summaryrefslogtreecommitdiffstats
path: root/mm/compaction.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* mm: compaction: abort compaction if too many pages are isolated and caller ↵Mel Gorman2011-06-161-5/+24
| | | | | | | | | | | | | | | | | | | | is asynchronous V2 Asynchronous compaction is used when promoting to huge pages. This is all very nice but if there are a number of processes in compacting memory, a large number of pages can be isolated. An "asynchronous" process can stall for long periods of time as a result with a user reporting that firefox can stall for 10s of seconds. This patch aborts asynchronous compaction if too many pages are isolated as it's better to fail a hugepage promotion than stall a process. [minchan.kim@gmail.com: return COMPACT_PARTIAL for abort] Reported-and-tested-by: Ury Stankevich <urykhy@gmail.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: ensure that the compaction free scanner does not move to the ↵Mel Gorman2011-06-161-1/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | next zone Compaction works with two scanners, a migration and a free scanner. When the scanners crossover, migration within the zone is complete. The location of the scanner is recorded on each cycle to avoid excesive scanning. When a zone is small and mostly reserved, it's very easy for the migration scanner to be close to the end of the zone. Then the following situation can occurs o migration scanner isolates some pages near the end of the zone o free scanner starts at the end of the zone but finds that the migration scanner is already there o free scanner gets reinitialised for the next cycle as cc->migrate_pfn + pageblock_nr_pages moving the free scanner into the next zone o migration scanner moves into the next zone When this happens, NR_ISOLATED accounting goes haywire because some of the accounting happens against the wrong zone. One zones counter remains positive while the other goes negative even though the overall global count is accurate. This was reported on X86-32 with !SMP because !SMP allows the negative counters to be visible. The fact that it is the bug should theoritically be possible there. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* compaction: checks correct fragmentation indexShaohua Li2011-06-161-2/+4
| | | | | | | | | | | | | | | | | | fragmentation_index() returns -1000 when the allocation might succeed This doesn't match the comment and code in compaction_suitable(). I thought compaction_suitable should return COMPACT_PARTIAL in -1000 case, because in this case allocation could succeed depending on watermarks. The impact of this is that compaction starts and compact_finished() is called which rechecks the watermarks and the free lists. It should have the same result in that compaction should not start but is more expensive. Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Shaohua Li <shaohua.li@intel.com> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: fix special case -1 order checksMichal Hocko2011-06-161-14/+14
| | | | | | | | | | | | | | | | | | | | | | | | | Commit 56de7263fcf3 ("mm: compaction: direct compact when a high-order allocation fails") introduced a check for cc->order == -1 in compact_finished. We should continue compacting in that case because the request came from userspace and there is no particular order to compact for. Similar check has been added by 82478fb7 (mm: compaction: prevent division-by-zero during user-requested compaction) for compaction_suitable. The check is, however, done after zone_watermark_ok which uses order as a right hand argument for shifts. Not only watermark check is pointless if we can break out without it but it also uses 1 << -1 which is not well defined (at least from C standard). Let's move the -1 check above zone_watermark_ok. [minchan.kim@gmail.com> - caught compaction_suitable] Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hioryu@jp.fujitsu.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: minimise the time IRQs are disabled while isolating pages ↵Andrea Arcangeli2011-03-231-0/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | for migration compaction_alloc() isolates pages for migration in isolate_migratepages. While it's scanning, IRQs are disabled on the mistaken assumption the scanning should be short. Tests show this to be true for the most part but contention times on the LRU lock can be increased. Before this patch, the IRQ disabled times for a simple test looked like Total sampled time IRQs off (not real total time): 5493 Event shrink_inactive_list..shrink_zone 1596 us count 1 Event shrink_inactive_list..shrink_zone 1530 us count 1 Event shrink_inactive_list..shrink_zone 956 us count 1 Event shrink_inactive_list..shrink_zone 541 us count 1 Event shrink_inactive_list..shrink_zone 531 us count 1 Event split_huge_page..add_to_swap 232 us count 1 Event save_args..call_softirq 36 us count 1 Event save_args..call_softirq 35 us count 2 Event __wake_up..