summaryrefslogtreecommitdiffstats
path: root/kernel/workqueue.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* workqueue: note the nested NOT_RUNNING test in worker_clr_flags() isn't a noopTejun Heo2011-01-111-1/+5
| | | | | | | | | | | The nested NOT_RUNNING test in worker_clr_flags() is slightly misleading in that if NOT_RUNNING were a single flag the nested test would be always %true and thus noop. Add a comment noting that the test isn't a noop. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Hillf Danton <dhillf@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org>
* workqueue: relax lockdep annotation on flush_work()Tejun Heo2011-01-111-2/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, the lockdep annotation in flush_work() requires exclusive access on the workqueue the target work is queued on and triggers warning if a work is trying to flush another work on the same workqueue; however, this is no longer true as workqueues can now execute multiple works concurrently. This patch adds lock_map_acquire_read() and make process_one_work() hold read access to the workqueue while executing a work and start_flush_work() check for write access if concurrnecy level is one or the workqueue has a rescuer (as only one execution resource - the rescuer - is guaranteed to be available under memory pressure), and read access if higher. This better represents what's going on and removes spurious lockdep warnings which are triggered by fake dependency chain created through flush_work(). * Peter pointed out that flushing another work from a WQ_MEM_RECLAIM wq breaks forward progress guarantee under memory pressure. Condition check accordingly updated. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: "Rafael J. Wysocki" <rjw@sisk.pl> Tested-by: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable@kernel.org
* workqueue: allow chained queueing during destructionTejun Heo2010-12-201-1/+59
| | | | | | | | | | | | | | | | | | | | | Currently, destroy_workqueue() makes the workqueue deny all new queueing by setting WQ_DYING and flushes the workqueue once before proceeding with destruction; however, there are cases where work items queue more related work items. Currently, such users need to explicitly flush the workqueue multiple times depending on the possible depth of such chained queueing. This patch updates the queueing path such that a work item can queue further work items on the same workqueue even when WQ_DYING is set. The flush on destruction is automatically retried until the workqueue is empty. This guarantees that the workqueue is empty on destruction while allowing chained queueing. The flush retry logic whines if it takes too many retries to drain the workqueue. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
* workqueue: It is likely that WORKER_NOT_RUNNING is trueSteven Rostedt2010-12-141-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Running the annotate branch profiler on three boxes, including my main box that runs firefox, evolution, xchat, and is part of the distcc farm, showed this with the likelys in the workqueue code: correct incorrect % Function File Line ------- --------- - -------- ---- ---- 96 996253 99 wq_worker_sleeping workqueue.c 703 96 996247 99 wq_worker_waking_up workqueue.c 677 The likely()s in this case were assuming that WORKER_NOT_RUNNING will most likely be false. But this is not the case. The reason is (and shown by adding trace_printks and testing it) that most of the time WORKER_PREP is set. In worker_thread() we have: worker_clr_flags(worker, WORKER_PREP); [ do work stuff ] worker_set_flags(worker, WORKER_PREP, false); (that 'false' means not to wake up an idle worker) The wq_worker_sleeping() is called from schedule when a worker thread is putting itself to sleep. Which happens most of the time outside of that [ do work stuff ]. The wq_worker_waking_up is called by the wakeup worker code, which is also callod outside that [ do work stuff ]. Thus, the likely and unlikely used by those two functions are actually backwards. Remove the annotation and let gcc figure it out. Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Tejun Heo <tj@kernel.org>
* workqueue: check the allocation of system_unbound_wqHitoshi Mitake2010-11-261-1/+2
| | | | | | | | | | | | I found a trivial bug on initialization of workqueue. Current init_workqueues doesn't check the result of allocation of system_unbound_wq, this should be checked like other queues. Signed-off-by: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org>
* workqueues: s/ON_STACK/ONSTACK/Andrew Morton2010-10-271-1/+1
