRP)") so that has been dropped from here. One interesting thing is that my libc's getrlimit() was calling prlimit64, so hoisting the read_lock(tasklist_lock) into sys_prlimit64 had no effect - it essentially optimized the older syscalls only. I didn't do that in this patchset, but figured I'd mention it since it was an option from the previous patch's discussion" micobenchmark.c: --------------- int main(int argc, char **argv) { pid_t child; struct rlimit rlim[1]; fork(); fork(); fork(); fork(); fork(); fork(); for (int i = 0; i < 5000; i++) { child = fork(); if (child < 0) exit(1); if (child > 0) { usleep(1000); kill(child, SIGTERM); waitpid(child, NULL, 0); } else { for (;;) { setpriority(PRIO_PROCESS, 0, getpriority(PRIO_PROCESS, 0)); getrlimit(RLIMIT_CPU, rlim); } } } return 0; } Link: https://lore.kernel.org/lkml/20211213220401.1039578-1-brho@google.com/ [v1] Link: https://lore.kernel.org/lkml/20220105212828.197013-1-brho@google.com/ [v2] Link: https://lore.kernel.org/lkml/20220106172041.522167-1-brho@google.com/ [v3] * tag 'prlimit-tasklist_lock-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: prlimit: do not grab the tasklist_lock prlimit: make do_prlimit() static
| * | prlimit: do not grab the tasklist_lockBarret Rhoden2022-03-081-3/+9
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Unnecessarily grabbing the tasklist_lock can be a scalability bottleneck for workloads that also must grab the tasklist_lock for waiting, killing, and cloning. The tasklist_lock was grabbed to protect tsk->sighand from disappearing (becoming NULL). tsk->signal was already protected by holding a reference to tsk. update_rlimit_cpu() assumed tsk->sighand != NULL. With this commit, it attempts to lock_task_sighand(). However, this means that update_rlimit_cpu() can fail. This only happens when a task is exiting. Note that during exec, sighand may *change*, but it will not be NULL. Prior to this commit, the do_prlimit() ensured that update_rlimit_cpu() would not fail by read locking the tasklist_lock and checking tsk->sighand != NULL. If update_rlimit_cpu() fails, there may be other tasks that are not exiting that share tsk->signal. However, the group_leader is the last task to be released, so if we cannot update_rlimit_cpu(group_leader), then the entire process is exiting. The only other caller of update_rlimit_cpu() is selinux_bprm_committing_creds(). It has tsk == current, so update_rlimit_cpu() cannot fail (current->sighand cannot disappear until current exits). This change resulted in a 14% speedup on a microbenchmark where parents kill and wait on their children, and children getpriority, setpriority, and getrlimit. Signed-off-by: Barret Rhoden <brho@google.com> Link: https://lkml.kernel.org/r/20220106172041.522167-4-brho@google.com Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
* | tick/rcu: Stop allowing RCU_SOFTIRQ in idleFrederic Weisbecker2022-03-071-10/+40
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | RCU_SOFTIRQ used to be special in that it could be raised on purpose within the idle path to prevent from stopping the tick. Some code still prevents from unnecessary warnings related to this specific behaviour while entering in dynticks-idle mode. However the nohz layout has changed quite a bit in ten years, and the removal of CONFIG_RCU_FAST_NO_HZ has been the final straw to this safe-conduct. Now the RCU_SOFTIRQ vector is expected to be raised from sane places. A remaining corner case is admitted though when the vector is invoked in fragile hotplug path. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Paul Menzel <pmenzel@molgen.mpg.de>
* | tick/rcu: Remove obsolete rcu_needs_cpu() parametersFrederic Weisbecker2022-03-071-6/+4
| | | | | | | | | | | | | | | | | | | | | | With the removal of CONFIG_RCU_FAST_NO_HZ, the parameters in rcu_needs_cpu() are not necessary anymore. Simply remove them. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Paul Menzel <pmenzel@molgen.mpg.de>
* | tick: Detect and fix jiffies update stallFrederic Weisbecker2022-03-072-0/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On some rare cases, the timekeeper CPU may be delaying its jiffies update duty for a while. Known causes include: * The timekeeper is waiting on stop_machine in a MULTI_STOP_DISABLE_IRQ or MULTI_STOP_RUN state. Disabled interrupts prevent from timekeeping updates while waiting for the target CPU to complete its stop_machine() callback. * The timekeeper vcpu has VMEXIT'ed for a long while due to some overload on the host. Detect and fix these situations with emergency timekeeping catchups. Original-patch-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de>
* | clocksource: Add a Kconfig option for WATCHDOG_MAX_SKEWWaiman Long2022-02-022-1/+16
|/ | | | | | | | | | | A watchdog maximum skew of 100us may still be too small for some systems or archs. It may also be too small when some kernel debug config options are enabled. So add a new Kconfig option CLOCKSOURCE_WATCHDOG_MAX_SKEW_US to allow kernel builders to have more control on the threshold for marking clocksource as unstable. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
* Merge tag 'bitmap-5.17-rc1' of git://github.com/norov/linuxLinus Torvalds2022-01-231-2/+2
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull bitmap updates from Yury Norov: - introduce for_each_set_bitrange() - use find_first_*_bit() instead of find_next_*_bit() where possible - unify for_each_bit() macros * tag 'bitmap-5.17-rc1' of git://github.com/norov/linux: vsprintf: rework bitmap_list_string lib: bitmap: add performance test for bitmap_print_to_pagebuf bitmap: unify find_bit operations mm/percpu: micro-optimize pcpu_is_populated() Replace for_each_*_bit_from() with for_each_*_bit() where appropriate find: micro-optimize for_each_{set,clear}_bit() include/linux: move for_each_bit() macros from bitops.h to find.h cpumask: replace cpumask_next_* with cpumask_first_* where appropriate tools: sync tools/bitmap with mother linux all: replace find_next{,_zero}_bit with find_first{,_zero}_bit where appropriate cpumask: use find_first_and_bit() lib: add find_first_and_bit() arch: remove GENERIC_FIND_FIRST_BIT entirely include: move find.h from asm_generic to linux bitops: move find_bit_*_le functions from le.h to find.h bitops: protect find_first_{,zero}_bit properly