__wake_up 1 us count 1 This patch reduces the worst-case IRQs-disabled latencies by releasing the lock every SWAP_CLUSTER_MAX pages that are scanned and releasing the CPU if necessary. The cost of this is that the processing performing compaction will be slower but IRQs being disabled for too long a time has worse consequences as the following report shows; Total sampled time IRQs off (not real total time): 4367 Event shrink_inactive_list..shrink_zone 881 us count 1 Event shrink_inactive_list..shrink_zone 875 us count 1 Event shrink_inactive_list..shrink_zone 868 us count 1 Event shrink_inactive_list..shrink_zone 555 us count 1 Event split_huge_page..add_to_swap 495 us count 1 Event compact_zone..compact_zone_order 269 us count 1 Event split_huge_page..add_to_swap 266 us count 1 Event shrink_inactive_list..shrink_zone 85 us count 1 Event save_args..call_softirq 36 us count 2 Event __wake_up..__wake_up 1 us count 1 [akpm@linux-foundation.org: simplify with s/unlocked/locked/] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Arthur Marsh <arthur.marsh@internode.on.net> Cc: Clemens Ladisch <cladisch@googlemail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: minimise the time IRQs are disabled while isolating free pagesMel Gorman2011-03-231-5/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | compaction_alloc() isolates free pages to be used as migration targets. While its scanning, IRQs are disabled on the mistaken assumption the scanning should be short. Analysis showed that IRQs were in fact being disabled for substantial time. A simple test was run using large anonymous mappings with transparent hugepage support enabled to trigger frequent compactions. A monitor sampled what the worst IRQ-off latencies were and a post-processing tool found the following; Total sampled time IRQs off (not real total time): 22355 Event compaction_alloc..compaction_alloc 8409 us count 1 Event compaction_alloc..compaction_alloc 7341 us count 1 Event compaction_alloc..compaction_alloc 2463 us count 1 Event compaction_alloc..compaction_alloc 2054 us count 1 Event shrink_inactive_list..shrink_zone 1864 us count 1 Event shrink_inactive_list..shrink_zone 88 us count 1 Event save_args..call_softirq 36 us count 1 Event save_args..call_softirq 35 us count 2 Event __make_request..__blk_run_queue 24 us count 1 Event __alloc_pages_nodemask..__alloc_pages_nodemask 6 us count 1 i.e. compaction is disabled IRQs for a prolonged period of time - 8ms in one instance. The full report generated by the tool can be found at http://www.csn.ul.ie/~mel/postings/minfree-20110225/irqsoff-vanilla-micro.report This patch reduces the time IRQs are disabled by simply disabling IRQs at the last possible minute. An updated IRQs-off summary report then looks like; Total sampled time IRQs off (not real total time): 5493 Event shrink_inactive_list..shrink_zone 1596 us count 1 Event shrink_inactive_list..shrink_zone 1530 us count 1 Event shrink_inactive_list..shrink_zone 956 us count 1 Event shrink_inactive_list..shrink_zone 541 us count 1 Event shrink_inactive_list..shrink_zone 531 us count 1 Event split_huge_page..add_to_swap 232 us count 1 Event save_args..call_softirq 36 us count 1 Event save_args..call_softirq 35 us count 2 Event __wake_up..__wake_up 1 us count 1 A full report is again available at http://www.csn.ul.ie/~mel/postings/minfree-20110225/irqsoff-minimiseirq-free-v1r4-micro.report As should be obvious, IRQ disabled latencies due to compaction are almost elimimnated for this particular test. [aarcange@redhat.com: Fix initialisation of isolated] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujisu.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Arthur Marsh <arthur.marsh@internode.on.net> Cc: Clemens Ladisch <cladisch@googlemail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/compaction: check migrate_pages's return value instead of list_empty()Minchan Kim2011-03-231-2/+3
| | | | | | | | | | | | | | Many migrate_page's caller check return value instead of list_empy by cf608ac19c ("mm: compaction: fix COMPACTPAGEFAILED counting"). This patch makes compaction's migrate_pages consistent with others. This patch should not change old behavior. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: prevent kswapd compacting memory to reduce CPU usageAndrea Arcangeli2011-03-231-21/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch reverts 5a03b051 ("thp: use compaction in kswapd for GFP_ATOMIC order > 0") due to reports stating that kswapd CPU usage was higher and IRQs were being disabled more frequently. This was reported at http://www.spinics.net/linux/fedora/alsa-user/msg09885.html. Without this patch applied, CPU usage by kswapd hovers around the 20% mark according to the tester (Arthur Marsh: http://www.spinics.net/linux/fedora/alsa-user/msg09899.html). With this patch applied, it's around 2%. The problem is not related to THP which specifies __GFP_NO_KSWAPD but is triggered by high-order allocations hitting the low watermark for their order and waking kswapd on kernels with CONFIG_COMPACTION set. The most common trigger for this is network cards configured for jumbo frames but it's also possible it'll be triggered by fork-heavy workloads (order-1) and some wireless cards which depend on order-1 allocations. The symptoms for the user will be high CPU usage by kswapd in low-memory situations which could be confused with another writeback problem. While a patch like 5a03b051 may be reintroduced in the future, this patch plays it safe for now and reverts it. [mel@csn.ul.ie: Beefed up the changelog] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reported-by: Arthur Marsh <arthur.marsh@internode.on.net> Tested-by: Arthur Marsh <arthur.marsh@internode.on.net> Cc: <stable@kernel.org> [2.6.38.1] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: prevent division-by-zero during user-requested compactionJohannes Weiner2011-01-211-0/+11
