summaryrefslogtreecommitdiffstats
path: root/mm/compaction.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* psi: pressure stall information for CPU, memory, and IOJohannes Weiner2018-10-271-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When systems are overcommitted and resources become contended, it's hard to tell exactly the impact this has on workload productivity, or how close the system is to lockups and OOM kills. In particular, when machines work multiple jobs concurrently, the impact of overcommit in terms of latency and throughput on the individual job can be enormous. In order to maximize hardware utilization without sacrificing individual job health or risk complete machine lockups, this patch implements a way to quantify resource pressure in the system. A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that expose the percentage of time the system is stalled on CPU, memory, or IO, respectively. Stall states are aggregate versions of the per-task delay accounting delays: cpu: some tasks are runnable but not executing on a CPU memory: tasks are reclaiming, or waiting for swapin or thrashing cache io: tasks are waiting for io completions These percentages of walltime can be thought of as pressure percentages, and they give a general sense of system health and productivity loss incurred by resource overcommit. They can also indicate when the system is approaching lockup scenarios and OOMs. To do this, psi keeps track of the task states associated with each CPU and samples the time they spend in stall states. Every 2 seconds, the samples are averaged across CPUs - weighted by the CPUs' non-idle time to eliminate artifacts from unused CPUs - and translated into percentages of walltime. A running average of those percentages is maintained over 10s, 1m, and 5m periods (similar to the loadaverage). [hannes@cmpxchg.org: doc fixlet, per Randy] Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org [hannes@cmpxchg.org: code optimization] Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org [hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter] Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org [hannes@cmpxchg.org: fix build] Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: use octal not symbolic permissionsJoe Perches2018-06-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mm/*.c files use symbolic and octal styles for permissions. Using octal and not symbolic permissions is preferred by many as more readable. https://lkml.org/lkml/2016/8/2/1945 Prefer the direct use of octal for permissions. Done using $ scripts/checkpatch.pl -f --types=SYMBOLIC_PERMS --fix-inplace mm/*.c and some typing. Before: $ git grep -P -w "0[0-7]{3,3}" mm | wc -l 44 After: $ git grep -P -w "0[0-7]{3,3}" mm | wc -l 86 Miscellanea: o Whitespace neatening around these conversions. Link: http://lkml.kernel.org/r/2e032ef111eebcd4c5952bae86763b541d373469.1522102887.git.joe@perches.com Signed-off-by: Joe Perches <joe@perches.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Revert "mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE"Joonsoo Kim2018-05-241-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This reverts the following commits that change CMA design in MM. 3d2054ad8c2d ("ARM: CMA: avoid double mapping to the CMA area if CONFIG_HIGHMEM=y") 1d47a3ec09b5 ("mm/cma: remove ALLOC_CMA") bad8c6c0b114 ("mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE") Ville reported a following error on i386. Inode-cache hash table entries: 65536 (order: 6, 262144 bytes) microcode: microcode updated early to revision 0x4, date = 2013-06-28 Initializing CPU#0 Initializing HighMem for node 0 (000377fe:00118000) Initializing Movable for node 0 (00000001:00118000) BUG: Bad page state in process swapper pfn:377fe page:f53effc0 count:0 mapcount:-127 mapping:00000000 index:0x0 flags: 0x80000000() raw: 80000000 00000000 00000000 ffffff80 00000000 00000100 00000200 00000001 page dumped because: nonzero mapcount Modules linked in: CPU: 0 PID: 0 Comm: swapper Not tainted 4.17.0-rc5-elk+ #145 Hardware name: Dell Inc. Latitude E5410/03VXMC, BIOS A15 07/11/2013 Call Trace: dump_stack+0x60/0x96 bad_page+0x9a/0x100 free_pages_check_bad+0x3f/0x60 free_pcppages_bulk+0x29d/0x5b0 free_unref_page_commit+0x84/0xb0 free_unref_page+0x3e/0x70 __free_pages+0x1d/0x20 free_highmem_page+0x19/0x40 add_highpages_with_active_regions+0xab/0xeb set_highmem_pages_init+0x66/0x73 mem_init+0x1b/0x1d7 start_kernel+0x17a/0x363 i386_start_kernel+0x95/0x99 startup_32_smp+0x164/0x168 The reason for this error is that the span of MOVABLE_ZONE is extended to whole node span for future CMA initialization, and, normal memory is wrongly freed here. I submitted the fix and it seems to work, but, another problem happened. It's so late time to fix the later problem so I decide to reverting the series. Reported-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Acked-by: Laura Abbott <labbott@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/cma: remove ALLOC_CMAJoonsoo Kim2018-04-111-3/+1
| | | | | | | | | | | | | | | | | | | | | | | | | Now, all reserved pages for CMA region are belong to the ZONE_MOVABLE and it only serves for a request with GFP_HIGHMEM && GFP_MOVABLE. Therefore, we don't need to maintain ALLOC_CMA at all. Link: http://lkml.kernel.org/r/1512114786-5085-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Tested-by: Tony Lindgren <tony@atomide.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, migrate: remove reason argument from new_page_tMichal Hocko2018-04-111-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | No allocation callback is using this argument anymore. new_page_node used to use this parameter to convey node_id resp. migration error up to move_pages code (do_move_page_to_node_array). The error status never made it into the final status field and we have a better way to communicate node id to the status field now. All other allocation callbacks simply ignored the argument so we can drop it finally. [mhocko@suse.com: fix migration callback] Link: http://lkml.kernel.org/r/20180105085259.GH2801@dhcp22.suse.cz [akpm@linux-foundation.org: fix alloc_misplaced_dst_page()] [mhocko@kernel.org: fix build] Link: http://lkml.kernel.org/r/20180103091134.GB11319@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20180103082555.14592-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: kernel-doc: add missing parameter descriptionsMike Rapoport2018-04-061-0/+1