| * cpumask: replace cpumask_next_* with cpumask_first_* where appropriateYury Norov2022-01-151-2/+2
| | | | | | | | | | | | | | | | | | | | | | cpumask_first() is a more effective analogue of 'next' version if n == -1 (which means start == 0). This patch replaces 'next' with 'first' where things look trivial. There's no cpumask_first_zero() function, so create it. Signed-off-by: Yury Norov <yury.norov@gmail.com> Tested-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
* | Merge tag 'timers-core-2022-01-13' of ↵Linus Torvalds2022-01-131-10/+42
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer updates from Thomas Gleixner: "Updates for the time(r) subsystem: Core: - Make the clocksource watchdog more robust by better validation checks of the measurement. Drivers: - New drivers for MStar and SSD20xd SOCs - The usual cleanups and improvements all over the place" * tag 'timers-core-2022-01-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: dt-bindings: timer: Add Mstar MSC313e timer devicetree bindings documentation clocksource/drivers/msc313e: Add support for ssd20xd-based platforms clocksource/drivers: Add MStar MSC313e timer support clocksource/drivers/pistachio: Fix -Wunused-but-set-variable warning clocksource/drivers/timer-imx-sysctr: Set cpumask to cpu_possible_mask clocksource/drivers/imx-sysctr: Mark two variable with __ro_after_init clocksource/drivers/renesas,ostm: Make RENESAS_OSTM symbol visible clocksource/drivers/renesas-ostm: Add RZ/G2L OSTM support dt-bindings: timer: renesas: ostm: Document Renesas RZ/G2L OSTM clocksource/drivers/exynos_mct: Fix silly typo resulting in checkpatch warning clocksource: Reduce the default clocksource_watchdog() retries to 2 clocksource: Avoid accidental unstable marking of clocksources dt-bindings: timer: tpm-timer: Add imx8ulp compatible string reset: Add of_reset_control_get_optional_exclusive() clocksource/drivers/exynos_mct: Refactor resources allocation dt-bindings: timer: remove rockchip,rk3066-timer compatible string from rockchip,rk-timer.yaml dt-bindings: timer: cadence_ttc: Add power-domains
| * Merge branch 'clocksource' of ↵Thomas Gleixner2022-01-101-10/+42
| |\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into timers/core Pull clocksource watchdog updates from Paul McKenney: - Avoid accidental unstable marking of clocksources by rejecting clocksource measurements where the source of the skew is the delay reading reference clocksource itself. This change avoids many of the current false positives caused by epic cache-thrashing workloads. - Reduce the default clocksource_watchdog() retries to 2, thus offsetting the increased overhead due to #1 above rereading the reference clocksource. Link: https://lore.kernel.org/lkml/20220105001723.GA536708@paulmck-ThinkPad-P17-Gen-1
| | * clocksource: Reduce the default clocksource_watchdog() retries to 2Waiman Long2021-12-011-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With the previous patch, there is an extra watchdog read in each retry. Now the total number of clocksource reads is increased to 4 per iteration. In order to avoid increasing the clock skew check overhead, the default maximum number of retries is reduced from 3 to 2 to maintain the same 12 clocksource reads in the worst case. Suggested-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
| | * clocksource: Avoid accidental unstable marking of clocksourcesWaiman Long2021-12-011-9/+41
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since commit db3a34e17433 ("clocksource: Retry clock read if long delays detected") and commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), it is found that tsc clocksource fallback to hpet can sometimes happen on both Intel and AMD systems especially when they are running stressful benchmarking workloads. Of the 23 systems tested with a v5.14 kernel, 10 of them have switched to hpet clock source during the test run. The result of falling back to hpet is a drastic reduction of performance when running benchmarks. For example, the fio performance tests can drop up to 70% whereas the iperf3 performance can drop up to 80%. 4 hpet fallbacks happened during bootup. They were: [ 8.749399] clocksource: timekeeping watchdog on CPU13: hpet read-back delay of 263750ns, attempt 4, marking unstable [ 12.044610] clocksource: timekeeping watchdog on CPU19: hpet read-back delay of 186166ns, attempt 4, marking unstable [ 17.336941] clocksource: timekeeping watchdog on CPU28: hpet read-back delay of 182291ns, attempt 4, marking unstable [ 17.518565] clocksource: timekeeping watchdog on CPU34: hpet read-back delay of 252196ns, attempt 4, marking unstable Other fallbacks happen when the systems were running stressful benchmarks. For example: [ 2685.867873] clocksource: timekeeping watchdog on CPU117: hpet read-back delay of 57269ns, attempt 4, marking unstable [46215.471228] clocksource: timekeeping watchdog on CPU8: hpet read-back delay of 61460ns, attempt 4, marking unstable Commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), changed the skew margin from 100us to 50us. I think this is too small and can easily be exceeded when running some stressful workloads on a thermally stressed system. So it is switched back to 100us. Even a maximum skew margin of 100us may be too small in for some systems when booting up especially if those systems are under thermal stress. To eliminate the case that the large skew is due to the system being too busy slowing down the reading of both the watchdog and the clocksource, an extra consecutive read of watchdog clock is being done to check this. The consecutive watchdog read delay is compared against WATCHDOG_MAX_SKEW/2. If the delay exceeds the limit, we assume that the system is just too busy. A warning will be printed to the console and the clock skew check is skipped for this round. Fixes: db3a34e17433 ("clocksource: Retry clock read if long delays detected") Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
* | | timekeeping: Really make sure wall_to_monotonic isn't positiveYu Liao2021-12-171-2/+1
