| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Knowing the portion of memory that is not used by a certain application or
memory cgroup (idle memory) can be useful for partitioning the system
efficiently, e.g. by setting memory cgroup limits appropriately.
Currently, the only means to estimate the amount of idle memory provided
by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
access bit for all pages mapped to a particular process by writing 1 to
clear_refs, wait for some time, and then count smaps:Referenced. However,
this method has two serious shortcomings:
- it does not count unmapped file pages
- it affects the reclaimer logic
To overcome these drawbacks, this patch introduces two new page flags,
Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap.
A page's Idle flag can only be set from userspace by setting bit in
/sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page,
and it is cleared whenever the page is accessed either through page tables
(it is cleared in page_referenced() in this case) or using the read(2)
system call (mark_page_accessed()). Thus by setting the Idle flag for
pages of a particular workload, which can be found e.g. by reading
/proc/PID/pagemap, waiting for some time to let the workload access its
working set, and then reading the bitmap file, one can estimate the amount
of pages that are not used by the workload.
The Young page flag is used to avoid interference with the memory
reclaimer. A page's Young flag is set whenever the Access bit of a page
table entry pointing to the page is cleared by writing to the bitmap file.
If page_referenced() is called on a Young page, it will add 1 to its
return value, therefore concealing the fact that the Access bit was
cleared.
Note, since there is no room for extra page flags on 32 bit, this feature
uses extended page flags when compiled on 32 bit.
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: kpageidle requires an MMU]
[akpm@linux-foundation.org: decouple from page-flags rework]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
preparation
This implements mcopy_atomic and mfill_zeropage that are the lowlevel
VM methods that are invoked respectively by the UFFDIO_COPY and
UFFDIO_ZEROPAGE userfaultfd commands.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Memtest is a simple feature which fills the memory with a given set of
patterns and validates memory contents, if bad memory regions is detected
it reserves them via memblock API. Since memblock API is widely used by
other architectures this feature can be enabled outside of x86 world.
This patch set promotes memtest to live under generic mm umbrella and
enables memtest feature for arm/arm64.
It was reported that this patch set was useful for tracking down an issue
with some errant DMA on an arm64 platform.
This patch (of 6):
There is nothing platform dependent in the core memtest code, so other
platforms might benefit from this feature too.
[linux@roeck-us.net: MEMTEST depends on MEMBLOCK]
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I've noticed that there is no interfaces exposed by CMA which would let me
fuzz what's going on in there.
This small patchset exposes some information out to userspace, plus adds
the ability to trigger allocation and freeing from userspace.
This patch (of 3):
Implement a simple debugfs interface to expose information about CMA areas
in the system.
Useful for testing/sanity checks for CMA since it was impossible to
previously retrieve this information in userspace.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
| |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
All callers of get_xip_mem() are now gone. Remove checks for it,
initialisers of it, documentation of it and the only implementation of it.
Also remove mm/filemap_xip.c as it is now empty. Also remove
documentation of the long-gone get_xip_page().
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With this patch kasan will be able to catch bugs in memory allocated by
slub. Initially all objects in newly allocated slab page, marked as
redzone. Later, when allocation of slub object happens, requested by
caller number of bytes marked as accessible, and the rest of the object
(including slub's metadata) marked as redzone (inaccessible).
We also mark object as accessible if ksize was called for this object.
There is some places in kernel where ksize function is called to inquire
size of really allocated area. Such callers could validly access whole
allocated memory, so it should be marked as accessible.
Code in slub.c and slab_common.c files could validly access to object's
metadata, so instrumentation for this files are disabled.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Signed-off-by: Dmitry Chernenkov <dmitryc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Kernel Address sanitizer (KASan) is a dynamic memory error detector. It
provides fast and comprehensive solution for finding use-after-free and
out-of-bounds bugs.
KASAN uses compile-time instrumentation for checking every memory access,
therefore GCC > v4.9.2 required. v4.9.2 almost works, but has issues with
putting symbol aliases into the wrong section, which breaks kasan
instrumentation of globals.
This patch only adds infrastructure for kernel address sanitizer. It's
not available for use yet. The idea and some code was borrowed from [1].
Basic idea:
The main idea of KASAN is to use shadow memory to record whether each byte
of memory is safe to access or not, and use compiler's instrumentation to
check the shadow memory on each memory access.
Address sanitizer uses 1/8 of the memory addressable in kernel for shadow
memory and uses direct mapping with a scale and offset to translate a
memory address to its corresponding shadow address.
Here is function to translate address to corresponding shadow address:
unsigned long kasan_mem_to_shadow(unsigned long addr)
{
return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET;
}
where KASAN_SHADOW_SCALE_SHIFT = 3.
So for every 8 bytes there is one corresponding byte of shadow memory.
The following encoding used for each shadow byte: 0 means that all 8 bytes
of the corresponding memory region are valid for access; k (1 <= k <= 7)
means that the first k bytes are valid for access, and other (8 - k) bytes
are not; Any negative value indicates that the entire 8-bytes are
inaccessible. Different negative values used to distinguish between
different kinds of inaccessible memory (redzones, freed memory) (see
mm/kasan/kasan.h).
To be able to detect accesses to bad memory we need a special compiler.
Such compiler inserts a specific function calls (__asan_load*(addr),
__asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16.
These functions check whether memory region is valid to access or not by
checking corresponding shadow memory. If access is not valid an error
printed.
Historical background of the address sanitizer from Dmitry Vyukov:
"We've developed the set of tools, AddressSanitizer (Asan),
ThreadSanitizer and MemorySanitizer, for user space. We actively use
them for testing inside of Google (continuous testing, fuzzing,
running prod services). To date the tools have found more than 10'000
scary bugs in Chromium, Google internal codebase and various
open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and
lots of others): [2] [3] [4].
The tools are part of both gcc and clang compilers.
We have not yet done massive testing under the Kernel AddressSanitizer
(it's kind of chicken and egg problem, you need it to be upstream to
start applying it extensively). To date it has found about 50 bugs.
Bugs that we've found in upstream kernel are listed in [5].
We've also found ~20 bugs in out internal version of the kernel. Also
people from Samsung and Oracle have found some.
[...]
As others noted, the main feature of AddressSanitizer is its
performance due to inline compiler instrumentation and simple linear
shadow memory. User-space Asan has ~2x slowdown on computational
programs and ~2x memory consumption increase. Taking into account that
kernel usually consumes only small fraction of CPU and memory when
running real user-space programs, I would expect that kernel Asan will
have ~10-30% slowdown and similar memory consumption increase (when we
finish all tuning).
I agree that Asan can well replace kmemcheck. We have plans to start
working on Kernel MemorySanitizer that finds uses of unitialized
memory. Asan+Msan will provide feature-parity with kmemcheck. As
others noted, Asan will unlikely replace debug slab and pagealloc that
can be enabled at runtime. Asan uses compiler instrumentation, so even
if it is disabled, it still incurs visible overheads.