| | | | | | | | Link: http://lkml.kernel.org/r/1519585191-10180-4-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: drain pcps for zone when kcompactd failsDavid Rientjes2018-04-061-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It's possible for free pages to become stranded on per-cpu pagesets (pcps) that, if drained, could be merged with buddy pages on the zone's free area to form large order pages, including up to MAX_ORDER. Consider a verbose example using the tools/vm/page-types tool at the beginning of a ZONE_NORMAL ('B' indicates a buddy page and 'S' indicates a slab page). Pages on pcps do not have any page flags set. 109954 1 _______S________________________________________________________ 109955 2 __________B_____________________________________________________ 109957 1 ________________________________________________________________ 109958 1 __________B_____________________________________________________ 109959 7 ________________________________________________________________ 109960 1 __________B_____________________________________________________ 109961 9 ________________________________________________________________ 10996a 1 __________B_____________________________________________________ 10996b 3 ________________________________________________________________ 10996e 1 __________B_____________________________________________________ 10996f 1 ________________________________________________________________ ... 109f8c 1 __________B_____________________________________________________ 109f8d 2 ________________________________________________________________ 109f8f 2 __________B_____________________________________________________ 109f91 f ________________________________________________________________ 109fa0 1 __________B_____________________________________________________ 109fa1 7 ________________________________________________________________ 109fa8 1 __________B_____________________________________________________ 109fa9 1 ________________________________________________________________ 109faa 1 __________B_____________________________________________________ 109fab 1 _______S________________________________________________________ The compaction migration scanner is attempting to defragment this memory since it is at the beginning of the zone. It has done so quite well, all movable pages have been migrated. From pfn [0x109955, 0x109fab), there are only buddy pages and pages without flags set. These pages may be stranded on pcps that could otherwise allow this memory to be coalesced if freed back to the zone free area. It is possible that some of these pages may not be on pcps and that something has called alloc_pages() and used the memory directly, but we rely on the absence of __GFP_MOVABLE in these cases to allocate from MIGATE_UNMOVABLE pageblocks to try to keep these MIGRATE_MOVABLE pageblocks as free as possible. These buddy and pcp pages, spanning 1,621 pages, could be coalesced and allow for three transparent hugepages to be dynamically allocated. Running the numbers for all such spans on the system, it was found that there were over 400 such spans of only buddy pages and pages without flags set at the time this /proc/kpageflags sample was collected. Without this support, there were _no_ order-9 or order-10 pages free. When kcompactd fails to defragment memory such that a cc.order page can be allocated, drain all pcps for the zone back to the buddy allocator so this stranding cannot occur. Compaction for that order will subsequently be deferred, which acts as a ratelimit on this drain. Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1803010340100.88270@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/compaction.c: fix comment for try_to_compact_pages()Yang Shi2018-02-011-1/+1
| | | | | | | | | | | | | | | | "mode" argument is not used by try_to_compact_pages() and sub functions anymore, it has been replaced by "prio". Fix the comment to explain the use of "prio" argument. Link: http://lkml.kernel.org/r/1515801336-20611-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: remove unneeded pageblock_skip_persistent() checksVlastimil Babka2017-11-181-15/+3
| | | | | | | | | | | | | | | | | | | | | | Commit f3c931633a59 ("mm, compaction: persistently skip hugetlbfs pageblocks") has introduced pageblock_skip_persistent() checks into migration and free scanners, to make sure pageblocks that should be persistently skipped are marked as such, regardless of the ignore_skip_hint flag. Since the previous patch introduced a new no_set_skip_hint flag, the ignore flag no longer prevents marking pageblocks as skipped. Therefore we can remove the special cases. The relevant pageblocks will be marked as skipped by the common logic which marks each pageblock where no page could be isolated. This makes the code simpler. Link: http://lkml.kernel.org/r/20171102121706.21504-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: split off flag for not updating skip hintsVlastimil Babka2017-11-181-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | Pageblock skip hints were added as a heuristic for compaction, which shares core code with CMA. Since CMA reliability would suffer from the heuristics, compact_control flag ignore_skip_hint was added for the CMA use case. Since 6815bf3f233e ("mm/compaction: respect ignore_skip_hint in update_pageblock_skip") the flag also means that CMA won't *update* the skip hints in addition to ignoring them. Today, direct compaction can also ignore the skip hints in the last resort attempt, but there's no reason not to set them when isolation fails in such case. Thus, this patch splits off a new no_set_skip_hint flag to avoid the updating, which only CMA sets. This should improve the heuristics a bit, and allow us to simplify the persistent skip bit handling as the next step. Link: http://lkml.kernel.org/r/20171102121706.21504-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: extend pageblock_skip_persistent() to all compound pagesVlastimil Babka2017-11-181-11/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | pageblock_skip_persistent() checks for HugeTLB pages of pageblock order. When clearing pageblock skip bits for compaction, the bits are not cleared for such pageblocks, because they cannot contain base pages suitable for migration, nor free pages to use as migration targets. This optimization can be simply extended to all compound pages of order equal or larger than pageblock order, because migrating such pages (if they support it) cannot help sub-pageblock fragmentation. This includes THP's and also gigantic HugeTLB pages, which the current implementation doesn't persistently skip due to a strict pageblock_order equality check and not recognizing tail pages. While THP pages are generally less "persistent" than HugeTLB, we can still expect that if a THP exists at the point of __reset_isolation_suitable(), it will exist also during the subsequent compaction run. The time difference here could be actually smaller than between a compaction run that sets a (non-persistent) skip bit on a THP, and the next compaction run that observes it. Link: http://lkml.kernel.org/r/20171102121706.21504-1-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: persistently skip hugetlbfs pageblocksDavid Rientjes2017-11-181-12/+44