|/ / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Even after commit e1d7ba873555 ("time: Always make sure wall_to_monotonic isn't positive") it is still possible to make wall_to_monotonic positive by running the following code: int main(void) { struct timespec time; clock_gettime(CLOCK_MONOTONIC, &time); time.tv_nsec = 0; clock_settime(CLOCK_REALTIME, &time); return 0; } The reason is that the second parameter of timespec64_compare(), ts_delta, may be unnormalized because the delta is calculated with an open coded substraction which causes the comparison of tv_sec to yield the wrong result: wall_to_monotonic = { .tv_sec = -10, .tv_nsec = 900000000 } ts_delta = { .tv_sec = -9, .tv_nsec = -900000000 } That makes timespec64_compare() claim that wall_to_monotonic < ts_delta, but actually the result should be wall_to_monotonic > ts_delta. After normalization, the result of timespec64_compare() is correct because the tv_sec comparison is not longer misleading: wall_to_monotonic = { .tv_sec = -10, .tv_nsec = 900000000 } ts_delta = { .tv_sec = -10, .tv_nsec = 100000000 } Use timespec64_sub() to ensure that ts_delta is normalized, which fixes the issue. Fixes: e1d7ba873555 ("time: Always make sure wall_to_monotonic isn't positive") Signed-off-by: Yu Liao <liaoyu15@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20211213135727.1656662-1-liaoyu15@huawei.com
* | timers: implement usleep_idle_range()SeongJae Park2021-12-111-7/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "mm/damon: Fix fake /proc/loadavg reports", v3. This patchset fixes DAMON's fake load report issue. The first patch makes yet another variant of usleep_range() for this fix, and the second patch fixes the issue of DAMON by making it using the newly introduced function. This patch (of 2): Some kernel threads such as DAMON could need to repeatedly sleep in micro seconds level. Because usleep_range() sleeps in uninterruptible state, however, such threads would make /proc/loadavg reports fake load. To help such cases, this commit implements a variant of usleep_range() called usleep_idle_range(). It is same to usleep_range() but sets the state of the current task as TASK_IDLE while sleeping. Link: https://lkml.kernel.org/r/20211126145015.15862-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211126145015.15862-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: John Stultz <john.stultz@linaro.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | timers/nohz: Last resort update jiffies on nohz_full IRQ entryFrederic Weisbecker2021-12-021-0/+7
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When at least one CPU runs in nohz_full mode, a dedicated timekeeper CPU is guaranteed to stay online and to never stop its tick. Meanwhile on some rare case, the dedicated timekeeper may be running with interrupts disabled for a while, such as in stop_machine. If jiffies stop being updated, a nohz_full CPU may end up endlessly programming the next tick in the past, taking the last jiffies update monotonic timestamp as a stale base, resulting in an tick storm. Here is a scenario where it matters: 0) CPU 0 is the timekeeper and CPU 1 a nohz_full CPU. 1) A stop machine callback is queued to execute somewhere. 2) CPU 0 reaches MULTI_STOP_DISABLE_IRQ while CPU 1 is still in MULTI_STOP_PREPARE. Hence CPU 0 can't do its timekeeping duty. CPU 1 can still take IRQs. 3) CPU 1 receives an IRQ which queues a timer callback one jiffy forward. 4) On IRQ exit, CPU 1 schedules the tick one jiffy forward, taking last_jiffies_update as a base. But last_jiffies_update hasn't been updated for 2 jiffies since the timekeeper has interrupts disabled. 5) clockevents_program_event(), which relies on ktime_get(), observes that the expiration is in the past and therefore programs the min delta event on the clock. 6) The tick fires immediately, goto 3) 7) Tick storm, the nohz_full CPU is drown and takes ages to reach MULTI_STOP_DISABLE_IRQ, which is the only way out of this situation. Solve this with unconditionally updating jiffies if the value is stale on nohz_full IRQ entry. IRQs and other disturbances are expected to be rare enough on nohz_full for the unconditional call to ktime_get() to actually matter. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Paul E. McKenney <paulmck@kernel.org> Link: https://lore.kernel.org/r/20211026141055.57358-2-frederic@kernel.org
* posix-cpu-timers: Clear task::posix_cputimers_work in copy_process()Michael Pratt2021-11-021-2/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | copy_process currently copies task_struct.posix_cputimers_work as-is. If a timer interrupt arrives while handling clone and before dup_task_struct completes then the child task will have: 1. posix_cputimers_work.scheduled = true 2. posix_cputimers_work.work queued. copy_process clears task_struct.task_works, so (2) will have no effect and posix_cpu_timers_work will never run (not to mention it doesn't make sense for two tasks to share a common linked list). Since posix_cpu_timers_work never runs, posix_cputimers_work.scheduled is never cleared. Since scheduled is set, future timer interrupts will skip scheduling work, with the ultimate result that the task will never receive timer expirations. Together, the complete flow is: 1. Task 1 calls clone(), enters kernel. 2. Timer interrupt fires, schedules task work on Task 1. 2a. task_struct.posix_cputimers_work.scheduled = true 2b. task_struct.posix_cputimers_work.work added to task_struct.task_works. 3. dup_task_struct() copies Task 1 to Task 2. 4. copy_process() clears task_struct.task_works for Task 2. 5. Future timer interrupts on Task 2 see task_struct.posix_cputimers_work.scheduled = true and skip scheduling work. Fix this by explicitly clearing contents of task_struct.posix_cputimers_work in copy_process(). This was never meant to be shared or inherited across tasks in the first place. Fixes: 1fb497dd0030 ("posix-cpu-timers: Provide mechanisms to defer timer handling to task_work") Reported-by: Rhys Hiltner <rhys@justin.tv> Signed-off-by: Michael Pratt <mpratt@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/20211101210615.716522-1-mpratt@google.com