Asan technology is easily portable to other architectures. Compiler
instrumentation is fully portable. Runtime has some arch-dependent
parts like shadow mapping and atomic operation interception. They are
relatively easy to port."
Comparison with other debugging features:
========================================
KMEMCHECK:
- KASan can do almost everything that kmemcheck can. KASan uses
compile-time instrumentation, which makes it significantly faster than
kmemcheck. The only advantage of kmemcheck over KASan is detection of
uninitialized memory reads.
Some brief performance testing showed that kasan could be
x500-x600 times faster than kmemcheck:
$ netperf -l 30
MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
no debug: 87380 16384 16384 30.00 41624.72
kasan inline: 87380 16384 16384 30.00 12870.54
kasan outline: 87380 16384 16384 30.00 10586.39
kmemcheck: 87380 16384 16384 30.03 20.23
- Also kmemcheck couldn't work on several CPUs. It always sets
number of CPUs to 1. KASan doesn't have such limitation.
DEBUG_PAGEALLOC:
- KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page
granularity level, so it able to find more bugs.
SLUB_DEBUG (poisoning, redzones):
- SLUB_DEBUG has lower overhead than KASan.
- SLUB_DEBUG in most cases are not able to detect bad reads,
KASan able to detect both reads and writes.
- In some cases (e.g. redzone overwritten) SLUB_DEBUG detect
bugs only on allocation/freeing of object. KASan catch
bugs right before it will happen, so we always know exact
place of first bad read/write.
[1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel
[2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs
[3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs
[4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs
[5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies
Based on work by Andrey Konovalov.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
remap_file_pages(2) was invented to be able efficiently map parts of
huge file into limited 32-bit virtual address space such as in database
workloads.
Nonlinear mappings are pain to support and it seems there's no
legitimate use-cases nowadays since 64-bit systems are widely available.
Let's drop it and get rid of all these special-cased code.
The patch replaces the syscall with emulation which creates new VMA on
each remap_file_pages(), unless they it can be merged with an adjacent
one.
I didn't find *any* real code that uses remap_file_pages(2) to test
emulation impact on. I've checked Debian code search and source of all
packages in ALT Linux. No real users: libc wrappers, mentions in
strace, gdb, valgrind and this kind of stuff.
There are few basic tests in LTP for the syscall. They work just fine
with emulation.
To test performance impact, I've written small test case which
demonstrate pretty much worst case scenario: map 4G shmfs file, write to
begin of every page pgoff of the page, remap pages in reverse order,
read every page.
The test creates 1 million of VMAs if emulation is in use, so I had to
set vm.max_map_count to 1100000 to avoid -ENOMEM.
Before: 23.3 ( +- 4.31% ) seconds
After: 43.9 ( +- 0.85% ) seconds
Slowdown: 1.88x
I believe we can live with that.
Test case:
#define _GNU_SOURCE
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/mman.h>
#define MB (1024UL * 1024)
#define SIZE (4096 * MB)
int main(int argc, char **argv)
{
unsigned long *p;
long i, pass;
for (pass = 0; pass < 10; pass++) {
p = mmap(NULL, SIZE, PROT_READ|PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS, -1, 0);
if (p == MAP_FAILED) {
perror("mmap");
return -1;
}
for (i = 0; i < SIZE / 4096; i++)
p[i * 4096 / sizeof(*p)] = i;
for (i = 0; i < SIZE / 4096; i++) {
if (remap_file_pages(p + i * 4096 / sizeof(*p), 4096,
0, (SIZE - 4096 * (i + 1)) >> 12, 0)) {
perror("remap_file_pages");
return -1;
}
}
for (i = SIZE / 4096 - 1; i >= 0; i--)
assert(p[i * 4096 / sizeof(*p)] == SIZE / 4096 - i - 1);
munmap(p, SIZE);
}
return 0;
}
[akpm@linux-foundation.org: fix spello]
[sasha.levin@oracle.com: initialize populate before usage]
[sasha.levin@oracle.com: grab file ref to prevent race while mmaping]
Signed-off-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Armin Rigo <arigo@tunes.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the page owner tracking code which is introduced so far ago. It
is resident on Andrew's tree, though, nobody tried to upstream so it
remain as is. Our company uses this feature actively to debug memory leak
or to find a memory hogger so I decide to upstream this feature.
This functionality help us to know who allocates the page. When
allocating a page, we store some information about allocation in extra
memory. Later, if we need to know status of all pages, we can get and
analyze it from this stored information.
In previous version of this feature, extra memory is statically defined in
struct page, but, in this version, extra memory is allocated outside of
struct page. It enables us to turn on/off this feature at boottime
without considerable memory waste.
Although we already have tracepoint for tracing page allocation/free,
using it to analyze page owner is rather complex. We need to enlarge the
trace buffer for preventing overlapping until userspace program launched.
And, launched program continually dump out the trace buffer for later
analysis and it would change system behaviour with more possibility rather
than just keeping it in memory, so bad for debug.
Moreover, we can use page_owner feature further for various purposes. For
example, we can use it for fragmentation statistics implemented in this
patch. And, I also plan to implement some CMA failure debugging feature
using this interface.
I'd like to give the credit for all developers contributed this feature,
but, it's not easy because I don't know exact history. Sorry about that.
Below is people who has "Signed-off-by" in the patches in Andrew's tree.
Contributor:
Alexander Nyberg <alexn@dsv.su.se>
Mel Gorman <mgorman@suse.de>
Dave Hansen <dave@linux.vnet.ibm.com>
Minchan Kim <minchan@kernel.org>
Michal Nazarewicz <mina86@mina86.com>
Andrew Morton <akpm@linux-foundation.org>
Jungsoo Son <jungsoo.son@lge.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Jungsoo Son <jungsoo.son@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we debug something, we'd like to insert some information to every
page. For this purpose, we sometimes modify struct page itself. But,
this has drawbacks. First, it requires re-compile. This makes us
hesitate to use the powerful debug feature so development process is
slowed down. And, second, sometimes it is impossible to rebuild the
kernel due to third party module dependency. At third, system behaviour
would be largely different after re-compile, because it changes size of
struct page greatly and this structure is accessed by every part of
kernel. Keeping this as it is would be better to reproduce errornous
situation.
This feature is intended to overcome above mentioned problems. This
feature allocates memory for extended data per page in certain place
rather than the struct page itself. This memory can be accessed by the
accessor functions provided by this code. During the boot process, it
checks whether allocation of huge chunk of memory is needed or not. If
not, it avoids allocating memory at all. With this advantage, we can
include this feature into the kernel in default and can avoid rebuild and
solve related problems.