| | | | | | | | | | | | | | | | | | | | | | | | | | It is pointless to migrate hugetlb memory as part of memory compaction if the hugetlb size is equal to the pageblock order. No defragmentation is occurring in this condition. It is also pointless to for the freeing scanner to scan a pageblock where a hugetlb page is pinned. Unconditionally skip these pageblocks, and do so peristently so that they are not rescanned until it is observed that these hugepages are no longer pinned. It would also be possible to do this by involving the hugetlb subsystem in marking pageblocks to no longer be skipped when they hugetlb pages are freed. This is a simple solution that doesn't involve any additional subsystems in pageblock skip manipulation. [rientjes@google.com: fix build] Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708201734390.117182@chino.kir.corp.google.com Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708151639130.106658@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Tested-by: Michal Hocko <mhocko@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: kcompactd should not ignore pageblock skipDavid Rientjes2017-11-181-2/+1
| | | | | | | | | | | | | | | | | | | | Kcompactd is needlessly ignoring pageblock skip information. It is doing MIGRATE_SYNC_LIGHT compaction, which is no more powerful than MIGRATE_SYNC compaction. If compaction recently failed to isolate memory from a set of pageblocks, there is nothing to indicate that kcompactd will be able to do so, or that it is beneficial from attempting to isolate memory. Use the pageblock skip hint to avoid rescanning pageblocks needlessly until that information is reset. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708151638550.106658@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman2017-11-021-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* mm,compaction: serialize waitqueue_active() checks (for real)Davidlohr Bueso2017-10-041-8/+5
| | | | | | | | | | | | | | | | | | Andrea brought to my attention that the L->{L,S} guarantees are completely bogus for this case. I was looking at the diagram, from the offending commit, when that _is_ the race, we had the load reordered already. What we need is at least S->L semantics, thus simply use wq_has_sleeper() to serialize the call for good. Link: http://lkml.kernel.org/r/20170914175313.GB811@linux-80c1.suse Fixes: 46acef048a6 (mm,compaction: serialize waitqueue_active() checks) Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Reported-by: Andrea Parri <parri.andrea@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: skip over holes in __reset_isolation_suitableMichal Hocko2017-07-071-3/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | __reset_isolation_suitable walks the whole zone pfn range and it tries to jump over holes by checking the zone for each page. It might still stumble over offline pages, though. Skip those by checking pfn_to_online_page() Link: http://lkml.kernel.org/r/20170515085827.16474-9-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: finish whole pageblock to reduce fragmentationVlastimil Babka2017-05-091-2/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The main goal of direct compaction is to form a high-order page for allocation, but it should also help against long-term fragmentation when possible. Most lower-than-pageblock-order compactions are for non-movable allocations, which means that if we compact in a movable pageblock and terminate as soon as we create the high-order page, it's unlikely that the fallback heuristics will claim the whole block. Instead there might be a single unmovable page in a pageblock full of movable pages, and the next unmovable allocation might pick another pageblock and increase long-term fragmentation. To help against such scenarios, this patch changes the termination criteria for compaction so that the current pageblock is finished even though the high-order page already exists. Note that it might be possible that the high-order page formed elsewhere in the zone due to parallel activity, but this patch doesn't try to detect that. This is only done with sync compaction, because async compaction is limited to pageblock of the same migratetype, where it cannot result in a migratetype fallback. (Async compaction also eagerly skips order-aligned blocks where isolation fails, which is against the goal of migrating away as much of the pageblock as possible.) As a result of this patch, long-term memory fragmentation should be reduced. In testing based on 4.9 kernel with stress-highalloc from mmtests configured for order-4 GFP_KERNEL allocations, this patch has reduced the number of unmovable allocations falling back to movable pageblocks by 20%. The number Link: http://lkml.kernel.org/r/20170307131545.28577-9-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: restrict async compaction to pageblocks of same migratetypeVlastimil Babka2017-05-091-2/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The migrate scanner in async compaction is currently limited to MIGRATE_MOVABLE pageblocks. This is a heuristic intended to reduce latency, based on the assumption that non-MOVABLE pageblocks are unlikely to contain movable pages. However, with the exception of THP's, most high-order allocations are not movable. Should the async compaction succeed, this increases the chance that the non-MOVABLE allocations will fallback to a MOVABLE pageblock, making the long-term fragmentation worse. This patch attempts to help the situation by changing async direct compaction so that the migrate scanner only scans the pageblocks of the requested migratetype. If it's a non-MOVABLE type and there are such pageblocks that do contain movable pages, chances are that the allocation can succeed within one of such pageblocks, removing the need for a fallback. If that fails, the subsequent sync attempt will ignore this restriction. In testing based on 4.9 kernel with stress-highalloc from mmtests configured for order-4 GFP_KERNEL allocations, this patch has reduced the number of unmovable allocations falling back to movable pageblocks by 30%. The number of movable allocations falling back is reduced by 12%. Link: http://lkml.kernel.org/r/20170307131545.28577-8-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: add migratetype to compact_controlVlastimil Babka2017-05-091-8/+7