| | | | | | | | | | | | | | | Silly though it is, completions and wait_queue_heads use foo_ONSTACK (COMPLETION_INITIALIZER_ONSTACK, DECLARE_COMPLETION_ONSTACK, __WAIT_QUEUE_HEAD_INIT_ONSTACK and DECLARE_WAIT_QUEUE_HEAD_ONSTACK) so I guess workqueues should do the same thing. s/INIT_WORK_ON_STACK/INIT_WORK_ONSTACK/ s/INIT_DELAYED_WORK_ON_STACK/INIT_DELAYED_WORK_ONSTACK/ Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* MN10300: Fix the PERCPU() alignment to allow for workqueuesDavid Howells2010-10-261-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In the MN10300 arch, we occasionally see an assertion being tripped in alloc_cwqs() at the following line: /* just in case, make sure it's actually aligned */ ---> BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); return wq->cpu_wq.v ? 0 : -ENOMEM; The values are: wa->cpu_wq.v => 0x902776e0 align => 0x100 and align is calculated by the following: const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, __alignof__(unsigned long long)); This is because the pointer in question (wq->cpu_wq.v) loses some of its lower bits to control flags, and so the object it points to must be sufficiently aligned to avoid the need to use those bits for pointing to things. Currently, 4 control bits and 4 colour bits are used in normal circumstances, plus a debugging bit if debugging is set. This requires the cpu_workqueue_struct struct to be at least 256 bytes aligned (or 512 bytes aligned with debugging). PERCPU() alignment on MN13000, however, is only 32 bytes as set in vmlinux.lds.S. So we set this to PAGE_SIZE (4096) to match most other arches and stick a comment in alloc_cwqs() for anyone else who triggers the assertion. Reported-by: Akira Takeuchi <takeuchi.akr@jp.panasonic.com> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Mark Salter <msalter@redhat.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* workqueue: remove in_workqueue_context()Tejun Heo2010-10-191-15/+0
| | | | | | | | | | Commit a25909a4 (lockdep: Add an in_workqueue_context() lockdep-based test function) added in_workqueue_context() but there hasn't been any in-kernel user and the lockdep annotation in workqueue is scheduled to change. Remove the unused function. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
* workqueue: Clarify that schedule_on_each_cpu is synchronousTejun Heo2010-10-191-4/+6
| | | | | | | | | | | | | The documentation for schedule_on_each_cpu() states that it calls a function on each online CPU from keventd. This can easily be interpreted as an asyncronous call because the description does not mention that flush_work is called. Clarify that it is synchronous. tj: rephrased a bit Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Tejun Heo <tj@kernel.org>
* workqueue: add and use WQ_MEM_RECLAIM flagTejun Heo2010-10-111-0/+7
| | | | | | | | | | | | | | | | | | | Add WQ_MEM_RECLAIM flag which currently maps to WQ_RESCUER, mark WQ_RESCUER as internal and replace all external WQ_RESCUER usages to WQ_MEM_RECLAIM. This makes the API users express the intent of the workqueue instead of indicating the internal mechanism used to guarantee forward progress. This is also to make it cleaner to add more semantics to WQ_MEM_RECLAIM. For example, if deemed necessary, memory reclaim workqueues can be made highpri. This patch doesn't introduce any functional change. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jeff Garzik <jgarzik@pobox.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Steven Whitehouse <swhiteho@redhat.com>
* workqueue: fix HIGHPRI handling in keep_working()Tejun Heo2010-10-111-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | The policy function keep_working() didn't check GCWQ_HIGHPRI_PENDING and could return %false with highpri work pending. This could lead to late execution of a highpri work which was delayed due to @max_active throttling if other works are actively consuming CPU cycles. For example, the following could happen. 1. Work W0 which burns CPU cycles. 2. Two works W1 and W2 are queued to a highpri wq w/ @max_active of 1. 3. W1 starts executing and W2 is put to delayed queue. W0 and W1 are both runnable. 4. W1 finishes which puts W2 to pending queue but keep_working() incorrectly returns %false and the worker goes to sleep. 5. W0 finishes and W2 starts execution. With this patch applied, W2 starts execution as soon as W1 finishes. Signed-off-by: Tejun Heo <tj@kernel.org>
* workqueue: add queue_work and activate_work trace pointsTejun Heo2010-10-051-0/+3
| | | | | | | | | These two tracepoints allow tracking when and how a work is queued and activated. This patch is based on Frederic's patch to add queue_work trace point. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com>