Until now, memcg uses this technique. But, now, memcg decides to embed
their variable to struct page itself and it's code to extend struct page
has been removed. I'd like to use this code to develop debug feature, so
this patch resurrect it.
To help these things to work well, this patch introduces two callbacks for
clients. One is the need callback which is mandatory if user wants to
avoid useless memory allocation at boot-time. The other is optional, init
callback, which is used to do proper initialization after memory is
allocated. Detailed explanation about purpose of these functions is in
code comment. Please refer it.
Others are completely same with previous extension code in memcg.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Jungsoo Son <jungsoo.son@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that the external page_cgroup data structure and its lookup is gone,
the only code remaining in there is swap slot accounting.
Rename it and move the conditional compilation into mm/Makefile.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/josh/linux
Pull tinification fix from Josh "Paper Bag" Triplett:
"Fixup to use PATCHv2 of 'mm: Support compiling out madvise and
fadvise'"
* tag 'tiny/no-advice-fixup-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/josh/linux:
mm: Support fadvise without CONFIG_MMU
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit d3ac21cacc24790eb45d735769f35753f5b56ceb ("mm: Support compiling
out madvise and fadvise") incorrectly made fadvise conditional on
CONFIG_MMU. (The merged branch unintentionally incorporated v1 of the
patch rather than the fixed v2.) Apply the delta from v1 to v2, to
allow fadvise without CONFIG_MMU.
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Always mark pages with PageBalloon even if balloon compaction is disabled
and expose this mark in /proc/kpageflags as KPF_BALLOON.
Also this patch adds three counters into /proc/vmstat: "balloon_inflate",
"balloon_deflate" and "balloon_migrate". They accumulate balloon
activity. Current size of balloon is (balloon_inflate - balloon_deflate)
pages.
All generic balloon code now gathered under option CONFIG_MEMORY_BALLOON.
It should be selected by ballooning driver which wants use this feature.
Currently virtio-balloon is the only user.
Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
| |
dump_page() and dump_vma() are not specific to page_alloc.c, move them out
so page_alloc.c won't turn into the unofficial debug repository.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Many embedded systems will not need these syscalls, and omitting them
saves space. Add a new EXPERT config option CONFIG_ADVISE_SYSCALLS
(default y) to support compiling them out.
bloat-o-meter:
add/remove: 0/3 grow/shrink: 0/0 up/down: 0/-2250 (-2250)
function old new delta
sys_fadvise64 57 - -57
sys_fadvise64_64 691 - -691
sys_madvise 1502 - -1502
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add zpool api.
zpool provides an interface for memory storage, typically of compressed
memory. Users can select what backend to use; currently the only
implementations are zbud, a low density implementation with up to two
compressed pages per storage page, and zsmalloc, a higher density
implementation with multiple compressed pages per storage page.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Tested-by: Seth Jennings <sjennings@variantweb.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Weijie Yang <weijie.yang@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, there are two users on CMA functionality, one is the DMA
subsystem and the other is the KVM on powerpc. They have their own code
to manage CMA reserved area even if they looks really similar. From my
guess, it is caused by some needs on bitmap management. KVM side wants
to maintain bitmap not for 1 page, but for more size. Eventually it use
bitmap where one bit represents 64 pages.
When I implement CMA related patches, I should change those two places
to apply my change and it seem to be painful to me. I want to change
this situation and reduce future code management overhead through this
patch.
This change could also help developer who want to use CMA in their new
feature development, since they can use CMA easily without copying &
pasting this reserved area management code.
In previous patches, we have prepared some features to generalize CMA
reserved area management and now it's time to do it. This patch moves
core functions to mm/cma.c and change DMA APIs to use these functions.
There is no functional change in DMA APIs.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Alexander Graf <agraf@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gleb Natapov <gleb@kernel.org>
Acked-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
mm/memory.c is overloaded: over 4k lines. get_user_pages() code is
pretty much self-contained let's move it to separate file.
No other changes made.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
| |
Continue moving some of the block files that are scattered around.
bounce.c contains only code for bouncing the contents of a bio.
It's block proper code, not mm code.
Suggested-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs updates from Al Viro:
"The first vfs pile, with deep apologies for being very late in this
window.
Assorted cleanups and fixes, plus a large preparatory part of iov_iter
work. There's a lot more of that, but it'll probably go into the next
merge window - it *does* shape up nicely, removes a lot of
boilerplate, gets rid of locking inconsistencie between aio_write and
splice_write and I hope to get Kent's direct-io rewrite merged into
the same queue, but some of the stuff after this point is having
(mostly trivial) conflicts with the things already merged into
mainline and with some I want more testing.
This one passes LTP and xfstests without regressions, in addition to
usual beating. BTW, readahead02 in ltp syscalls testsuite has started
giving failures since "mm/readahead.c: fix readahead failure for
memoryless NUMA nodes and limit readahead pages" - might be a false
positive, might be a real regression..."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
missing bits of "splice: fix racy pipe->buffers uses"
cifs: fix the race in cifs_writev()
ceph_sync_{,direct_}write: fix an oops on ceph_osdc_new_request() failure
kill generic_file_buffered_write()
ocfs2_file_aio_write(): switch to generic_perform_write()
ceph_aio_write(): switch to generic_perform_write()
xfs_file_buffered_aio_write(): switch to generic_perform_write()
export generic_perform_write(), start getting rid of generic_file_buffer_write()
generic_file_direct_write(): get rid of ppos argument
btrfs_file_aio_write(): get rid of ppos
kill the 5th argument of generic_file_buffered_write()
kill the 4th argument of __generic_file_aio_write()
lustre: don't open-code kernel_recvmsg()
ocfs2: don't open-code kernel_recvmsg()
drbd: don't open-code kernel_recvmsg()
constify blk_rq_map_user_iov() and friends
lustre: switch to kernel_sendmsg()
ocfs2: don't open-code kernel_sendmsg()
take iov_iter stuff to mm/iov_iter.c
process_vm_access: tidy up a bit
...
|
| |
| |
| |
| | |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch creates a generic implementation of early_ioremap() support
based on the existing x86 implementation. early_ioremp() is useful for
early boot code which needs to temporarily map I/O or memory regions
before normal mapping functions such as ioremap() are available.
Some architectures have optional MMU. In the no-MMU case, the remap
functions simply return the passed in physical address and the unmap
functions do nothing.
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch is a continuation of efforts trying to optimize find_vma(),
avoiding potentially expensive rbtree walks to locate a vma upon faults.
The original approach (https://lkml.org/lkml/2013/11/1/410), where the
largest vma was also cached, ended up being too specific and random,
thus further comparison with other approaches were needed. There are
two things to consider when dealing with this, the cache hit rate and
the latency of find_vma(). Improving the hit-rate does not necessarily
translate in finding the vma any faster, as the overhead of any fancy
caching schemes can be too high to consider.