| | | | | | | | | | | | | | Preparation patch. We are going to need migratetype at lower layers than compact_zone() and compact_finished(). Link: http://lkml.kernel.org/r/20170307131545.28577-7-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: change migrate_async_suitable() to suitable_migration_source()Vlastimil Babka2017-05-091-8/+11
| | | | | | | | | | | | | | Preparation for making the decisions more complex and depending on compact_control flags. No functional change. Link: http://lkml.kernel.org/r/20170307131545.28577-6-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: remove redundant watermark check in compact_finished()Vlastimil Babka2017-05-091-8/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | When detecting whether compaction has succeeded in forming a high-order page, __compact_finished() employs a watermark check, followed by an own search for a suitable page in the freelists. This is not ideal for two reasons: - The watermark check also searches high-order freelists, but has a less strict criteria wrt fallback. It's therefore redundant and waste of cycles. This was different in the past when high-order watermark check attempted to apply reserves to high-order pages. - The watermark check might actually fail due to lack of order-0 pages. Compaction can't help with that, so there's no point in continuing because of that. It's possible that high-order page still exists and it terminates. This patch therefore removes the watermark check. This should save some cycles and terminate compaction sooner in some cases. Link: http://lkml.kernel.org/r/20170307131545.28577-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/compaction: ignore block suitable after check large free pageYisheng Xie2017-05-041-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | By reviewing code, I find that if the migrate target is a large free page and we ignore suitable, it may splite large target free page into smaller block which is not good for defrag. So move the ignore block suitable after check large free page. As Vlastimil pointed out in RFC version that this patch is just based on logical analyses which might be better for future-proofing the function and it is most likely won't have any visible effect right now, for direct compaction shouldn't have to be called if there's a >=pageblock_order page already available. Link: http://lkml.kernel.org/r/1489490743-5364-1-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* sched/headers: Prepare to move signal wakeup & sigpending methods from ↵Ingo Molnar2017-03-021-0/+1
| | | | | | | | | | | | | <linux/sched.h> into <linux/sched/signal.h> Fix up affected files that include this signal functionality via sched.h. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
* mm/migration: make isolate_movable_page() return int typeYisheng Xie2017-02-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "HWPOISON: soft offlining for non-lru movable page", v6. After Minchan's commit bda807d44454 ("mm: migrate: support non-lru movable page migration"), some type of non-lru page like zsmalloc and virtio-balloon page also support migration. Therefore, we can: 1) soft offlining no-lru movable pages, which means when memory corrected errors occur on a non-lru movable page, we can stop to use it by migrating data onto another page and disable the original (maybe half-broken) one. 2) enable memory hotplug for non-lru movable pages, i.e. we may offline blocks, which include such pages, by using non-lru page migration. This patchset is heavily dependent on non-lru movable page migration. This patch (of 4): Change the return type of isolate_movable_page() from bool to int. It will return 0 when isolate movable page successfully, and return -EBUSY when it isolates failed. There is no functional change within this patch but prepare for later patch. [xieyisheng1@huawei.com: v6] Link: http://lkml.kernel.org/r/1486108770-630-2-git-send-email-xieyisheng1@huawei.com Link: http://lkml.kernel.org/r/1485867981-16037-2-git-send-email-ysxie@foxmail.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Suggested-by: Michal Hocko <mhocko@kernel.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm,compaction: serialize waitqueue_active() checksDavidlohr Bueso2017-02-231-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Without a memory barrier, the following race can occur with a high-order allocation: wakeup_kcompactd(order == 1) kcompactd() [L] waitqueue_active(kcompactd_wait) [S] prepare_to_wait_event(kcompactd_wait) [L] (kcompactd_max_order == 0) [S] kcompactd_max_order = order; schedule() Where the waitqueue_active() check is speculatively re-ordered to before setting the actual condition (max_order), not seeing the threads that's going to block; making us miss a wakeup. There are a couple of options to fix this, including calling wq_has_sleepers() which adds a full barrier, or unconditionally doing the wake_up_interruptible() and serialize on the q->lock. However, to make use of the control dependency, we just need to add L->L guarantees. While this bug is theoretical, there have been other offenders of the lockless waitqueue_active() in the past -- this is also documented in the call itself. Link: http://lkml.kernel.org/r/1483975528-24342-1-git-send-email-dave@stgolabs.net Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: add vmstats for kcompactd workDavid Rientjes2017-02-231-3/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | A "compact_daemon_wake" vmstat exists that represents the number of times kcompactd has woken up. This doesn't represent how much work it actually did, though. It's useful to understand how much compaction work is being done by kcompactd versus other methods such as direct compaction and explicitly triggered per-node (or system) compaction. This adds two new vmstats: "compact_daemon_migrate_scanned" and "compact_daemon_free_scanned" to represent the number of pages kcompactd has scanned as part of its migration scanner and freeing scanner, respectively. These values are still accounted for in the general "compact_migrate_scanned" and "compact_free_scanned" for compatibility. It could be argued that explicitly triggered compaction could also be tracked separately, and that could be added if others find it useful. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1612071749390.69852@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: allow compaction for GFP_NOFS requestsMichal Hocko2016-12-151-3/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | compaction has been disabled for GFP_NOFS and GFP_NOIO requests since the direct compaction was introduced by commit 56de7263fcf3 ("mm: compaction: direct compact when a high-order allocation fails"). The main reason is that the migration of page cache pages might recurse back to fs/io layer and we could potentially deadlock. This is overly conservative because all the anonymous memory is migrateable in the GFP_NOFS context just fine. This might be a large portion of the memory in many/most workkloads. Remove the GFP_NOFS restriction and make sure that we skip all fs pages (those with a mapping) while isolating pages to be migrated. We cannot consider clean fs pages because they might need a metadata update so only isolate pages without any mapping for nofs requests. The effect of this patch will be probably very limited in many/most workloads because higher order GFP_NOFS requests are quite rare, although different configurations might lead to very different results. David Chinner has mentioned a heavy metadata workload with 64kB block which to quote him: : Unfortunately, there was an era of cargo cult configuration tweaks in the : Ceph community that has resulted in a large number of production machines : with XFS filesystems configured this way. And a lot of them store large : numbers of small files and run under significant sustained memory : pressure. : : I slowly working towards getting rid of these high order allocations and : replacing them with the equivalent number of single page allocations, but : I haven't got that (complex) change working yet. We can do the following to simulate that workload: $ mkfs.xfs -f -n size=64k <dev> $ mount <dev> /mnt/scratch $ time ./fs_mark -D 10000 -S0 -n 100000 -s 0 -L 32 \ -d /mnt/scratch/0 -d /mnt/scratch/1 \ -d /mnt/scratch/2 -d /mnt/scratch/3 \ -d /mnt/scratch/4 -d /mnt/scratch/5 \ -d /mnt/scratch/6 -d /mnt/scratch/7 \ -d /mnt/scratch/8 -d /mnt/scratch/9 \ -d /mnt/scratch/10 -d /mnt/scratch/11 \ -d /mnt/scratch/12 -d /mnt/scratch/13 \ -d /mnt/scratch/14 -d /mnt/scratch/15 and indeed is hammers the system with many high order GFP_NOFS requests as per a simle tracepoint during the load: $ echo '!(gfp_flags & 0x80) && (gfp_flags &0x400000)' > $TRACE_MNT/events/kmem/mm_page_alloc/filter I am getting 5287609 order=0 37 order=1 1594905 order=2 3048439 order=3 6699207 order=4 66645 order=5 My testing was done in a kvm guest so performance numbers should be taken with a grain of salt but there seems to be a difference when the patch is applied: * Original kernel FSUse% Count Size Files/sec App Overhead 1 1600000 0 4300.1 20745838 3 3200000 0 4239.9 23849857 5 4800000 0 4243.4 25939543 6 6400000 0 4248.4 19514050 8 8000000 0 4262.1 20796169 9 9600000 0 4257.6 21288675 11 11200000 0 4259.7 19375120 13 12800000 0 4220.7 22734141 14 14400000 0 4238.5 31936458 16 16000000 0 4231.5 23409901 18 17600000 0 4045.3 23577700 19 19200000 0 2783.4 58299526 21 20800000 0 2678.2 40616302 23 22400000 0 2693.5 83973996 and xfs complaining about memory allocation not making progress [ 2304.372647] XFS: fs_mark(3289) possible memory allocation deadlock size 65624 in kmem_alloc (mode:0x2408240) [ 2304.443323] XFS: fs_mark(3285) possible memory allocation deadlock size 65728 in kmem_alloc (mode:0x2408240) [ 4796.772477] XFS: fs_mark(3424) possible memory allocation deadlock size 46936 in kmem_alloc (mode:0x2408240) [ 4796.775329] XFS: fs_mark(3423) possible memory allocation deadlock size 51416 in kmem_alloc (mode:0x2408240) [ 4797.388808] XFS: fs_mark(3424) possible memory allocation deadlock size 65728 in kmem_alloc (mode:0x2408240) * Patched kernel FSUse% Count Size Files/sec App Overhead 1 1600000 0 4289.1 19243934 3 3200000 0 4241.6 32828865 5 4800000 0 4248.7 32884693 6 6400000 0 4314.4 19608921 8 8000000 0 4269.9 24953292 9 9600000 0 4270.7 33235572 11 11200000 0 4346.4 40817101 13 12800000 0 4285.3 29972397 14 14400000 0 4297.2 20539765 16 16000000 0 4219.6 18596767 18 17600000 0 4273.8 49611187 19 19200000 0 4300.4 27944451 21 20800000 0 4270.6 22324585 22 22400000 0 4317.6 22650382 24 24000000 0 4065.2 22297964 So the dropdown at Count 19200000 didn't happen and there was only a single warning about allocation not making progress [ 3063.815003] XFS: fs_mark(3272) possible memory allocation deadlock size 65624 in kmem_alloc (mode:0x2408240) This suggests that the patch has helped even though there is not all that much of anonymous memory as the workload mostly generates fs metadata. I assume the success rate would be higher with more anonymous memory which should be the case in many workloads. [akpm@linux-foundation.org: fix comment] Link: http://lkml.kernel.org/r/20161012114721.31853-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'akpm' (patches from Andrew)Linus Torvalds2016-12-131-22/+3
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Merge updates from Andrew Morton: - various misc bits - most of MM (quite a lot of MM material is awaiting the merge of linux-next dependencies) - kasan - printk updates - procfs updates - MAINTAINERS - /lib updates - checkpatch updates * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits) init: reduce rootwait polling interval time to 5ms binfmt_elf: use vmalloc() for allocation of vma_filesz checkpatch: don't emit unified-diff error for rename-only patches checkpatch: don't check c99 types like uint8_t under tools checkpatch: avoid multiple line dereferences checkpatch: don't check .pl files, improve absolute path commit log test scripts/checkpatch.pl: fix spelling checkpatch: don't try to get maintained status when --no-tree is given lib/ida: document locking requirements a bit better lib/rbtree.c: fix typo in comment of ____rb_erase_color lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM MAINTAINERS: add drm and drm/i915 irc channels MAINTAINERS: add "C:" for URI for chat where developers hang out MAINTAINERS: add drm and drm/i915 bug filing info MAINTAINERS: add "B:" for URI where to file bugs get_maintainer: look for arbitrary letter prefixes in sections printk: add Kconfig option to set default console loglevel printk/sound: handle more message headers printk/btrfs: handle more message headers printk/kdb: handle more message headers ...