* workqueue: prepare for more tracepointsTejun Heo2010-10-051-3/+3
| | | | | | | | | | Define workqueue_work event class and use it for workqueue_execute_end trace point. Also, move trace/events/workqueue.h include downwards such that all struct definitions are visible to it. This is to prepare for more tracepoints and doesn't cause any functional change. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com>
* workqueue: implement flush[_delayed]_work_sync()Tejun Heo2010-09-191-0/+56
| | | | | | | | | | Implement flush[_delayed]_work_sync(). These are flush functions which also make sure no CPU is still executing the target work from earlier queueing instances. These are similar to cancel[_delayed]_work_sync() except that the target work item is flushed instead of cancelled. Signed-off-by: Tejun Heo <tj@kernel.org>
* workqueue: factor out start_flush_work()Tejun Heo2010-09-191-27/+37
| | | | | | | | | | | | Factor out start_flush_work() from flush_work(). start_flush_work() has @wait_executing argument which controls whether the barrier is queued only if the work is pending or also if executing. As flush_work() needs to wait for execution too, it uses %true. This commit doesn't cause any behavior difference. start_flush_work() will be used to implement flush_work_sync(). Signed-off-by: Tejun Heo <tj@kernel.org>
* workqueue: cleanup flush/cancel functionsTejun Heo2010-09-191-81/+94
| | | | | | | | | | | | | | | | | | | | | Make the following cleanup changes. * Relocate flush/cancel function prototypes and definitions. * Relocate wait_on_cpu_work() and wait_on_work() before try_to_grab_pending(). These will be used to implement flush_work_sync(). * Make all flush/cancel functions return bool instead of int. * Update wait_on_cpu_work() and wait_on_work() to return %true if they actually waited. * Add / update comments. This patch doesn't cause any functional changes. Signed-off-by: Tejun Heo <tj@kernel.org>
* workqueue: add documentationTejun Heo2010-09-131-10/+17
| | | | | | | | | | | | | Update copyright notice and add Documentation/workqueue.txt. Randy Dunlap, Dave Chinner: misc fixes. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-By: Florian Mickler <florian@mickler.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Dave Chinner <david@fromorbit.com>
* Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wqLinus Torvalds2010-09-071-15/+38
|\ | | | | | | | | | | | | | | | | | | | | | | * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: workqueue: use zalloc_cpumask_var() for gcwq->mayday_mask workqueue: fix GCWQ_DISASSOCIATED initialization workqueue: Add a workqueue chapter to the tracepoint docbook workqueue: fix cwq->nr_active underflow workqueue: improve destroy_workqueue() debuggability workqueue: mark lock acquisition on worker_maybe_bind_and_lock() workqueue: annotate lock context change workqueue: free rescuer on destroy_workqueue
| * workqueue: use zalloc_cpumask_var() for gcwq->mayday_maskTejun Heo2010-08-311-1/+1
| | | | | | | | | | | | | | | | | | | | | | alloc_mayday_mask() was using alloc_cpumask_var() making gcwq->mayday_mask contain garbage after initialization on CONFIG_CPUMASK_OFFSTACK=y configurations. This combined with the previously fixed GCWQ_DISASSOCIATED initialization bug could make rescuers fall into infinite loop trying to bind to an offline cpu. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: CAI Qian <caiqian@redhat.com>
| * workqueue: fix GCWQ_DISASSOCIATED initializationTejun Heo2010-08-311-2/+3
| | | | | | | | | | | | | | | | | | | | | | init_workqueues() incorrectly marks workqueues for all possible CPUs associated. Combined with mayday_mask initialization bug, this can make rescuers keep trying to bind to an offline gcwq indefinitely. Fix init_workqueues() such that only online CPUs have their gcwqs have GCWQ_DISASSOCIATED cleared. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: CAI Qian <caiqian@redhat.com>