We currently cache the last used vma for the whole address space, which
provides a nice optimization, reducing the total cycles in find_vma() by
up to 250%, for workloads with good locality. On the other hand, this
simple scheme is pretty much useless for workloads with poor locality.
Analyzing ebizzy runs shows that, no matter how many threads are
running, the mmap_cache hit rate is less than 2%, and in many situations
below 1%.
The proposed approach is to replace this scheme with a small per-thread
cache, maximizing hit rates at a very low maintenance cost.
Invalidations are performed by simply bumping up a 32-bit sequence
number. The only expensive operation is in the rare case of a seq
number overflow, where all caches that share the same address space are
flushed. Upon a miss, the proposed replacement policy is based on the
page number that contains the virtual address in question. Concretely,
the following results are seen on an 80 core, 8 socket x86-64 box:
1) System bootup: Most programs are single threaded, so the per-thread
scheme does improve ~50% hit rate by just adding a few more slots to
the cache.
+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline | 50.61% | 19.90 |
| patched | 73.45% | 13.58 |
+----------------+----------+------------------+
2) Kernel build: This one is already pretty good with the current
approach as we're dealing with good locality.
+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline | 75.28% | 11.03 |
| patched | 88.09% | 9.31 |
+----------------+----------+------------------+
3) Oracle 11g Data Mining (4k pages): Similar to the kernel build workload.
+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline | 70.66% | 17.14 |
| patched | 91.15% | 12.57 |
+----------------+----------+------------------+
4) Ebizzy: There's a fair amount of variation from run to run, but this
approach always shows nearly perfect hit rates, while baseline is just
about non-existent. The amounts of cycles can fluctuate between
anywhere from ~60 to ~116 for the baseline scheme, but this approach
reduces it considerably. For instance, with 80 threads:
+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline | 1.06% | 91.54 |
| patched | 99.97% | 14.18 |
+----------------+----------+------------------+
[akpm@linux-foundation.org: fix nommu build, per Davidlohr]
[akpm@linux-foundation.org: document vmacache_valid() logic]
[akpm@linux-foundation.org: attempt to untangle header files]
[akpm@linux-foundation.org: add vmacache_find() BUG_ON]
[hughd@google.com: add vmacache_valid_mm() (from Oleg)]
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: adjust and enhance comments]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Michel Lespinasse <walken@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Tested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The VM maintains cached filesystem pages on two types of lists. One
list holds the pages recently faulted into the cache, the other list
holds pages that have been referenced repeatedly on that first list.
The idea is to prefer reclaiming young pages over those that have shown
to benefit from caching in the past. We call the recently usedbut
ultimately was not significantly better than a FIFO policy and still
thrashed cache based on eviction speed, rather than actual demand for
cache.
This patch solves one half of the problem by decoupling the ability to
detect working set changes from the inactive list size. By maintaining
a history of recently evicted file pages it can detect frequently used
pages with an arbitrarily small inactive list size, and subsequently
apply pressure on the active list based on actual demand for cache, not
just overall eviction speed.
Every zone maintains a counter that tracks inactive list aging speed.
When a page is evicted, a snapshot of this counter is stored in the
now-empty page cache radix tree slot. On refault, the minimum access
distance of the page can be assessed, to evaluate whether the page
should be part of the active list or not.
This fixes the VM's blindness towards working set changes in excess of
the inactive list. And it's the foundation to further improve the
protection ability and reduce the minimum inactive list size of 50%.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch moves zsmalloc under mm directory.
Before that, description will explain why we have needed custom
allocator.
Zsmalloc is a new slab-based memory allocator for storing compressed
pages. It is designed for low fragmentation and high allocation success
rate on large object, but <= PAGE_SIZE allocations.
zsmalloc differs from the kernel slab allocator in two primary ways to
achieve these design goals.
zsmalloc never requires high order page allocations to back slabs, or
"size classes" in zsmalloc terms. Instead it allows multiple
single-order pages to be stitched together into a "zspage" which backs
the slab. This allows for higher allocation success rate under memory
pressure.
Also, zsmalloc allows objects to span page boundaries within the zspage.
This allows for lower fragmentation than could be had with the kernel
slab allocator for objects between PAGE_SIZE/2 and PAGE_SIZE. With the
kernel slab allocator, if a page compresses to 60% of it original size,
the memory savings gained through compression is lost in fragmentation
because another object of the same size can't be stored in the leftover
space.
This ability to span pages results in zsmalloc allocations not being
directly addressable by the user. The user is given an
non-dereferencable handle in response to an allocation request. That
handle must be mapped, using zs_map_object(), which returns a pointer to
the mapped region that can be used. The mapping is necessary since the
object data may reside in two different noncontigious pages.
The zsmalloc fulfills the allocation needs for zram perfectly
[sjenning@linux.vnet.ibm.com: borrow Seth's quote]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Nitin Gupta <ngupta@vflare.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Several subsystems use the same construct for LRU lists - a list head, a
spin lock and and item count. They also use exactly the same code for
adding and removing items from the LRU. Create a generic type for these
LRU lists.
This is the beginning of generic, node aware LRUs for shrinkers to work
with.
[glommer@openvz.org: enum defined constants for lru. Suggested by gthelen, don't relock over retry]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Greg Thelen <gthelen@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
zswap is a thin backend for frontswap that takes pages that are in the
process of being swapped out and attempts to compress them and store
them in a RAM-based memory pool. This can result in a significant I/O
reduction on the swap device and, in the case where decompressing from
RAM is faster than reading from the swap device, can also improve
workload performance.
It also has support for evicting swap pages that are currently
compressed in zswap to the swap device on an LRU(ish) basis. This
functionality makes zswap a true cache in that, once the cache is full,
the oldest pages can be moved out of zswap to the swap device so newer
pages can be compressed and stored in zswap.
This patch adds the zswap driver to mm/
Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Robert Jennings <rcj@linux.vnet.ibm.com>
Cc: Jenifer Hopper <jhopper@us.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Joe Perches <joe@perches.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
zbud is an special purpose allocator for storing compressed pages. It
is designed to store up to two compressed pages per physical page.
While this design limits storage density, it has simple and
deterministic reclaim properties that make it preferable to a higher
density approach when reclaim will be used.
zbud works by storing compressed pages, or "zpages", together in pairs
in a single memory page called a "zbud page". The first buddy is "left
justifed" at the beginning of the zbud page, and the last buddy is
"right justified" at the end of the zbud page. The benefit is that if
either buddy is freed, the freed buddy space, coalesced with whatever
slack space that existed between the buddies, results in the largest
possible free region within the zbud page.
zbud also provides an attractive lower bound on density. The ratio of
zpages to zbud pages can not be less than 1. This ensures that zbud can
never "do harm" by using more pages to store zpages than the
uncompressed zpages would have used on their own.