| * mm, compaction: fix NR_ISOLATED_* stats for pfn based migrationMing Ling2016-12-131-22/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since commit bda807d44454 ("mm: migrate: support non-lru movable page migration") isolate_migratepages_block) can isolate !PageLRU pages which would acct_isolated account as NR_ISOLATED_*. Accounting these non-lru pages NR_ISOLATED_{ANON,FILE} doesn't make any sense and it can misguide heuristics based on those counters such as pgdat_reclaimable_pages resp. too_many_isolated which would lead to unexpected stalls during the direct reclaim without any good reason. Note that __alloc_contig_migrate_range can isolate a lot of pages at once. On mobile devices such as 512M ram android Phone, it may use a big zram swap. In some cases zram(zsmalloc) uses too many non-lru but migratedable pages, such as: MemTotal: 468148 kB Normal free:5620kB Free swap:4736kB Total swap:409596kB ZRAM: 164616kB(zsmalloc non-lru pages) active_anon:60700kB inactive_anon:60744kB active_file:34420kB inactive_file:37532kB Fix this by only accounting lru pages to NR_ISOLATED_* in isolate_migratepages_block right after they were isolated and we still know they were on LRU. Drop acct_isolated because it is called after the fact and we've lost that information. Batching per-cpu counter doesn't make much improvement anyway. Also make sure that we uncharge only LRU pages when putting them back on the LRU in putback_movable_pages resp. when unmap_and_move migrates the page. [mhocko@suse.com: replace acct_isolated() with direct counting] Fixes: bda807d44454 ("mm: migrate: support non-lru movable page migration") Link: http://lkml.kernel.org/r/20161019080240.9682-1-mhocko@kernel.org Signed-off-by: Ming Ling <ming.ling@spreadtrum.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm/compaction: Convert to hotplug state machineAnna-Maria Gleixner2016-12-021-13/+18
|/ | | | | | | | | | | | | | | | | Install the callbacks via the state machine. Should the hotplug init fail then no threads are spawned. Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: linux-mm@kvack.org Cc: rt@linutronix.de Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20161126231350.10321-15-bigeasy@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* mm, compaction: restrict fragindex to costly ordersVlastimil Babka2016-10-081-2/+7
| | | | | | | | | | | | | | | | | | | | | | | Fragmentation index and the vm.extfrag_threshold sysctl is meant as a heuristic to prevent excessive compaction for costly orders (i.e. THP). It's unlikely to make any difference for non-costly orders, especially with the default threshold. But we cannot afford any uncertainty for the non-costly orders where the only alternative to successful reclaim/compaction is OOM. After the recent patches we are guaranteed maximum effort without heuristics from compaction before deciding OOM, and fragindex is the last remaining heuristic. Therefore skip fragindex altogether for non-costly orders. Suggested-by: Michal Hocko <mhocko@suse.com> Link: http://lkml.kernel.org/r/20160926162025.21555-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: ignore fragindex from compaction_zonelist_suitable()Vlastimil Babka2016-10-081-17/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | The compaction_zonelist_suitable() function tries to determine if compaction will be able to proceed after sufficient reclaim, i.e. whether there are enough reclaimable pages to provide enough order-0 freepages for compaction. This addition of reclaimable pages to the free pages works well for the order-0 watermark check, but in the fragmentation index check we only consider truly free pages. Thus we can get fragindex value close to 0 which indicates failure do to lack of memory, and wrongly decide that compaction won't be suitable even after reclaim. Instead of trying to somehow adjust fragindex for reclaimable pages, let's just skip it from compaction_zonelist_suitable(). Link: http://lkml.kernel.org/r/20160926162025.21555-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: make full priority ignore pageblock suitabilityVlastimil Babka2016-10-081-3/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Several people have reported premature OOMs for order-2 allocations (stack) due to OOM rework in 4.7. In the scenario (parallel kernel build and dd writing to two drives) many pageblocks get marked as Unmovable and compaction free scanner struggles to isolate free pages. Joonsoo Kim pointed out that the free scanner skips pageblocks that are not movable to prevent filling them and forcing non-movable allocations to fallback to other pageblocks. Such heuristic makes sense to help prevent long-term fragmentation, but premature OOMs are relatively more urgent problem. As a compromise, this patch disables the heuristic only for the ultimate compaction priority. Link: http://lkml.kernel.org/r/20160906135258.18335-5-vbabka@suse.cz Reported-by: Ralf-Peter Rohbeck <Ralf-Peter.Rohbeck@quantum.com> Reported-by: Arkadiusz Miskiewicz <a.miskiewicz@gmail.com> Reported-by: Olaf Hering <olaf@aepfle.de> Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: require only min watermarks for non-costly ordersVlastimil Babka2016-10-081-1/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The __compaction_suitable() function checks the low watermark plus a compact_gap() gap to decide if there's enough free memory to perform compaction. Then __isolate_free_page uses low watermark check to decide if particular free page can be isolated. In the latter case, using low watermark is needlessly pessimistic, as the free page isolations are only temporary. For __compaction_suitable() the higher watermark makes sense for high-order allocations where more freepages increase the chance of success, and we can typically fail with some order-0 fallback when the system is struggling to reach that watermark. But for low-order allocation, forming the page should not be that hard. So using low watermark here might just prevent compaction from even trying, and eventually lead to OOM killer even if we are above min watermarks. So after this patch, we use min watermark for non-costly orders in __compaction_suitable(), and for all orders in __isolate_free_page(). [vbabka@suse.cz: clarify __isolate_free_page() comment] Link: http://lkml.kernel.org/r/7ae4baec-4eca-e70b-2a69-94bea4fb19fa@suse.cz Link: http://lkml.kernel.org/r/20160810091226.6709-11-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: use proper alloc_flags in __compaction_suitable()Vlastimil Babka2016-10-081-2/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The __compaction_suitable() function checks the low watermark plus a compact_gap() gap to decide if there's enough free memory to perform compaction. This check uses direct compactor's alloc_flags, but that's wrong, since these flags are not applicable for freepage isolation. For example, alloc_flags may indicate access to memory reserves, making compaction proceed, and then fail watermark check during the isolation. A similar problem exists for ALLOC_CMA, which may be part of alloc_flags, but not during freepage isolation. In this case however it makes sense to use ALLOC_CMA both in __compaction_suitable() and __isolate_free_page(), since there's actually nothing preventing the freepage scanner to isolate from CMA pageblocks, with the assumption that a page that could be migrated once by compaction can be migrated also later by CMA allocation. Thus we should count pages in CMA pageblocks when considering compaction suitability and when isolating freepages. To sum up, this patch should remove some false positives from __compaction_suitable(), and allow compaction to proceed when free pages required for compaction reside in the CMA pageblocks. Link: http://lkml.kernel.org/r/20160810091226.6709-10-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: create compact_gap wrapperVlastimil Babka2016-10-081-4/+3