| * workqueue: fix cwq->nr_active underflowTejun Heo2010-08-251-10/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cwq->nr_active is used to keep track of how many work items are active for the cpu workqueue, where 'active' is defined as either pending on global worklist or executing. This is used to implement the max_active limit and workqueue freezing. If a work item is queued after nr_active has already reached max_active, the work item doesn't increment nr_active and is put on the delayed queue and gets activated later as previous active work items retire. try_to_grab_pending() which is used in the cancellation path unconditionally decremented nr_active whether the work item being cancelled is currently active or delayed, so cancelling a delayed work item makes nr_active underflow. This breaks max_active enforcement and triggers BUG_ON() in destroy_workqueue() later on. This patch fixes this bug by adding a flag WORK_STRUCT_DELAYED, which is set while a work item in on the delayed list and making try_to_grab_pending() decrement nr_active iff the work item is currently active. The addition of the flag enlarges cwq alignment to 256 bytes which is getting a bit too large. It's scheduled to be reduced back to 128 bytes by merging WORK_STRUCT_PENDING and WORK_STRUCT_CWQ in the next devel cycle. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Johannes Berg <johannes@sipsolutions.net>
| * workqueue: improve destroy_workqueue() debuggabilityTejun Heo2010-08-241-1/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that the worklist is global, having works pending after wq destruction can easily lead to oops and destroy_workqueue() have several BUG_ON()s to catch these cases. Unfortunately, BUG_ON() doesn't tell much about how the work became pending after the final flush_workqueue(). This patch adds WQ_DYING which is set before the final flush begins. If a work is requested to be queued on a dying workqueue, WARN_ON_ONCE() is triggered and the request is ignored. This clearly indicates which caller is trying to queue a work on a dying workqueue and keeps the system working in most cases. Locking rule comment is updated such that the 'I' rule includes modifying the field from destruction path. Signed-off-by: Tejun Heo <tj@kernel.org>
| * workqueue: mark lock acquisition on worker_maybe_bind_and_lock()Namhyung Kim2010-08-231-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | worker_maybe_bind_and_lock() actually grabs gcwq->lock but was missing proper annotation. Add it. So this patch will remove following sparse warnings: kernel/workqueue.c:1214:13: warning: context imbalance in 'worker_maybe_bind_and_lock' - wrong count at exit arch/x86/include/asm/irqflags.h:44:9: warning: context imbalance in 'worker_rebind_fn' - unexpected unlock kernel/workqueue.c:1991:17: warning: context imbalance in 'rescuer_thread' - unexpected unlock Signed-off-by: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * workqueue: annotate lock context changeNamhyung Kim2010-08-231-0/+6
| | | | | | | | | | | | | | | | Some of internal functions called within gcwq->lock context releases and regrabs the lock but were missing proper annotations. Add it. Signed-off-by: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * workqueue: free rescuer on destroy_workqueueXiaotian Feng2010-08-161-1/+1
| | | | | | | | | | | | | | | | | | wq->rescuer is not freed when wq is destroyed, leads a memory leak then. This patch also remove a redundant line. Signed-off-by: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
* | workqueue: Add basic tracepoints to track workqueue executionArjan van de Ven2010-08-211-0/+9
|/ | | | | | | | | | | | | | | | | | | | | | With the introduction of the new unified work queue thread pools, we lost one feature: It's no longer possible to know which worker is causing the CPU to wake out of idle. The result is that PowerTOP now reports a lot of "kworker/a:b" instead of more readable results. This patch adds a pair of tracepoints to the new workqueue code, similar in style to the timer/hrtimer tracepoints. With this pair of tracepoints, the next PowerTOP can correctly report which work item caused the wakeup (and how long it took): Interrupt (43) i915 time 3.51ms wakeups 141 Work ieee80211_iface_work time 0.81ms wakeups 29 Work do_dbs_timer time 0.55ms wakeups 24 Process Xorg time 21.36ms wakeups 4 Timer sched_rt_period_timer time 0.01ms wakeups 1 Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* workqueue: workqueue_cpu_callback() should be cpu_notifier instead of ↵Tejun Heo2010-08-091-1/+1
| | | | | | | | | | | | | | | hotcpu_notifier Commit 6ee0578b (workqueue: mark init_workqueues as early_initcall) made workqueue SMP initialization depend on workqueue_cpu_callback(), which however was registered as hotcpu_notifier() and didn't get called if CONFIG_HOTPLUG_CPU is not set. This made gcwqs on non-boot CPUs not create their initial workers leading to boot failures. Fix it by making it a cpu_notifier. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-and-bisected-by: walt <w41ter@gmail.com> Tested-by: Markus Trippelsdorf <markus@trippelsdorf.de>
* workqueue: add missing __percpu markup in kernel/workqueue.cNamhyung Kim2010-08-081-1/+1