* posix-cpu-timers: Prevent spuriously armed 0-value itimerFrederic Weisbecker2021-09-231-1/+2
| | | | | | | | | | | | | | | | | Resetting/stopping an itimer eventually leads to it being reprogrammed with an actual "0" value. As a result the itimer expires on the next tick, triggering an unexpected signal. To fix this, make sure that struct signal_struct::it[CPUCLOCK_PROF/VIRT]::expires is set to 0 when setitimer() passes a 0 it_value, indicating that the timer must stop. Fixes: 406dd42bd1ba ("posix-cpu-timers: Force next expiration recalc after itimer reset") Reported-by: Victor Stinner <vstinner@redhat.com> Reported-by: Chris Hixon <linux-kernel-bugs@hixontech.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210913145332.232023-1-frederic@kernel.org
* Merge branch 'akpm' (patches from Andrew)Linus Torvalds2021-09-032-4/+4
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Merge misc updates from Andrew Morton: "173 patches. Subsystems affected by this series: ia64, ocfs2, block, and mm (debug, pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap, bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock, oom-kill, migration, ksm, percpu, vmstat, and madvise)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits) mm/madvise: add MADV_WILLNEED to process_madvise() mm/vmstat: remove unneeded return value mm/vmstat: simplify the array size calculation mm/vmstat: correct some wrong comments mm/percpu,c: remove obsolete comments of pcpu_chunk_populated() selftests: vm: add COW time test for KSM pages selftests: vm: add KSM merging time test mm: KSM: fix data type selftests: vm: add KSM merging across nodes test selftests: vm: add KSM zero page merging test selftests: vm: add KSM unmerge test selftests: vm: add KSM merge test mm/migrate: correct kernel-doc notation mm: wire up syscall process_mrelease mm: introduce process_mrelease system call memblock: make memblock_find_in_range method private mm/mempolicy.c: use in_task() in mempolicy_slab_node() mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies mm/mempolicy: advertise new MPOL_PREFERRED_MANY mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY ...
| * memcg: enable accounting for posix_timers_cache slabVasily Averin2021-09-031-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A program may create multiple interval timers using timer_create(). For each timer the kernel preallocates a "queued real-time signal", Consequently, the number of timers is limited by the RLIMIT_SIGPENDING resource limit. The allocated object is quite small, ~250 bytes, but even the default signal limits allow to consume up to 100 megabytes per user. It makes sense to account for them to limit the host's memory consumption from inside the memcg-limited container. Link: https://lkml.kernel.org/r/57795560-025c-267c-6b1a-dea852d95530@virtuozzo.com Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrei Vagin <avagin@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Roman Gushchin <guro@fb.com> Cc: Serge Hallyn <serge@hallyn.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yutian Yang <nglaive@gmail.com> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * memcg: enable accounting for new namesapces and struct nsproxyVasily Averin2021-09-031-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Container admin can create new namespaces and force kernel to allocate up to several pages of memory for the namespaces and its associated structures. Net and uts namespaces have enabled accounting for such allocations. It makes sense to account for rest ones to restrict the host's memory consumption from inside the memcg-limited container. Link: https://lkml.kernel.org/r/5525bcbf-533e-da27-79b7-158686c64e13@virtuozzo.com Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrei Vagin <avagin@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yutian Yang <nglaive@gmail.com> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | clocksource: Make clocksource watchdog test safe for slow-HZ systemsPaul E. McKenney2021-08-283-23/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The clocksource watchdog test sets a local JIFFIES_SHIFT macro and assumes that HZ is >= 100. For smaller HZ values this shift value is too large and causes undefined behaviour. Move the HZ-based definitions of JIFFIES_SHIFT from kernel/time/jiffies.c to kernel/time/tick-internal.h so the clocksource watchdog test can utilize them, which makes it work correctly with all HZ values. [ tglx: Resolved conflicts and massaged changelog ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/lkml/20210812000133.GA402890@paulmck-ThinkPad-P17-Gen-1/
* | hrtimer: Unbreak hrtimer_force_reprogram()Thomas Gleixner2021-08-121-20/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since the recent consoliation of reprogramming functions, hrtimer_force_reprogram() is affected by a check whether the new expiry time is past the current expiry time. This breaks the NOHZ logic as that relies on the fact that the tick hrtimer is moved into the future. That means cpu_base->expires_next becomes stale and subsequent reprogramming attempts fail as well until the situation is cleaned up by an hrtimer interrupts. For some yet unknown reason this leads to a complete stall, so for now partially revert the offending commit to a known working state. The root cause for the stall is still investigated and will be fixed in a subsequent commit. Fixes: b14bca97c9f5 ("hrtimer: Consolidate reprogramming code") Reported-by: Mike Galbraith <efault@gmx.de> Reported-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Mike Galbraith <efault@gmx.de> Link: https://lore.kernel.org/r/8735recskh.ffs@tglx
* | hrtimer: Use raw_cpu_ptr() in clock_was_set()Thomas Gleixner2021-08-121-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | clock_was_set() can be invoked from preemptible context. Use raw_cpu_ptr() to check whether high resolution mode is active or not. It does not matter whether the task migrates after acquiring the pointer. Fixes: e71a4153b7c2 ("hrtimer: Force clock_was_set() handling for the HIGHRES=n, NOHZ=y case") Reported-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/875ywacsmb.ffs@tglx