This implementation is a rewrite of the zbud allocator internally used
by zcache in the driver/staging tree. The rewrite was necessary to
remove some of the zcache specific elements that were ingrained
throughout and provide a generic allocation interface that can later be
used by zsmalloc and others.
This patch adds zbud to mm/ for later use by zswap.
Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Robert Jennings <rcj@linux.vnet.ibm.com>
Cc: Jenifer Hopper <jhopper@us.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Joe Perches <joe@perches.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Bob Liu <bob.liu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With this patch userland applications that want to maintain the
interactivity/memory allocation cost can use the pressure level
notifications. The levels are defined like this:
The "low" level means that the system is reclaiming memory for new
allocations. Monitoring this reclaiming activity might be useful for
maintaining cache level. Upon notification, the program (typically
"Activity Manager") might analyze vmstat and act in advance (i.e.
prematurely shutdown unimportant services).
The "medium" level means that the system is experiencing medium memory
pressure, the system might be making swap, paging out active file
caches, etc. Upon this event applications may decide to further analyze
vmstat/zoneinfo/memcg or internal memory usage statistics and free any
resources that can be easily reconstructed or re-read from a disk.
The "critical" level means that the system is actively thrashing, it is
about to out of memory (OOM) or even the in-kernel OOM killer is on its
way to trigger. Applications should do whatever they can to help the
system. It might be too late to consult with vmstat or any other
statistics, so it's advisable to take an immediate action.
The events are propagated upward until the event is handled, i.e. the
events are not pass-through. Here is what this means: for example you
have three cgroups: A->B->C. Now you set up an event listener on
cgroups A, B and C, and suppose group C experiences some pressure. In
this situation, only group C will receive the notification, i.e. groups
A and B will not receive it. This is done to avoid excessive
"broadcasting" of messages, which disturbs the system and which is
especially bad if we are low on memory or thrashing. So, organize the
cgroups wisely, or propagate the events manually (or, ask us to
implement the pass-through events, explaining why would you need them.)
Performance wise, the memory pressure notifications feature itself is
lightweight and does not require much of bookkeeping, in contrast to the
rest of memcg features. Unfortunately, as of current memcg
implementation, pages accounting is an inseparable part and cannot be
turned off. The good news is that there are some efforts[1] to improve
the situation; plus, implementing the same, fully API-compatible[2]
interface for CONFIG_MEMCG=n case (e.g. embedded) is also a viable
option, so it will not require any changes on the userland side.
[1] http://permalink.gmane.org/gmane.linux.kernel.cgroups/6291
[2] http://lkml.org/lkml/2013/2/21/454
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix CONFIG_CGROPUPS=n warnings]
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Leonid Moiseichuk <leonid.moiseichuk@nokia.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Memory fragmentation introduced by ballooning might reduce significantly
the number of 2MB contiguous memory blocks that can be used within a guest,
thus imposing performance penalties associated with the reduced number of
transparent huge pages that could be used by the guest workload.
This patch introduces a common interface to help a balloon driver on
making its page set movable to compaction, and thus allowing the system
to better leverage the compation efforts on memory defragmentation.
[akpm@linux-foundation.org: use PAGE_FLAGS_CHECK_AT_PREP, s/__balloon_page_flags/page_flags_cleared/, small cleanups]
[rientjes@google.com: allow balloon compaction for any system with memory compaction enabled, which is the defconfig]
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement an interval tree as a replacement for the VMA prio_tree. The
algorithms are similar to lib/interval_tree.c; however that code can't be
directly reused as the interval endpoints are not explicitly stored in the
VMA. So instead, the common algorithm is moved into a template and the
details (node type, how to get interval endpoints from the node, etc) are
filled in using the C preprocessor.
Once the interval tree functions are available, using them as a
replacement to the VMA prio tree is a relatively simple, mechanical job.
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mm/page_alloc.c has some memory isolation functions but they are used only
when we enable CONFIG_{CMA|MEMORY_HOTPLUG|MEMORY_FAILURE}. So let's make
it configurable by new CONFIG_MEMORY_ISOLATION so that it can reduce
binary size and we can check it simple by CONFIG_MEMORY_ISOLATION, not if
defined CONFIG_{CMA|MEMORY_HOTPLUG|MEMORY_FAILURE}.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Sanity:
CONFIG_CGROUP_MEM_RES_CTLR -> CONFIG_MEMCG
CONFIG_CGROUP_MEM_RES_CTLR_SWAP -> CONFIG_MEMCG_SWAP
CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED -> CONFIG_MEMCG_SWAP_ENABLED
CONFIG_CGROUP_MEM_RES_CTLR_KMEM -> CONFIG_MEMCG_KMEM
[mhocko@suse.cz: fix missed bits]
Cc: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement a new controller that allows us to control HugeTLB allocations.
The extension allows to limit the HugeTLB usage per control group and
enforces the controller limit during page fault. Since HugeTLB doesn't
support page reclaim, enforcing the limit at page fault time implies that,
the application will get SIGBUS signal if it tries to access HugeTLB pages
beyond its limit. This requires the application to know beforehand how
much HugeTLB pages it would require for its use.
The charge/uncharge calls will be added to HugeTLB code in later patch.
Support for cgroup removal will be added in later patches.
[akpm@linux-foundation.org: s/CONFIG_CGROUP_HUGETLB_RES_CTLR/CONFIG_MEMCG_HUGETLB/g]
[akpm@linux-foundation.org: s/CONFIG_MEMCG_HUGETLB/CONFIG_CGROUP_HUGETLB/g]
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux
Pull SLAB changes from Pekka Enberg:
"Most of the changes included are from Christoph Lameter's "common
slab" patch series that unifies common parts of SLUB, SLAB, and SLOB
allocators. The unification is needed for Glauber Costa's "kmem
memcg" work that will hopefully appear for v3.7.
The rest of the changes are fixes and speedups by various people."
* 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: (32 commits)
mm: Fix build warning in kmem_cache_create()
slob: Fix early boot kernel crash
mm, slub: ensure irqs are enabled for kmemcheck
mm, sl[aou]b: Move kmem_cache_create mutex handling to common code
mm, sl[aou]b: Use a common mutex definition
mm, sl[aou]b: Common definition for boot state of the slab allocators
mm, sl[aou]b: Extract common code for kmem_cache_create()
slub: remove invalid reference to list iterator variable
mm: Fix signal SIGFPE in slabinfo.c.
slab: move FULL state transition to an initcall
slab: Fix a typo in commit 8c138b "slab: Get rid of obj_size macro"
mm, slab: Build fix for recent kmem_cache changes
slab: rename gfpflags to allocflags
slub: refactoring unfreeze_partials()
slub: use __cmpxchg_double_slab() at interrupt disabled place
slab/mempolicy: always use local policy from interrupt context
slab: Get rid of obj_size macro
mm, sl[aou]b: Extract common fields from struct kmem_cache
slab: Remove some accessors
slab: Use page struct fields instead of casting
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Kmem_cache_create() does a variety of sanity checks but those
vary depending on the allocator. Use the strictest tests and put them into
a slab_common file. Make the tests conditional on CONFIG_DEBUG_VM.