| | | | | | | | | | | | | | | | | | | | | Up until 3e7d344 ("mm: vmscan: reclaim order-0 and use compaction instead of lumpy reclaim"), compaction skipped calculating the fragmentation index of a zone when compaction was explicitely requested through the procfs knob. However, when compaction_suitable was introduced, it did not come with an extra check for order == -1, set on explicit compaction requests, and passed this order on to the fragmentation index calculation, where it overshifts the number of requested pages, leading to a division by zero. This patch makes sure that order == -1 is recognized as the flag it is rather than passing it along as valid order parameter. [akpm@linux-foundation.org: add comment, per Mel] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: use compaction for all allocation ordersAndrea Arcangeli2011-01-141-1/+1
| | | | | | | | | | It makes no sense not to enable compaction for small order pages as we don't want to end up with bad order 2 allocations and good and graceful order 9 allocations. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: use compaction in kswapd for GFP_ATOMIC order > 0Andrea Arcangeli2011-01-141-5/+26
| | | | | | | | | | This takes advantage of memory compaction to properly generate pages of order > 0 if regular page reclaim fails and priority level becomes more severe and we don't reach the proper watermarks. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: transhuge isolate_migratepages()Andrea Arcangeli2011-01-141-0/+15
| | | | | | | | | | It's not worth migrating transparent hugepages during compaction. Those hugepages don't create fragmentation. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: perform a faster migration scan when migrating asynchronouslyMel Gorman2011-01-141-0/+15
| | | | | | | | | | | | | | | | | | | | | try_to_compact_pages() is initially called to only migrate pages asychronously and kswapd always compacts asynchronously. Both are being optimistic so it is important to complete the work as quickly as possible to minimise stalls. This patch alters the scanner when asynchronous to only consider MIGRATE_MOVABLE pageblocks as migration candidates. This reduces stalls when allocating huge pages while not impairing allocation success rates as a full scan will be performed if necessary after direct reclaim. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: migration: cleanup migrate_pages API by matching types for offlining and ↵Mel Gorman2011-01-141-1/+1
| | | | | | | | | | | | | | | | | sync With the introduction of the boolean sync parameter, the API looks a little inconsistent as offlining is still an int. Convert offlining to a bool for the sake of being tidy. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: migration: allow migration to operate asynchronously and avoid ↵Mel Gorman2011-01-141-4/+10
| | | | | | | | | | | | | | | | | | | | | | | | | synchronous compaction in the faster path Migration synchronously waits for writeback if the initial passes fails. Callers of memory compaction do not necessarily want this behaviour if the caller is latency sensitive or expects that synchronous migration is not going to have a significantly better success rate. This patch adds a sync parameter to migrate_pages() allowing the caller to indicate if wait_on_page_writeback() is allowed within migration or not. For reclaim/compaction, try_to_compact_pages() is first called asynchronously, direct reclaim runs and then try_to_compact_pages() is called synchronously as there is a greater expectation that it'll succeed. [akpm@linux-foundation.org: build/merge fix] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: vmscan: reclaim order-0 and use compaction instead of lumpy reclaimMel Gorman2011-01-141-34/+55
| | | | | | | | | | | | | | | | | | | | | | | | | | Lumpy reclaim is disruptive. It reclaims a large number of pages and ignores the age of the pages it reclaims. This can incur significant stalls and potentially increase the number of major faults. Compaction has reached the point where it is considered reasonably stable (meaning it has passed a lot of testing) and is a potential candidate for displacing lumpy reclaim. This patch introduces an alternative to lumpy reclaim whe compaction is available called reclaim/compaction. The basic operation is very simple - instead of selecting a contiguous range of pages to reclaim, a number of order-0 pages are reclaimed and then compaction is later by either kswapd (compact_zone_order()) or direct compaction (__alloc_pages_direct_compact()). [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: use conventional task_struct naming] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: add trace events for memory compaction activityMel Gorman2011-01-141-1/+13