| | | | | | | | | | | | | | | | | | | | | Compaction uses a watermark gap of (2UL << order) pages at various places and it's not immediately obvious why. Abstract it through a compact_gap() wrapper to create a single place with a thorough explanation. [vbabka@suse.cz: clarify the comment of compact_gap()] Link: http://lkml.kernel.org/r/7b6aed1f-fdf8-2063-9ff4-bbe4de712d37@suse.cz Link: http://lkml.kernel.org/r/20160810091226.6709-9-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: use correct watermark when checking compaction successVlastimil Babka2016-10-081-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The __compact_finished() function uses low watermark in a check that has to pass if the direct compaction is to finish and allocation should succeed. This is too pessimistic, as the allocation will typically use min watermark. It may happen that during compaction, we drop below the low watermark (due to parallel activity), but still form the target high-order page. By checking against low watermark, we might needlessly continue compaction. Similarly, __compaction_suitable() uses low watermark in a check whether allocation can succeed without compaction. Again, this is unnecessarily pessimistic. After this patch, these check will use direct compactor's alloc_flags to determine the watermark, which is effectively the min watermark. Link: http://lkml.kernel.org/r/20160810091226.6709-8-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: add the ultimate direct compaction priorityVlastimil Babka2016-10-081-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | During reclaim/compaction loop, it's desirable to get a final answer from unsuccessful compaction so we can either fail the allocation or invoke the OOM killer. However, heuristics such as deferred compaction or pageblock skip bits can cause compaction to skip parts or whole zones and lead to premature OOM's, failures or excessive reclaim/compaction retries. To remedy this, we introduce a new direct compaction priority called COMPACT_PRIO_SYNC_FULL, which instructs direct compaction to: - ignore deferred compaction status for a zone - ignore pageblock skip hints - ignore cached scanner positions and scan the whole zone The new priority should get eventually picked up by should_compact_retry() and this should improve success rates for costly allocations using __GFP_REPEAT, such as hugetlbfs allocations, and reduce some corner-case OOM's for non-costly allocations. Link: http://lkml.kernel.org/r/20160810091226.6709-6-vbabka@suse.cz [vbabka@suse.cz: use the MIN_COMPACT_PRIORITY alias] Link: http://lkml.kernel.org/r/d443b884-87e7-1c93-8684-3a3a35759fb1@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: don't recheck watermarks after COMPACT_SUCCESSVlastimil Babka2016-10-081-8/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Joonsoo has reminded me that in a later patch changing watermark checks throughout compaction I forgot to update checks in try_to_compact_pages() and compactd_do_work(). Closer inspection however shows that they are redundant now in the success case, because compact_zone() now reliably reports this with COMPACT_SUCCESS. So effectively the checks just repeat (a subset) of checks that have just passed. So instead of checking watermarks again, just test the return value. Note it's also possible that compaction would declare failure e.g. because its find_suitable_fallback() is more strict than simple watermark check, and then the watermark check we are removing would then still succeed. After this patch this is not possible and it's arguably better, because for long-term fragmentation avoidance we should rather try a different zone than allocate with the unsuitable fallback. If compaction of all zones fail and the allocation is important enough, it will retry and succeed anyway. Also remove the stray "bool success" variable from kcompactd_do_work(). Link: http://lkml.kernel.org/r/20160810091226.6709-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: rename COMPACT_PARTIAL to COMPACT_SUCCESSVlastimil Babka2016-10-081-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | COMPACT_PARTIAL has historically meant that compaction returned after doing some work without fully compacting a zone. It however didn't distinguish if compaction terminated because it succeeded in creating the requested high-order page. This has changed recently and now we only return COMPACT_PARTIAL when compaction thinks it succeeded, or the high-order watermark check in compaction_suitable() passes and no compaction needs to be done. So at this point we can make the return value clearer by renaming it to COMPACT_SUCCESS. The next patch will remove some redundant tests for success where compaction just returned COMPACT_SUCCESS. Link: http://lkml.kernel.org/r/20160810091226.6709-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: cleanup unused functionsVlastimil Babka2016-10-081-43/+17
| | | | | | | | | | | | | | | | | | Since kswapd compaction moved to kcompactd, compact_pgdat() is not called anymore, so we remove it. The only caller of __compact_pgdat() is compact_node(), so we merge them and remove code that was only reachable from kswapd. Link: http://lkml.kernel.org/r/20160810091226.6709-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: make whole_zone flag ignore cached scanner positionsVlastimil Babka2016-10-081-22/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "make direct compaction more deterministic") This is mostly a followup to Michal's oom detection rework, which highlighted the need for direct compaction to provide better feedback in reclaim/compaction loop, so that it can reliably recognize when compaction cannot make further progress, and allocation should invoke OOM killer or fail. We've discussed this at LSF/MM [1] where I proposed expanding the async/sync migration mode used in compaction to more general "priorities". This patchset adds one new priority that just overrides all the heuristics and makes compaction fully scan all zones. I don't currently think that we need more fine-grained priorities, but we'll see. Other than that there's some smaller fixes and cleanups, mainly related to the THP-specific hacks. I've tested this with stress-highalloc in GFP_KERNEL order-4 and THP-like order-9 scenarios. There's some improvement for compaction stats for the order-4, which is likely due to the better watermarks handling. In the previous version I reported mostly noise wrt compaction stats, and decreased direct reclaim - now the reclaim is without difference. I believe this is due to the less aggressive compaction priority increase in patch 6. "before" is a mmotm tree prior to 4.7 release plus the first part of the series that was sent and merged separately before after order-4: Compaction stalls 27216 30759 Compaction success 19598 25475 Compaction failures 7617 5283 Page migrate success 370510 464919 Page migrate failure 25712 27987 Compaction pages isolated 849601 1041581 Compaction migrate scanned 143146541 101084990 Compaction free scanned 208355124 144863510 Compaction cost 1403 1210 order-9: Compaction stalls 7311 7401 Compaction success 1634 1683 Compaction failures 5677 5718 Page migrate success 194657 183988 Page migrate failure 4753 4170 Compaction pages isolated 498790 456130 Compaction migrate scanned 565371 524174 Compaction free scanned 4230296 4250744 Compaction cost 215 203 [1] https://lwn.net/Articles/684611/ This patch (of 11): A recent patch has added whole_zone flag that compaction sets when scanning starts from the zone boundary, in order to report that zone has been fully scanned in one attempt. For allocations that want to try really hard or cannot fail, we will want to introduce a mode where scanning whole zone is guaranteed regardless of the cached positions. This patch reuses the whole_zone flag in a way that if it's already passed true to compaction, the cached scanner positions are ignored. Employing this flag during reclaim/compaction loop will be done in the next patch. This patch however converts compaction invoked from userspace via procfs to use this flag. Before this patch, the cached positions were first reset to zone boundaries and then read back from struct zone, so there was a window where a parallel compaction could replace the reset values, making the manual compaction less effective. Using the flag instead of performing reset is more robust. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20160810091226.6709-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: simplify contended compaction handlingVlastimil Babka2016-07-291-59/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Async compaction detects contention either due to failing trylock on zone->lock or lru_lock, or by need_resched(). Since 1f9efdef4f3f ("mm, compaction: khugepaged should not give up due to need_resched()") the code got quite complicated to distinguish these two up to the __alloc_pages_slowpath() level, so different decisions could be taken for khugepaged allocations. After the recent changes, khugepaged allocations don't check for contended compaction anymore, so we again don't need to distinguish lock and sched contention, and simplify the current convoluted code a lot. However, I believe it's also possible to simplify even more and completely remove the check for contended compaction after the initial async compaction for costly orders, which was originally aimed at THP page fault allocations. There are several reasons why this can be done now: - with the new defaults, THP page faults no longer do reclaim/compaction at all, unless the system admin has overridden the default, or application has indicated via madvise that it can benefit from THP's. In both cases, it means that the potential extra latency is expected and worth the benefits. - even if reclaim/compaction proceeds after this patch where it previously wouldn't, the second compaction attempt is still async and will detect the contention and back off, if the contention persists - there are still heuristics like deferred compaction and pageblock skip bits in place that prevent excessive THP page fault latencies Link: http://lkml.kernel.org/r/20160721073614.24395-9-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: introduce direct compaction priorityVlastimil Babka2016-07-291-6/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | In the context of direct compaction, for some types of allocations we would like the compaction to either succeed or definitely fail while trying as hard as possible. Current async/sync_light migration mode is insufficient, as there are heuristics such as caching scanner positions, marking pageblocks as unsuitable or deferring compaction for a zone. At least the final compaction attempt should be able to override these heuristics. To communicate how hard compaction should try, we replace migration mode with a new enum compact_priority and change the relevant function signatures. In compact_zone_order() where struct compact_control is constructed, the priority is mapped to suitable control flags. This patch itself has no functional change, as the current priority levels are mapped back to the same migration modes as before. Expanding them will be done next. Note that !CONFIG_COMPACTION variant of try_to_compact_pages() is removed, as the only caller exists under CONFIG_COMPACTION. Link: http://lkml.kernel.org/r/20160721073614.24395-8-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, compaction: don't isolate PageWriteback pages in MIGRATE_SYNC_LIGHT modeHugh Dickins2016-07-291-1/+1
| | | | | | | | | | | | | | | | | | | At present MIGRATE_SYNC_LIGHT is allowing __isolate_lru_page() to isolate a PageWriteback page, which __unmap_and_move() then rejects with -EBUSY: of course the writeback might complete in between, but that's not what we usually expect, so probably better not to isolate it. When tested by stress-highalloc from mmtests, this has reduced the number of page migrate failures by 60-70%. Link: http://lkml.kernel.org/r/20160721073614.24395-2-vbabka@suse.cz Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove reclaim and compaction retry approximationsMel Gorman2016-07-291-19/+1
| | | | | | | | | | | | | | | | | | | If per-zone LRU accounting is available then there is no point approximating whether reclaim and compaction should retry based on pgdat statistics. This is effectively a revert of "mm, vmstat: remove zone and node double accounting by approximating retries" with the difference that inactive/active stats are still available. This preserves the history of why the approximation was retried and why it had to be reverted to handle OOM kills on 32-bit systems. Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, vmstat: remove zone and node double accounting by approximating retriesMel Gorman2016-07-291-1/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The number of LRU pages, dirty pages and writeback pages must be accounted for on both zones and nodes because of the reclaim retry logic, compaction retry logic and highmem calculations all depending on per-zone stats. Many lowmem allocations are immune from OOM kill due to a check in __alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit 03668b3ceb0c ("oom: avoid oom killer for lowmem allocations"). The exception is costly high-order allocations or allocations that cannot fail. If the __alloc_pages_may_oom avoids OOM-kill for low-order lowmem allocations then it would fall through to __alloc_pages_direct_compact. This patch will blindly retry reclaim for zone-constrained allocations in should_reclaim_retry up to MAX_RECLAIM_RETRIES. This is not ideal but without per-zone stats there are not many alternatives. The impact it that zone-constrained allocations may delay before considering the OOM killer. As there is no guarantee enough memory can ever be freed to satisfy compaction, this patch avoids retrying compaction for zone-contrained allocations. In combination, that means that the per-node stats can be used when deciding whether to continue reclaim using a rough approximation. While it is possible this will make the wrong decision on occasion, it will not infinite loop as the number of reclaim attempts is capped by MAX_RECLAIM_RETRIES. The final step is calculating the number of dirtyable highmem pages. As those calculations only care about the global count of file pages in highmem. This patch uses a global counter used instead of per-zone stats as it is sufficient. In combination, this allows the per-zone LRU and dirty state counters to be removed. [mgorman@techsingularity.net: fix acct_highmem_file_pages()] Link: http://lkml.kernel.org/r/1468853426-12858-4-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-35-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Suggested by: Michal Hocko <mhocko@kernel.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, vmscan: move LRU lists to nodeMel Gorman2016-07-291-9/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, vmscan: move lru_lock to the nodeMel Gorman2016-07-291-5/+5
| | | | | | | | | | | | | | | | | | | | | Node-based reclaim requires node-based LRUs and locking. This is a preparation patch that just moves the lru_lock to the node so later patches are easier to review. It is a mechanical change but note this patch makes contention worse because the LRU lock is hotter and direct reclaim and kswapd can contend on the same lock even when reclaiming from different zones. Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/compaction: remove unnecessary order check in try_to_compact_pages()Ganesh Mahendran2016-07-291-1/+1
| | | | | | | | | | | | | | | | The caller __alloc_pages_direct_compact() already checked (order == 0) so there's no need to check again. Link: http://lkml.kernel.org/r/1465973568-3496-1-git-send-email-opensource.ganesh@gmail.com Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>