This patch has the effect of adding sanity checks for SLUB and SLOB
under CONFIG_DEBUG_VM and removes the checks in SLAB for !CONFIG_DEBUG_VM.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|\ \
| |/
|/|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/konrad/mm
Pull frontswap feature from Konrad Rzeszutek Wilk:
"Frontswap provides a "transcendent memory" interface for swap pages.
In some environments, dramatic performance savings may be obtained
because swapped pages are saved in RAM (or a RAM-like device) instead
of a swap disk. This tag provides the basic infrastructure along with
some changes to the existing backends."
Fix up trivial conflict in mm/Makefile due to removal of swap token code
changing a line next to the new frontswap entry.
This pull request came in before the merge window even opened, it got
delayed to after the merge window by me just wanting to make sure it had
actual users. Apparently IBM is using this on their embedded side, and
Jan Beulich says that it's already made available for SLES and OpenSUSE
users.
Also acked by Rik van Riel, and Konrad points to other people liking it
too. So in it goes.
By Dan Magenheimer (4) and Konrad Rzeszutek Wilk (2)
via Konrad Rzeszutek Wilk
* tag 'stable/frontswap.v16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/mm:
frontswap: s/put_page/store/g s/get_page/load
MAINTAINER: Add myself for the frontswap API
mm: frontswap: config and doc files
mm: frontswap: core frontswap functionality
mm: frontswap: core swap subsystem hooks and headers
mm: frontswap: add frontswap header file
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch 4of4 adds configuration and documentation files including a FAQ.
[v14: updated docs/FAQ to use zcache and RAMster as examples]
[v10: no change]
[v9: akpm@linux-foundation.org: sysfs->debugfs; no longer need Doc/ABI file]
[v8: rebase to 3.0-rc4]
[v7: rebase to 3.0-rc3]
[v6: rebase to 3.0-rc1]
[v5: change config default to n]
[v4: rebase to 2.6.39]
Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Acked-by: Jan Beulich <JBeulich@novell.com>
Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Rik Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Add a Kconfig option to allow people who don't want cross memory attach to
not have it included in their build.
Signed-off-by: Chris Yeoh <yeohc@au1.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The swap token code no longer fits in with the current VM model. It
does not play well with cgroups or the better NUMA placement code in
development, since we have only one swap token globally.
It also has the potential to mess with scalability of the system, by
increasing the number of non-reclaimable pages on the active and
inactive anon LRU lists.
Last but not least, the swap token code has been broken for a year
without complaints, as reported by Konstantin Khlebnikov. This suggests
we no longer have much use for it.
The days of sub-1G memory systems with heavy use of swap are over. If
we ever need thrashing reducing code in the future, we will have to
implement something that does scale.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Bob Picco <bpicco@meloft.net>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit exports some of the functions from compaction.c file
outside of it adding their declaration into internal.h header
file so that other mm related code can use them.
This forced compaction.c to always be compiled (as opposed to being
compiled only if CONFIG_COMPACTION is defined) but as to avoid
introducing code that user did not ask for, part of the compaction.c
is now wrapped in on #ifdef.
Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Rob Clark <rob.clark@linaro.org>
Tested-by: Ohad Ben-Cohen <ohad@wizery.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Tested-by: Robert Nelson <robertcnelson@gmail.com>
Tested-by: Barry Song <Baohua.Song@csr.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The basic idea behind cross memory attach is to allow MPI programs doing
intra-node communication to do a single copy of the message rather than a
double copy of the message via shared memory.
The following patch attempts to achieve this by allowing a destination
process, given an address and size from a source process, to copy memory
directly from the source process into its own address space via a system
call. There is also a symmetrical ability to copy from the current
process's address space into a destination process's address space.
- Use of /proc/pid/mem has been considered, but there are issues with
using it:
- Does not allow for specifying iovecs for both src and dest, assuming
preadv or pwritev was implemented either the area read from or
written to would need to be contiguous.
- Currently mem_read allows only processes who are currently
ptrace'ing the target and are still able to ptrace the target to read
from the target. This check could possibly be moved to the open call,
but its not clear exactly what race this restriction is stopping
(reason appears to have been lost)
- Having to send the fd of /proc/self/mem via SCM_RIGHTS on unix
domain socket is a bit ugly from a userspace point of view,
especially when you may have hundreds if not (eventually) thousands
of processes that all need to do this with each other
- Doesn't allow for some future use of the interface we would like to
consider adding in the future (see below)
- Interestingly reading from /proc/pid/mem currently actually
involves two copies! (But this could be fixed pretty easily)
As mentioned previously use of vmsplice instead was considered, but has
problems. Since you need the reader and writer working co-operatively if
the pipe is not drained then you block. Which requires some wrapping to
do non blocking on the send side or polling on the receive. In all to all
communication it requires ordering otherwise you can deadlock. And in the
example of many MPI tasks writing to one MPI task vmsplice serialises the
copying.
There are some cases of MPI collectives where even a single copy interface
does not get us the performance gain we could. For example in an
MPI_Reduce rather than copy the data from the source we would like to
instead use it directly in a mathops (say the reduce is doing a sum) as
this would save us doing a copy. We don't need to keep a copy of the data
from the source. I haven't implemented this, but I think this interface
could in the future do all this through the use of the flags - eg could
specify the math operation and type and the kernel rather than just
copying the data would apply the specified operation between the source
and destination and store it in the destination.
Although we don't have a "second user" of the interface (though I've had
some nibbles from people who may be interested in using it for intra
process messaging which is not MPI). This interface is something which
hardware vendors are already doing for their custom drivers to implement
fast local communication. And so in addition to this being useful for
OpenMPI it would mean the driver maintainers don't have to fix things up
when the mm changes.
There was some discussion about how much faster a true zero copy would
go. Here's a link back to the email with some testing I did on that:
http://marc.info/?l=linux-mm&m=130105930902915&w=2
There is a basic man page for the proposed interface here:
http://ozlabs.org/~cyeoh/cma/process_vm_readv.txt
This has been implemented for x86 and powerpc, other architecture should
mainly (I think) just need to add syscall numbers for the process_vm_readv
and process_vm_writev. There are 32 bit compatibility versions for
64-bit kernels.