| | | | | | | | works in schecule_on_each_cpu() is a percpu pointer but was missing __percpu markup. Add it. Signed-off-by: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
* Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wqLinus Torvalds2010-08-071-405/+2755
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (55 commits) workqueue: mark init_workqueues() as early_initcall() workqueue: explain for_each_*cwq_cpu() iterators fscache: fix build on !CONFIG_SYSCTL slow-work: kill it gfs2: use workqueue instead of slow-work drm: use workqueue instead of slow-work cifs: use workqueue instead of slow-work fscache: drop references to slow-work fscache: convert operation to use workqueue instead of slow-work fscache: convert object to use workqueue instead of slow-work workqueue: fix how cpu number is stored in work->data workqueue: fix mayday_mask handling on UP workqueue: fix build problem on !CONFIG_SMP workqueue: fix locking in retry path of maybe_create_worker() async: use workqueue for worker pool workqueue: remove WQ_SINGLE_CPU and use WQ_UNBOUND instead workqueue: implement unbound workqueue workqueue: prepare for WQ_UNBOUND implementation libata: take advantage of cmwq and remove concurrency limitations workqueue: fix worker management invocation without pending works ... Fixed up conflicts in fs/cifs/* as per Tejun. Other trivial conflicts in include/linux/workqueue.h, kernel/trace/Kconfig and kernel/workqueue.c
| * workqueue: mark init_workqueues() as early_initcall()Suresh Siddha2010-08-011-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Mark init_workqueues() as early_initcall() and thus it will be initialized before smp bringup. init_workqueues() registers for the hotcpu notifier and thus it should cope with the processors that are brought online after the workqueues are initialized. x86 smp bringup code uses workqueues and uses a workaround for the cold boot process (as the workqueues are initialized post smp_init()). Marking init_workqueues() as early_initcall() will pave the way for cleaning up this code. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org>
| * workqueue: explain for_each_*cwq_cpu() iteratorsTejun Heo2010-08-011-0/+13
| | | | | | | | | | | | | | | | | | for_each_*cwq_cpu() are similar to regular CPU iterators except that it also considers the pseudo CPU number used for unbound workqueues. Explain them. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org>
| * workqueue: fix how cpu number is stored in work->dataTejun Heo2010-07-221-23/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Once a work starts execution, its data contains the cpu number it was on instead of pointing to cwq. This is added by commit 7a22ad75 (workqueue: carry cpu number in work data once execution starts) to reliably determine the work was last on even if the workqueue itself was destroyed inbetween. Whether data points to a cwq or contains a cpu number was distinguished by comparing the value against PAGE_OFFSET. The assumption was that a cpu number should be below PAGE_OFFSET while a pointer to cwq should be above it. However, on architectures which use separate address spaces for user and kernel spaces, this doesn't hold as PAGE_OFFSET is zero. Fix it by using an explicit flag, WORK_STRUCT_CWQ, to mark what the data field contains. If the flag is set, it's pointing to a cwq; otherwise, it contains a cpu number. Reported on s390 and microblaze during linux-next testing. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Sachin Sant <sachinp@in.ibm.com> Reported-by: Michal Simek <michal.simek@petalogix.com> Reported-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Tested-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Tested-by: Michal Simek <monstr@monstr.eu>
| * workqueue: fix mayday_mask handling on UPTejun Heo2010-07-201-7/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | All cpumasks are assumed to have cpu 0 permanently set on UP, so it can't be used to signify whether there's something to be done for the CPU. workqueue was using cpumask to track which CPU requested rescuer assistance and this led rescuer thread to think there always are pending mayday requests on UP, which resulted in infinite busy loops. This patch fixes the problem by introducing mayday_mask_t and associated helpers which wrap cpumask on SMP and emulates its behavior using bitops and unsigned long on UP. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Rusty Russell <rusty@rustcorp.com.au>
| * workqueue: fix build problem on !CONFIG_SMPTejun Heo2010-07-201-4/+14