* | hrtimer: Avoid more SMP function calls in clock_was_set()Thomas Gleixner2021-08-101-9/+65
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | By unconditionally updating the offsets there are more indicators whether the SMP function calls on clock_was_set() can be avoided: - When the offset update already happened on the remote CPU then the remote update attempt will yield the same seqeuence number and no IPI is required. - When the remote CPU is currently handling hrtimer_interrupt(). In that case the remote CPU will reevaluate the timer bases before reprogramming anyway, so nothing to do. - After updating it can be checked whether the first expiring timer in the affected clock bases moves before the first expiring (softirq) timer of the CPU. If that's not the case then sending the IPI is not required. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210713135158.887322464@linutronix.de
* | hrtimer: Avoid unnecessary SMP function calls in clock_was_set()Marcelo Tosatti2021-08-101-2/+33
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Setting of clocks triggers an unconditional SMP function call on all online CPUs to reprogram the clock event device. However, only some clocks have their offsets updated and therefore potentially require a reprogram. That's CLOCK_REALTIME and CLOCK_TAI and in the case of resume (delayed sleep time injection) also CLOCK_BOOTTIME. Instead of sending an IPI unconditionally, check each per CPU hrtimer base whether it has active timers in the affected clock bases which are indicated by the caller in the @bases argument of clock_was_set(). If that's not the case, skip the IPI and update the offsets remotely which ensures that any subsequently armed timers on the affected clocks are evaluated with the correct offsets. [ tglx: Adopted to the new bases argument, removed the softirq_active check, added comment, fixed up stale comment ] Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210713135158.787536542@linutronix.de
* | hrtimer: Add bases argument to clock_was_set()Thomas Gleixner2021-08-103-10/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | clock_was_set() unconditionaly invokes retrigger_next_event() on all online CPUs. This was necessary because that mechanism was also used for resume from suspend to idle which is not longer the case. The bases arguments allows the callers of clock_was_set() to hand in a mask which tells clock_was_set() which of the hrtimer clock bases are affected by the clock setting. This mask will be used in the next step to check whether a CPU base has timers queued on a clock base affected by the event and avoid the SMP function call if there are none. Add a @bases argument, provide defines for the active bases masking and fixup all callsites. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210713135158.691083465@linutronix.de
* | time/timekeeping: Avoid invoking clock_was_set() twiceThomas Gleixner2021-08-101-8/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | do_adjtimex() might end up scheduling a delayed clock_was_set() via timekeeping_advance() and then invoke clock_was_set() directly which is pointless. Make timekeeping_advance() return whether an invocation of clock_was_set() is required and handle it at the call sites which allows do_adjtimex() to issue a single direct call if required. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210713135158.580966888@linutronix.de
* | timekeeping: Distangle resume and clock-was-set eventsThomas Gleixner2021-08-104-10/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Resuming timekeeping is a clock-was-set event and uses the clock-was-set notification mechanism. This is in the way of making the clock-was-set update for hrtimers selective so unnecessary IPIs are avoided when a CPU base does not have timers queued which are affected by the clock setting. Distangle it by invoking hrtimer_resume() on each unfreezing CPU and invoke the new timerfd_resume() function from timekeeping_resume() which is the only place where this is needed. Rename hrtimer_resume() to hrtimer_resume_local() to reflect the change. With this the clock_was_set*() functions are not longer required to IPI all CPUs unconditionally and can get some smarts to avoid them. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210713135158.488853478@linutronix.de
* | hrtimer: Force clock_was_set() handling for the HIGHRES=n, NOHZ=y caseThomas Gleixner2021-08-101-28/+59
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When CONFIG_HIGH_RES_TIMERS is disabled, but NOHZ is enabled then clock_was_set() is not doing anything. With HIGHRES=n the kernel relies on the periodic tick to update the clock offsets, but when NOHZ is enabled and active then CPUs which are in a deep idle sleep do not have a periodic tick which means the expiry of timers affected by clock_was_set() can be arbitrarily delayed up to the point where the CPUs are brought out of idle again. Make the clock_was_set() logic unconditionaly available so that idle CPUs are kicked out of idle to handle the update. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210713135158.288697903@linutronix.de
* | hrtimer: Ensure timerfd notification for HIGHRES=nThomas Gleixner2021-08-102-16/+19
| | | | | | | | | | | | | | | | | | | | | | | | If high resolution timers are disabled the timerfd notification about a clock was set event is not happening for all cases which use clock_was_set_delayed() because that's a NOP for HIGHRES=n, which is wrong. Make clock_was_set_delayed() unconditially available to fix that. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210713135158.196661266@linutronix.de
* | hrtimer: Consolidate reprogramming codePeter Zijlstra2021-08-101-43/+29
| | | | | | | | | | | | | | | | | | | | | | This code is mostly duplicated. The redudant store in the force reprogram case does no harm and the in hrtimer interrupt condition cannot be true for the force reprogram invocations. Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210713135158.054424875@linutronix.de
* | hrtimer: Avoid double reprogramming in __hrtimer_start_range_ns()Thomas Gleixner2021-08-101-7/+53