For arch maintainers there are some simple tests to be able to quickly
verify that the syscalls are working correctly here:
http://ozlabs.org/~cyeoh/cma/cma-test-20110718.tgz
Signed-off-by: Chris Yeoh <yeohc@au1.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: <linux-man@vger.kernel.org>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This third patch of eight in this cleancache series provides
the core code for cleancache that interfaces between the hooks in
VFS and individual filesystems and a cleancache backend. It also
includes build and config patches.
Two new files are added: mm/cleancache.c and include/linux/cleancache.h.
Note that CONFIG_CLEANCACHE can default to on; in systems that do
not provide a cleancache backend, all hooks devolve to a simple
check of a global enable flag, so performance impact should
be negligible but can be reduced to zero impact if config'ed off.
However for this first commit, it defaults to off.
Details and a FAQ can be found in Documentation/vm/cleancache.txt
Credits: Cleancache_ops design derived from Jeremy Fitzhardinge
design for tmem
[v8: dan.magenheimer@oracle.com: fix exportfs call affecting btrfs]
[v8: akpm@linux-foundation.org: use static inline function, not macro]
[v7: dan.magenheimer@oracle.com: cleanup sysfs and remove cleancache prefix]
[v6: JBeulich@novell.com: robustly handle buggy fs encode_fh actor definition]
[v5: jeremy@goop.org: clean up global usage and static var names]
[v5: jeremy@goop.org: simplify init hook and any future fs init changes]
[v5: hch@infradead.org: cleaner non-global interface for ops registration]
[v4: adilger@sun.com: interface must support exportfs FS's]
[v4: hch@infradead.org: interface must support 64-bit FS on 32-bit kernel]
[v3: akpm@linux-foundation.org: use one ops struct to avoid pointer hops]
[v3: akpm@linux-foundation.org: document and ensure PageLocked reqts are met]
[v3: ngupta@vflare.org: fix success/fail codes, change funcs to void]
[v2: viro@ZenIV.linux.org.uk: use sane types]
Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Reviewed-by: Jeremy Fitzhardinge <jeremy@goop.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Al Viro <viro@ZenIV.linux.org.uk>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Nitin Gupta <ngupta@vflare.org>
Acked-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Andreas Dilger <adilger@sun.com>
Acked-by: Jan Beulich <JBeulich@novell.com>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik Van Riel <riel@redhat.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <joel.becker@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mm/bootmem.c contained code paths for both bootmem and no bootmem
configurations. They implement about the same set of APIs in
different ways and as a result bootmem.c contains massive amount of
#ifdef CONFIG_NO_BOOTMEM.
Separate out CONFIG_NO_BOOTMEM code into mm/nobootmem.c. As the
common part is relatively small, duplicate them in nobootmem.c instead
of creating a common file or ifdef'ing in bootmem.c.
The followings are duplicated.
* {min|max}_low_pfn, max_pfn, saved_max_pfn
* free_bootmem_late()
* ___alloc_bootmem()
* __alloc_bootmem_low()
The followings are applicable only to nobootmem and moved verbatim.
* __free_pages_memory()
* free_all_memory_core_early()
The followings are not applicable to nobootmem and omitted in
nobootmem.c.
* reserve_bootmem_node()
* reserve_bootmem()
The rest split function bodies according to CONFIG_NO_BOOTMEM.
Makefile is updated so that only either bootmem.c or nobootmem.c is
built according to CONFIG_NO_BOOTMEM.
This patch doesn't introduce any behavior change.
-tj: Rewrote commit description.
Suggested-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Lately I've been working to make KVM use hugepages transparently without
the usual restrictions of hugetlbfs. Some of the restrictions I'd like to
see removed:
1) hugepages have to be swappable or the guest physical memory remains
locked in RAM and can't be paged out to swap
2) if a hugepage allocation fails, regular pages should be allocated
instead and mixed in the same vma without any failure and without
userland noticing
3) if some task quits and more hugepages become available in the
buddy, guest physical memory backed by regular pages should be
relocated on hugepages automatically in regions under
madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
not null)
4) avoidance of reservation and maximization of use of hugepages whenever
possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
1 machine with 1 database with 1 database cache with 1 database cache size
known at boot time. It's definitely not feasible with a virtualization
hypervisor usage like RHEV-H that runs an unknown number of virtual machines
with an unknown size of each virtual machine with an unknown amount of
pagecache that could be potentially useful in the host for guest not using
O_DIRECT (aka cache=off).
hugepages in the virtualization hypervisor (and also in the guest!) are
much more important than in a regular host not using virtualization,
becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
to 19 in case only the hypervisor uses transparent hugepages, and they
decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
linux hypervisor and the linux guest both uses this patch (though the
guest will limit the addition speedup to anonymous regions only for
now...). Even more important is that the tlb miss handler is much slower
on a NPT/EPT guest than for a regular shadow paging or no-virtualization
scenario. So maximizing the amount of virtual memory cached by the TLB
pays off significantly more with NPT/EPT than without (even if there would
be no significant speedup in the tlb-miss runtime).
The first (and more tedious) part of this work requires allowing the VM to
handle anonymous hugepages mixed with regular pages transparently on
regular anonymous vmas. This is what this patch tries to achieve in the
least intrusive possible way. We want hugepages and hugetlb to be used in
a way so that all applications can benefit without changes (as usual we
leverage the KVM virtualization design: by improving the Linux VM at
large, KVM gets the performance boost too).
The most important design choice is: always fallback to 4k allocation if
the hugepage allocation fails! This is the _very_ opposite of some large
pagecache patches that failed with -EIO back then if a 64k (or similar)
allocation failed...
Second important decision (to reduce the impact of the feature on the
existing pagetable handling code) is that at any time we can split an
hugepage into 512 regular pages and it has to be done with an operation
that can't fail. This way the reliability of the swapping isn't decreased
(no need to allocate memory when we are short on memory to swap) and it's
trivial to plug a split_huge_page* one-liner where needed without
polluting the VM. Over time we can teach mprotect, mremap and friends to
handle pmd_trans_huge natively without calling split_huge_page*. The fact
it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
(instead of the current void) we'd need to rollback the mprotect from the
middle of it (ideally including undoing the split_vma) which would be a
big change and in the very wrong direction (it'd likely be simpler not to
call split_huge_page at all and to teach mprotect and friends to handle
hugepages instead of rolling them back from the middle). In short the
very value of split_huge_page is that it can't fail.
The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
incremental and it'll just be an "harmless" addition later if this initial
part is agreed upon. It also should be noted that locking-wise replacing
regular pages with hugepages is going to be very easy if compared to what
I'm doing below in split_huge_page, as it will only happen when
page_count(page) matches page_mapcount(page) if we can take the PG_lock
and mmap_sem in write mode. collapse_huge_page will be a "best effort"
that (unlike split_huge_page) can fail at the minimal sign of trouble and
we can try again later. collapse_huge_page will be similar to how KSM
works and the madvise(MADV_HUGEPAGE) will work similar to
madvise(MADV_MERGEABLE).