| | | | | | | | | | | | | | | | | | | | | | Commit f3421797 (workqueue: implement unbound workqueue) incorrectly tested CONFIG_SMP as part of a C expression in alloc/free_cwqs(). As CONFIG_SMP is not defined in UP, this breaks build. Fix it by using Found during linux-next build test. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
| * workqueue: fix locking in retry path of maybe_create_worker()Tejun Heo2010-07-141-5/+3
| | | | | | | | | | | | | | | | maybe_create_worker() mismanaged locking when worker creation fails and it has to retry. Fix locking and simplify lock manipulation. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Yong Zhang <yong.zhang@windriver.com>
| * workqueue: remove WQ_SINGLE_CPU and use WQ_UNBOUND insteadTejun Heo2010-07-021-82/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | WQ_SINGLE_CPU combined with @max_active of 1 is used to achieve full ordering among works queued to a workqueue. The same can be achieved using WQ_UNBOUND as unbound workqueues always use the gcwq for WORK_CPU_UNBOUND. As @max_active is always one and benefits from cpu locality isn't accessible anyway, serving them with unbound workqueues should be fine. Drop WQ_SINGLE_CPU support and use WQ_UNBOUND instead. Note that most single thread workqueue users will be converted to use multithread or non-reentrant instead and only the ones which require strict ordering will keep using WQ_UNBOUND + @max_active of 1. Signed-off-by: Tejun Heo <tj@kernel.org>
| * workqueue: implement unbound workqueueTejun Heo2010-07-021-59/+159
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements unbound workqueue which can be specified with WQ_UNBOUND flag on creation. An unbound workqueue has the following properties. * It uses a dedicated gcwq with a pseudo CPU number WORK_CPU_UNBOUND. This gcwq is always online and disassociated. * Workers are not bound to any CPU and not concurrency managed. Works are dispatched to workers as soon as possible and the only applied limitation is @max_active. IOW, all unbound workqeueues are implicitly high priority. Unbound workqueues can be used as simple execution context provider. Contexts unbound to any cpu are served as soon as possible. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: David Howells <dhowells@redhat.com>
| * workqueue: prepare for WQ_UNBOUND implementationTejun Heo2010-07-021-40/+43
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In preparation of WQ_UNBOUND addition, make the following changes. * Add WORK_CPU_* constants for pseudo cpu id numbers used (currently only WORK_CPU_NONE) and use them instead of NR_CPUS. This is to allow another pseudo cpu id for unbound cpu. * Reorder WQ_* flags. * Make workqueue_struct->cpu_wq a union which contains a percpu pointer, regular pointer and an unsigned long value and use kzalloc/kfree() in UP allocation path. This will be used to implement unbound workqueues which will use only one cwq on SMPs. * Move alloc_cwqs() allocation after initialization of wq fields, so that alloc_cwqs() has access to wq->flags. * Trivial relocation of wq local variables in freeze functions. These changes don't cause any functional change. Signed-off-by: Tejun Heo <tj@kernel.org>
| * workqueue: fix worker management invocation without pending worksTejun Heo2010-07-021-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | When there's no pending work to do, worker_thread() goes back to sleep after waking up without checking whether worker management is necessary. This means that idle worker exit requests can be ignored if the gcwq stays empty. Fix it by making worker_thread() always check whether worker management is necessary before going to sleep. Signed-off-by: Tejun Heo <tj@kernel.org>
| * workqueue: fix incorrect cpu number BUG_ON() in get_work_gcwq()Tejun Heo2010-07-021-1/+1
| | | | | | | | | | | | | | | | get_work_gcwq() was incorrectly triggering BUG_ON() if cpu number is equal to or higher than num_possible_cpus() instead of nr_cpu_ids. Fix it. Signed-off-by: Tejun Heo <tj@kernel.org>
| * workqueue: fix race condition in flush_workqueue()Tejun Heo2010-07-021-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When one flusher is cascading to the next flusher, it first sets wq->first_flusher to the next one and sets up the next flush cycle. If there's nothing to do for the next cycle, it clears wq->flush_flusher and proceeds to the one after that. If the woken up flusher checks wq->first_flusher before it gets cleared, it will incorrectly assume the role of the first flusher, which triggers BUG_ON() sanity check. Fix it by checking wq->first_flusher again after grabbing the mutex. Signed-off-by: Tejun Heo <tj@kernel.org>