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If __hrtimer_start_range_ns() is invoked with an already armed hrtimer then the timer has to be canceled first and then added back. If the timer is the first expiring timer then on removal the clockevent device is reprogrammed to the next expiring timer to avoid that the pending expiry fires needlessly. If the new expiry time ends up to be the first expiry again then the clock event device has to reprogrammed again. Avoid this by checking whether the timer is the first to expire and in that case, keep the timer on the current CPU and delay the reprogramming up to the point where the timer has been enqueued again. Reported-by: Lorenzo Colitti <lorenzo@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210713135157.873137732@linutronix.de
* | posix-cpu-timers: Recalc next expiration when timer_settime() ends up not ↵Frederic Weisbecker2021-08-101-6/+35
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | queueing There are several scenarios that can result in posix_cpu_timer_set() not queueing the timer but still leaving the threadgroup cputime counter running or keeping the tick dependency around for a random amount of time. 1) If timer_settime() is called with a 0 expiration on a timer that is already disabled, the process wide cputime counter will be started and won't ever get a chance to be stopped by stop_process_timer() since no timer is actually armed to be processed. The following snippet is enough to trigger the issue. void trigger_process_counter(void) { timer_t id; struct itimerspec val = { }; timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id); timer_settime(id, TIMER_ABSTIME, &val, NULL); timer_delete(id); } 2) If timer_settime() is called with a 0 expiration on a timer that is already armed, the timer is dequeued but not really disarmed. So the process wide cputime counter and the tick dependency may still remain a while around. The following code snippet keeps this overhead around for one week after the timer deletion: void trigger_process_counter(void) { timer_t id; struct itimerspec val = { }; val.it_value.tv_sec = 604800; timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id); timer_settime(id, 0, &val, NULL); timer_delete(id); } 3) If the timer was initially deactivated, this call to timer_settime() with an early expiration may have started the process wide cputime counter even though the timer hasn't been queued and armed because it has fired early and inline within posix_cpu_timer_set() itself. As a result the process wide cputime counter may never stop until a new timer is ever armed in the future. The following code snippet can reproduce this: void trigger_process_counter(void) { timer_t id; struct itimerspec val = { }; signal(SIGALRM, SIG_IGN); timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id); val.it_value.tv_nsec = 1; timer_settime(id, TIMER_ABSTIME, &val, NULL); } 4) If the timer was initially armed with a former expiration value before this call to timer_settime() and the current call sets an early deadline that has already expired, the timer fires inline within posix_cpu_timer_set(). In this case it must have been dequeued before firing inline with its new expiration value, yet it hasn't been disarmed in this case. So the process wide cputime counter and the tick dependency may still be around for a while even after the timer fired. The following code snippet can reproduce this: void trigger_process_counter(void) { timer_t id; struct itimerspec val = { }; signal(SIGALRM, SIG_IGN); timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id); val.it_value.tv_sec = 100; timer_settime(id, TIMER_ABSTIME, &val, NULL); val.it_value.tv_sec = 0; val.it_value.tv_nsec = 1; timer_settime(id, TIMER_ABSTIME, &val, NULL); } Fix all these issues with triggering the related base next expiration recalculation on the next tick. This also implies to re-evaluate the need to keep around the process wide cputime counter and the tick dependency, in a similar fashion to disarm_timer(). Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210726125513.271824-7-frederic@kernel.org
* | posix-cpu-timers: Consolidate timer base accessorFrederic Weisbecker2021-08-101-15/+13
| | | | | | | | | | | | | | | | | | | | Remove the ad-hoc timer base accessors and provide a consolidated one. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210726125513.271824-6-frederic@kernel.org
* | posix-cpu-timers: Remove confusing return value overrideFrederic Weisbecker2021-08-101-2/+0
| | | | | | | | | | | | | | | | | | | | | | The end of the function cannot be reached with an error in variable ret. Unconfuse reviewers about that. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210726125513.271824-5-frederic@kernel.org
* | posix-cpu-timers: Force next expiration recalc after itimer resetFrederic Weisbecker2021-08-101-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When an itimer deactivates a previously armed expiration, it simply doesn't do anything. As a result the process wide cputime counter keeps running and the tick dependency stays set until it reaches the old ghost expiration value. This can be reproduced with the following snippet: void trigger_process_counter(void) { struct itimerval n = {}; n.it_value.tv_sec = 100; setitimer(ITIMER_VIRTUAL, &n, NULL); n.it_value.tv_sec = 0; setitimer(ITIMER_VIRTUAL, &n, NULL); } Fix this with resetting the relevant base expiration. This is similar to disarming a timer. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210726125513.271824-4-frederic@kernel.org
* | posix-cpu-timers: Force next_expiration recalc after timer deletionFrederic Weisbecker2021-08-101-1/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A timer deletion only dequeues the timer but it doesn't shutdown the related costly process wide cputimer counter and the tick dependency. The following code snippet keeps this overhead around for one week after the timer deletion: void trigger_process_counter(void) { timer_t id; struct itimerspec val = { }; val.it_value.tv_sec = 604800; timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id); timer_settime(id, 0, &val, NULL); timer_delete(id); } Make sure the next target's tick recalculates the nearest expiration and clears the process wide counter and tick dependency if necessary. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210726125513.271824-3-frederic@kernel.org