The default I like is that transparent hugepages are used at page fault
time. This can be changed with
/sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set
to three values "always", "madvise", "never" which mean respectively that
hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
or never used. /sys/kernel/mm/transparent_hugepage/defrag instead
controls if the hugepage allocation should defrag memory aggressively
"always", only inside "madvise" regions, or "never".
The pmd_trans_splitting/pmd_trans_huge locking is very solid. The
put_page (from get_user_page users that can't use mmu notifier like
O_DIRECT) that runs against a __split_huge_page_refcount instead was a
pain to serialize in a way that would result always in a coherent page
count for both tail and head. I think my locking solution with a
compound_lock taken only after the page_first is valid and is still a
PageHead should be safe but it surely needs review from SMP race point of
view. In short there is no current existing way to serialize the O_DIRECT
final put_page against split_huge_page_refcount so I had to invent a new
one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
returns so...). And I didn't want to impact all gup/gup_fast users for
now, maybe if we change the gup interface substantially we can avoid this
locking, I admit I didn't think too much about it because changing the gup
unpinning interface would be invasive.
If we ignored O_DIRECT we could stick to the existing compound refcounting
code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
(and any other mmu notifier user) would call it without FOLL_GET (and if
FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
current task mmu notifier list yet). But O_DIRECT is fundamental for
decent performance of virtualized I/O on fast storage so we can't avoid it
to solve the race of put_page against split_huge_page_refcount to achieve
a complete hugepage feature for KVM.
Swap and oom works fine (well just like with regular pages ;). MMU
notifier is handled transparently too, with the exception of the young bit
on the pmd, that didn't have a range check but I think KVM will be fine
because the whole point of hugepages is that EPT/NPT will also use a huge
pmd when they notice gup returns pages with PageCompound set, so they
won't care of a range and there's just the pmd young bit to check in that
case.
NOTE: in some cases if the L2 cache is small, this may slowdown and waste
memory during COWs because 4M of memory are accessed in a single fault
instead of 8k (the payoff is that after COW the program can run faster).
So we might want to switch the copy_huge_page (and clear_huge_page too) to
not temporal stores. I also extensively researched ways to avoid this
cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
up to 1M (I can send those patches that fully implemented prefault) but I
concluded they're not worth it and they add an huge additional complexity
and they remove all tlb benefits until the full hugepage has been faulted
in, to save a little bit of memory and some cache during app startup, but
they still don't improve substantially the cache-trashing during startup
if the prefault happens in >4k chunks. One reason is that those 4k pte
entries copied are still mapped on a perfectly cache-colored hugepage, so
the trashing is the worst one can generate in those copies (cow of 4k page
copies aren't so well colored so they trashes less, but again this results
in software running faster after the page fault). Those prefault patches
allowed things like a pte where post-cow pages were local 4k regular anon
pages and the not-yet-cowed pte entries were pointing in the middle of
some hugepage mapped read-only. If it doesn't payoff substantially with
todays hardware it will payoff even less in the future with larger l2
caches, and the prefault logic would blot the VM a lot. If one is
emebdded transparent_hugepage can be disabled during boot with sysfs or
with the boot commandline parameter transparent_hugepage=0 (or
transparent_hugepage=2 to restrict hugepages inside madvise regions) that
will ensure not a single hugepage is allocated at boot time. It is simple
enough to just disable transparent hugepage globally and let transparent
hugepages be allocated selectively by applications in the MADV_HUGEPAGE
region (both at page fault time, and if enabled with the
collapse_huge_page too through the kernel daemon).
This patch supports only hugepages mapped in the pmd, archs that have
smaller hugepages will not fit in this patch alone. Also some archs like
power have certain tlb limits that prevents mixing different page size in
the same regions so they will not fit in this framework that requires
"graceful fallback" to basic PAGE_SIZE in case of physical memory
fragmentation. hugetlbfs remains a perfect fit for those because its
software limits happen to match the hardware limits. hugetlbfs also
remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
to be found not fragmented after a certain system uptime and that would be
very expensive to defragment with relocation, so requiring reservation.
hugetlbfs is the "reservation way", the point of transparent hugepages is
not to have any reservation at all and maximizing the use of cache and
hugepages at all times automatically.
Some performance result:
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
ages3
memset page fault 1566023
memset tlb miss 453854
memset second tlb miss 453321
random access tlb miss 41635
random access second tlb miss 41658
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
memset page fault 1566471
memset tlb miss 453375
memset second tlb miss 453320
random access tlb miss 41636
random access second tlb miss 41637
vmx andrea # ./largepages3
memset page fault 1566642
memset tlb miss 453417
memset second tlb miss 453313
random access tlb miss 41630
random access second tlb miss 41647
vmx andrea # ./largepages3
memset page fault 1566872
memset tlb miss 453418
memset second tlb miss 453315
random access tlb miss 41618
random access second tlb miss 41659
vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
vmx andrea # ./largepages3
memset page fault 2182476
memset tlb miss 460305
memset second tlb miss 460179
random access tlb miss 44483
random access second tlb miss 44186
vmx andrea # ./largepages3
memset page fault 2182791
memset tlb miss 460742
memset second tlb miss 459962
random access tlb miss 43981
random access second tlb miss 43988
============
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define SIZE (3UL*1024*1024*1024)
int main()
{
char *p = malloc(SIZE), *p2;
struct timeval before, after;
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset page fault %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
return 0;
}
============
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Some are needed to build but not actually used on archs not supporting
transparent hugepages. Others like pmdp_clear_flush are used by x86 too.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On UP, percpu allocations were redirected to kmalloc. This has the
following problems.
* For certain amount of allocations (determined by
PERCPU_DYNAMIC_EARLY_SLOTS and PERCPU_DYNAMIC_EARLY_SIZE), percpu
allocator can be used before the usual kernel memory allocator is
brought online. On SMP, this is used to initialize the kernel
memory allocator.
* percpu allocator honors alignment upto PAGE_SIZE but kmalloc()
doesn't. For example, workqueue makes use of larger alignments for
cpu_workqueues.
Currently, users of percpu allocators need to handle UP differently,
which is somewhat fragile and ugly. Other than small amount of
memory, there isn't much to lose by enabling percpu allocator on UP.
It can simply use kernel memory based chunk allocation which was added
for SMP archs w/o MMUs.
This patch removes mm/percpu_up.c, builds mm/percpu.c on UP too and
makes UP build use percpu-km. As percpu addresses and kernel
addresses are always identity mapped and static percpu variables don't
need any special treatment, nothing is arch dependent and mm/percpu.c
implements generic setup_per_cpu_areas() for UP.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
|