| * workqueue: use worker_set/clr_flags() only from worker itselfTejun Heo2010-07-021-19/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | worker_set/clr_flags() assume that if none of NOT_RUNNING flags is set the worker must be contributing to nr_running which is only true if the worker is actually running. As when called from self, it is guaranteed that the worker is running, those functions can be safely used from the worker itself and they aren't necessary from other places anyway. Make the following changes to fix the bug. * Make worker_set/clr_flags() whine if not called from self. * Convert all places which called those functions from other tasks to manipulate flags directly. * Make trustee_thread() directly clear nr_running after setting WORKER_ROGUE on all workers. This is the only place where nr_running manipulation is necessary outside of workers themselves. * While at it, add sanity check for nr_running in worker_enter_idle(). Signed-off-by: Tejun Heo <tj@kernel.org>
| * workqueue: implement cpu intensive workqueueTejun Heo2010-06-291-1/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements cpu intensive workqueue which can be specified with WQ_CPU_INTENSIVE flag on creation. Works queued to a cpu intensive workqueue don't participate in concurrency management. IOW, it doesn't contribute to gcwq->nr_running and thus doesn't delay excution of other works. Note that although cpu intensive works won't delay other works, they can be delayed by other works. Combine with WQ_HIGHPRI to avoid being delayed by other works too. As the name suggests this is useful when using workqueue for cpu intensive works. Workers executing cpu intensive works are not considered for workqueue concurrency management and left for the scheduler to manage. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org>
| * workqueue: implement high priority workqueueTejun Heo2010-06-291-6/+64
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements high priority workqueue which can be specified with WQ_HIGHPRI flag on creation. A high priority workqueue has the following properties. * A work queued to it is queued at the head of the worklist of the respective gcwq after other highpri works, while normal works are always appended at the end. * As long as there are highpri works on gcwq->worklist, [__]need_more_worker() remains %true and process_one_work() wakes up another worker before it start executing a work. The above two properties guarantee that works queued to high priority workqueues are dispatched to workers and start execution as soon as possible regardless of the state of other works. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org>
| * workqueue: implement several utility APIsTejun Heo2010-06-291-1/+107
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Implement the following utility APIs. workqueue_set_max_active() : adjust max_active of a wq workqueue_congested() : test whether a wq is contested work_cpu() : determine the last / current cpu of a work work_busy() : query whether a work is busy * Anton Blanchard fixed missing ret initialization in work_busy(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Anton Blanchard <anton@samba.org>
| * workqueue: s/__create_workqueue()/alloc_workqueue()/, and add system workqueuesTejun Heo2010-06-291-17/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch makes changes to make new workqueue features available to its users. * Now that workqueue is more featureful, there should be a public workqueue creation function which takes paramters to control them. Rename __create_workqueue() to alloc_workqueue() and make 0 max_active mean WQ_DFL_ACTIVE. In the long run, all create_workqueue_*() will be converted over to alloc_workqueue(). * To further unify access interface, rename keventd_wq to system_wq and export it. * Add system_long_wq and system_nrt_wq. The former is to host long running works separately (so that flush_scheduled_work() dosen't take so long) and the latter guarantees any queued work item is never executed in parallel by multiple CPUs. These will be used by future patches to update workqueue users. Signed-off-by: Tejun Heo <tj@kernel.org>
| * workqueue: increase max_active of keventd and kill current_is_keventd()Tejun Heo2010-06-291-50/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Define WQ_MAX_ACTIVE and create keventd with max_active set to half of it which means that keventd now can process upto WQ_MAX_ACTIVE / 2 - 1 works concurrently. Unless some combination can result in dependency loop longer than max_active, deadlock won't happen and thus it's unnecessary to check whether current_is_keventd() before trying to schedule a work. Kill current_is_keventd(). (Lockdep annotations are broken. We need lock_map_acquire_read_norecurse()) Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Oleg Nesterov <oleg@redhat.com>