* | posix-cpu-timers: Assert task sighand is locked while starting cputime counterFrederic Weisbecker2021-08-101-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Starting the process wide cputime counter needs to be done in the same sighand locking sequence than actually arming the related timer otherwise this races against concurrent timers setting/expiring in the same threadgroup. Detecting that the cputime counter is started without holding the sighand lock is a first step toward debugging such situations. Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210726125513.271824-2-frederic@kernel.org
* | posix-timers: Remove redundant initialization of variable retColin Ian King2021-08-101-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | The variable ret is being initialized with a value that is never read, it is being updated later on. The assignment is redundant and can be removed. Addresses-Coverity: ("Unused value") Signed-off-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210721120147.109570-1-colin.king@canonical.com
* | clocksource: Replace deprecated CPU-hotplug functions.Sebastian Andrzej Siewior2021-08-101-3/+3
|/ | | | | | | | | | | | | | The functions get_online_cpus() and put_online_cpus() have been deprecated during the CPU hotplug rework. They map directly to cpus_read_lock() and cpus_read_unlock(). Replace deprecated CPU-hotplug functions with the official version. The behavior remains unchanged. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210803141621.780504-35-bigeasy@linutronix.de
* timers: Move clearing of base::timer_running under base:: LockThomas Gleixner2021-07-271-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | syzbot reported KCSAN data races vs. timer_base::timer_running being set to NULL without holding base::lock in expire_timers(). This looks innocent and most reads are clearly not problematic, but Frederic identified an issue which is: int data = 0; void timer_func(struct timer_list *t) { data = 1; } CPU 0 CPU 1 ------------------------------ -------------------------- base = lock_timer_base(timer, &flags); raw_spin_unlock(&base->lock); if (base->running_timer != timer) call_timer_fn(timer, fn, baseclk); ret = detach_if_pending(timer, base, true); base->running_timer = NULL; raw_spin_unlock_irqrestore(&base->lock, flags); raw_spin_lock(&base->lock); x = data; If the timer has previously executed on CPU 1 and then CPU 0 can observe base->running_timer == NULL and returns, assuming the timer has completed, but it's not guaranteed on all architectures. The comment for del_timer_sync() makes that guarantee. Moving the assignment under base->lock prevents this. For non-RT kernel it's performance wise completely irrelevant whether the store happens before or after taking the lock. For an RT kernel moving the store under the lock requires an extra unlock/lock pair in the case that there is a waiter for the timer, but that's not the end of the world. Reported-by: syzbot+aa7c2385d46c5eba0b89@syzkaller.appspotmail.com Reported-by: syzbot+abea4558531bae1ba9fe@syzkaller.appspotmail.com Fixes: 030dcdd197d7 ("timers: Prepare support for PREEMPT_RT") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Link: https://lore.kernel.org/r/87lfea7gw8.fsf@nanos.tec.linutronix.de Cc: stable@vger.kernel.org
* timers: Fix get_next_timer_interrupt() with no timers pendingNicolas Saenz Julienne2021-07-151-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 31cd0e119d50 ("timers: Recalculate next timer interrupt only when necessary") subtly altered get_next_timer_interrupt()'s behaviour. The function no longer consistently returns KTIME_MAX with no timers pending. In order to decide if there are any timers pending we check whether the next expiry will happen NEXT_TIMER_MAX_DELTA jiffies from now. Unfortunately, the next expiry time and the timer base clock are no longer updated in unison. The former changes upon certain timer operations (enqueue, expire, detach), whereas the latter keeps track of jiffies as they move forward. Ultimately breaking the logic above. A simplified example: - Upon entering get_next_timer_interrupt() with: jiffies = 1 base->clk = 0; base->next_expiry = NEXT_TIMER_MAX_DELTA; 'base->next_expiry == base->clk + NEXT_TIMER_MAX_DELTA', the function returns KTIME_MAX. - 'base->clk' is updated to the jiffies value. - The next time we enter get_next_timer_interrupt(), taking into account no timer operations happened: base->clk = 1; base->next_expiry = NEXT_TIMER_MAX_DELTA; 'base->next_expiry != base->clk + NEXT_TIMER_MAX_DELTA', the function returns a valid expire time, which is incorrect. This ultimately might unnecessarily rearm sched's timer on nohz_full setups, and add latency to the system[1]. So, introduce 'base->timers_pending'[2], update it every time 'base->next_expiry' changes, and use it in get_next_timer_interrupt(). [1] See tick_nohz_stop_tick(). [2] A quick pahole check on x86_64 and arm64 shows it doesn't make 'struct timer_base' any bigger. Fixes: 31cd0e119d50 ("timers: Recalculate next timer interrupt only when necessary") Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
* posix-cpu-timers: Fix rearm racing against process tickFrederic Weisbecker2021-07-151-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since the process wide cputime counter is started locklessly from posix_cpu_timer_rearm(), it can be concurrently stopped by operations on other timers from the same thread group, such as in the following unlucky scenario: CPU 0 CPU 1 ----- ----- timer_settime(TIMER B) posix_cpu_timer_rearm(TIMER A) cpu_clock_sample_group() (pct->timers_active already true) handle_posix_cpu_timers() check_process_timers() stop_process_timers() pct->timers_active = false arm_timer(TIMER A) tick -> run_posix_cpu_timers() // sees !pct->timers_active, ignore // our TIMER A Fix this with simply locking process wide cputime counting start and timer arm in the same block. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Fixes: 60f2ceaa8111 ("posix-cpu-timers: Remove unnecessary locking around cpu_clock_sample_group") Cc: stable@vger.kernel.org Cc: Oleg Nesterov <oleg@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Eric W. Biederman <ebiederm@xmission.com>