| | | | | | | | | | | | | | | | | In preparation for a patches promoting the use of memory compaction over lumpy reclaim, this patch adds trace points for memory compaction activity. Using them, we can monitor the scanning activity of the migration and free page scanners as well as the number and success rates of pages passed to page migration. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/compaction.c: avoid double mem_cgroup_del_lru()Minchan Kim2010-12-231-1/+0
| | | | | | | | | | | | | | | | del_page_from_lru_list() already called mem_cgroup_del_lru(). So we must not call it again. It adds unnecessary overhead. It was not a runtime bug because the TestClearPageCgroupAcctLRU() early in mem_cgroup_del_lru_list() will prevent any double-deletion, etc. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: handle active and inactive fairly in too_many_isolatedMinchan Kim2010-09-101-3/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Iram reported that compaction's too_many_isolated() loops forever. (http://www.spinics.net/lists/linux-mm/msg08123.html) The meminfo when the situation happened was inactive anon is zero. That's because the system has no memory pressure until then. While all anon pages were in the active lru, compaction could select active lru as well as inactive lru. That's a different thing from vmscan's isolated. So we has been two too_many_isolated. While compaction can isolate pages in both active and inactive, current implementation of too_many_isolated only considers inactive. It made Iram's problem. This patch handles active and inactive fairly. That's because we can't expect where from and how many compaction would isolated pages. This patch changes (nr_isolated > nr_inactive) with nr_isolated > (nr_active + nr_inactive) / 2. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Reported-by: Iram Shahzad <iram.shahzad@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Wu Fengguang <fengguang.wu@intel.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: add a tunable that decides when memory should be compacted ↵Mel Gorman2010-05-251-1/+11
| | | | | | | | | | | | | | | | | | | | | | | and when it should be reclaimed The kernel applies some heuristics when deciding if memory should be compacted or reclaimed to satisfy a high-order allocation. One of these is based on the fragmentation. If the index is below 500, memory will not be compacted. This choice is arbitrary and not based on data. To help optimise the system and set a sensible default for this value, this patch adds a sysctl extfrag_threshold. The kernel will only compact memory if the fragmentation index is above the extfrag_threshold. [randy.dunlap@oracle.com: Fix build errors when proc fs is not configured] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: direct compact when a high-order allocation failsMel Gorman2010-05-251-0/+117
| | | | | | | | | | | | | | | | | | | | | | | | | | | Ordinarily when a high-order allocation fails, direct reclaim is entered to free pages to satisfy the allocation. With this patch, it is determined if an allocation failed due to external fragmentation instead of low memory and if so, the calling process will compact until a suitable page is freed. Compaction by moving pages in memory is considerably cheaper than paging out to disk and works where there are locked pages or no swap. If compaction fails to free a page of a suitable size, then reclaim will still occur. Direct compaction returns as soon as possible. As each block is compacted, it is checked if a suitable page has been freed and if so, it returns. [akpm@linux-foundation.org: Fix build errors] [aarcange@redhat.com: fix count_vm_event preempt in memory compaction direct reclaim] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: add /sys trigger for per-node memory compactionMel Gorman2010-05-251-0/+23
| | | | | | | | | | | | | | | | | Add a per-node sysfs file called compact. When the file is written to, each zone in that node is compacted. The intention that this would be used by something like a job scheduler in a batch system before a job starts so that the job can allocate the maximum number of hugepages without significant start-up cost. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: add /proc trigger for memory compactionMel Gorman2010-05-251-0/+62
| | | | | | | | | | | | | | | | Add a proc file /proc/sys/vm/compact_memory. When an arbitrary value is written to the file, all zones are compacted. The expected user of such a trigger is a job scheduler that prepares the system before the target application runs. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: memory compaction coreMel Gorman2010-05-251-0/+393
This patch is the core of a mechanism which compacts memory in a zone by relocating movable pages towards the end of the zone. A single compaction run involves a migration scanner and a free scanner. Both scanners operate on pageblock-sized areas in the zone. The migration scanner starts at the bottom of the zone and searches for all movable pages within each area, isolating them onto a private list called migratelist. The free scanner starts at the top of the zone and searches for suitable areas and consumes the free pages within making them available for the migration scanner. The pages isolated for migration are then migrated to the newly isolated free pages. [aarcange@redhat.com: Fix unsafe optimisation] [mel@csn.ul.ie: do not schedule work on other CPUs for compaction] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>