| * workqueue: implement concurrency managed dynamic worker poolTejun Heo2010-06-291-103/+833
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instead of creating a worker for each cwq and putting it into the shared pool, manage per-cpu workers dynamically. Works aren't supposed to be cpu cycle hogs and maintaining just enough concurrency to prevent work processing from stalling due to lack of processing context is optimal. gcwq keeps the number of concurrent active workers to minimum but no less. As long as there's one or more running workers on the cpu, no new worker is scheduled so that works can be processed in batch as much as possible but when the last running worker blocks, gcwq immediately schedules new worker so that the cpu doesn't sit idle while there are works to be processed. gcwq always keeps at least single idle worker around. When a new worker is necessary and the worker is the last idle one, the worker assumes the role of "manager" and manages the worker pool - ie. creates another worker. Forward-progress is guaranteed by having dedicated rescue workers for workqueues which may be necessary while creating a new worker. When the manager is having problem creating a new worker, mayday timer activates and rescue workers are summoned to the cpu and execute works which might be necessary to create new workers. Trustee is expanded to serve the role of manager while a CPU is being taken down and stays down. As no new works are supposed to be queued on a dead cpu, it just needs to drain all the existing ones. Trustee continues to try to create new workers and summon rescuers as long as there are pending works. If the CPU is brought back up while the trustee is still trying to drain the gcwq from the previous offlining, the trustee will kill all idles ones and tell workers which are still busy to rebind to the cpu, and pass control over to gcwq which assumes the manager role as necessary. Concurrency managed worker pool reduces the number of workers drastically. Only workers which are necessary to keep the processing going are created and kept. Also, it reduces cache footprint by avoiding unnecessarily switching contexts between different workers. Please note that this patch does not increase max_active of any workqueue. All workqueues can still only process one work per cpu. Signed-off-by: Tejun Heo <tj@kernel.org>
| * workqueue: implement worker_{set|clr}_flags()Tejun Heo2010-06-291-8/+40
| | | | | | | | | | | | | | | | Implement worker_{set|clr}_flags() to manipulate worker flags. These are currently simple wrappers but logics to track the current worker state and the current level of concurrency will be added. Signed-off-by: Tejun Heo <tj@kernel.org>
| * workqueue: use shared worklist and pool all workers per cpuTejun Heo2010-06-291-32/+99
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use gcwq->worklist instead of cwq->worklist and break the strict association between a cwq and its worker. All works queued on a cpu are queued on gcwq->worklist and processed by any available worker on the gcwq. As there no longer is strict association between a cwq and its worker, whether a work is executing can now only be determined by calling [__]find_worker_executing_work(). After this change, the only association between a cwq and its worker is that a cwq puts a worker into shared worker pool on creation and kills it on destruction. As all workqueues are still limited to max_active of one, this means that there are always at least as many workers as active works and thus there's no danger for deadlock. The break of strong association between cwqs and workers requires somewhat clumsy changes to current_is_keventd() and destroy_workqueue(). Dynamic worker pool management will remove both clumsy changes. current_is_keventd() won't be necessary at all as the only reason it exists is to avoid queueing a work from a work which will be allowed just fine. The clumsy part of destroy_workqueue() is added because a worker can only be destroyed while idle and there's no guarantee a worker is idle when its wq is going down. With dynamic pool management, workers are not associated with workqueues at all and only idle ones will be submitted to destroy_workqueue() so the code won't be necessary anymore. Signed-off-by: Tejun Heo <tj@kernel.org>