* Merge branch 'core-rcu-2021.07.04' of ↵Linus Torvalds2021-07-041-14/+0
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull RCU updates from Paul McKenney: - Bitmap parsing support for "all" as an alias for all bits - Documentation updates - Miscellaneous fixes, including some that overlap into mm and lockdep - kvfree_rcu() updates - mem_dump_obj() updates, with acks from one of the slab-allocator maintainers - RCU NOCB CPU updates, including limited deoffloading - SRCU updates - Tasks-RCU updates - Torture-test updates * 'core-rcu-2021.07.04' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (78 commits) tasks-rcu: Make show_rcu_tasks_gp_kthreads() be static inline rcu-tasks: Make ksoftirqd provide RCU Tasks quiescent states rcu: Add missing __releases() annotation rcu: Remove obsolete rcu_read_unlock() deadlock commentary rcu: Improve comments describing RCU read-side critical sections rcu: Create an unrcu_pointer() to remove __rcu from a pointer srcu: Early test SRCU polling start rcu: Fix various typos in comments rcu/nocb: Unify timers rcu/nocb: Prepare for fine-grained deferred wakeup rcu/nocb: Only cancel nocb timer if not polling rcu/nocb: Delete bypass_timer upon nocb_gp wakeup rcu/nocb: Cancel nocb_timer upon nocb_gp wakeup rcu/nocb: Allow de-offloading rdp leader rcu/nocb: Directly call __wake_nocb_gp() from bypass timer rcu: Don't penalize priority boosting when there is nothing to boost rcu: Point to documentation of ordering guarantees rcu: Make rcu_gp_cleanup() be noinline for tracing rcu: Restrict RCU_STRICT_GRACE_PERIOD to at most four CPUs rcu: Make show_rcu_gp_kthreads() dump rcu_node structures blocking GP ...
| * timer: Revert "timer: Add timer_curr_running()"Frederic Weisbecker2021-05-111-14/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This reverts commit dcd42591ebb8a25895b551a5297ea9c24414ba54. The only user was RCU/nocb. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
* | Merge tag 'timers-core-2021-06-29' of ↵Linus Torvalds2021-06-2912-110/+755
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer updates from Thomas Gleixner: "Time and clocksource/clockevent related updates: Core changes: - Infrastructure to support per CPU "broadcast" devices for per CPU clockevent devices which stop in deep idle states. This allows us to utilize the more efficient architected timer on certain ARM SoCs for normal operation instead of permanentely using the slow to access SoC specific clockevent device. - Print the name of the broadcast/wakeup device in /proc/timer_list - Make the clocksource watchdog more robust against delays between reading the current active clocksource and the watchdog clocksource. Such delays can be caused by NMIs, SMIs and vCPU preemption. Handle this by reading the watchdog clocksource twice, i.e. before and after reading the current active clocksource. In case that the two watchdog reads shows an excessive time delta, the read sequence is repeated up to 3 times. - Improve the debug output and add a test module for the watchdog mechanism. - Reimplementation of the venerable time64_to_tm() function with a faster and significantly smaller version. Straight from the source, i.e. the author of the related research paper contributed this! Driver changes: - No new drivers, not even new device tree bindings! - Fixes, improvements and cleanups and all over the place" * tag 'timers-core-2021-06-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (30 commits) time/kunit: Add missing MODULE_LICENSE() time: Improve performance of time64_to_tm() clockevents: Use list_move() instead of list_del()/list_add() clocksource: Print deviation in nanoseconds when a clocksource becomes unstable clocksource: Provide kernel module to test clocksource watchdog clocksource: Reduce clocksource-skew threshold clocksource: Limit number of CPUs checked for clock synchronization clocksource: Check per-CPU clock synchronization when marked unstable clocksource: Retry clock read if long delays detected clockevents: Add missing parameter documentation clocksource/drivers/timer-ti-dm: Drop unnecessary restore clocksource/arm_arch_timer: Improve Allwinner A64 timer workaround clocksource/drivers/arm_global_timer: Remove duplicated argument in arm_global_timer clocksource/drivers/arm_global_timer: Make symbol 'gt_clk_rate_change_nb' static arm: zynq: don't disable CONFIG_ARM_GLOBAL_TIMER due to CONFIG_CPU_FREQ anymore clocksource/drivers/arm_global_timer: Implement rate compensation whenever source clock changes clocksource/drivers/ingenic: Rename unreasonable array names clocksource/drivers/timer-ti-dm: Save and restore timer TIOCP_CFG clocksource/drivers/mediatek: Ack and disable interrupts on suspend clocksource/drivers/samsung_pwm: Constify source IO memory ...
| * | time/kunit: Add missing MODULE_LICENSE()Thomas Gleixner2021-06-281-0/+1
| | | | | | | | | | | | | | | | | | | | | [ mingo: MODULE_LICENSE() takes a string. ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | time: Improve performance of time64_to_tm()Cassio Neri2021-06-244-58/+178
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current implementation of time64_to_tm() contains unnecessary loops, branches and look-up tables. The new one uses an arithmetic-based algorithm appeared in [1] and is approximately 3x faster (YMMV). The drawback is that the new code isn't intuitive and contains many 'magic numbers' (not unusual for this type of algorithm). However, [1] justifies all those numbers and, given this function's history, the code is unlikely to need much maintenance, if any at all. Add a KUnit test for it which checks every day in a 160,000 years interval centered at 1970-01-01 against the expected result. [1] Neri, Schneider, "Euclidean Affine Functions and Applications to Calendar Algorithms". https://arxiv.org/abs/2102.06959 Signed-off-by: Cassio Neri <cassio.neri@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210622213616.313046-1-cassio.neri@gmail.com