summaryrefslogtreecommitdiffstats
path: root/mm/filemap.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* mm: filemap: fix mapping->nrpages double accounting in fuseJohannes Weiner2016-10-051-1/+0
| | | | | | | | | | | | | | | | | | | | | | | Commit 22f2ac51b6d6 ("mm: workingset: fix crash in shadow node shrinker caused by replace_page_cache_page()") switched replace_page_cache() from raw radix tree operations to page_cache_tree_insert() but didn't take into account that the latter function, unlike the raw radix tree op, handles mapping->nrpages. As a result, that counter is bumped for each page replacement rather than balanced out even. The mapping->nrpages counter is used to skip needless radix tree walks when invalidating, truncating, syncing inodes without pages, as well as statistics for userspace. Since the error is positive, we'll do more page cache tree walks than necessary; we won't miss a necessary one. And we'll report more buffer pages to userspace than there are. The error is limited to fuse inodes. Fixes: 22f2ac51b6d6 ("mm: workingset: fix crash in shadow node shrinker caused by replace_page_cache_page()") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: filemap: don't plant shadow entries without radix tree nodeJohannes Weiner2016-10-051-16/+30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When the underflow checks were added to workingset_node_shadow_dec(), they triggered immediately: kernel BUG at ./include/linux/swap.h:276! invalid opcode: 0000 [#1] SMP Modules linked in: isofs usb_storage fuse xt_CHECKSUM ipt_MASQUERADE nf_nat_masquerade_ipv4 tun nf_conntrack_netbios_ns nf_conntrack_broadcast ip6t_REJECT nf_reject_ipv6 soundcore wmi acpi_als pinctrl_sunrisepoint kfifo_buf tpm_tis industrialio acpi_pad pinctrl_intel tpm_tis_core tpm nfsd auth_rpcgss nfs_acl lockd grace sunrpc dm_crypt CPU: 0 PID: 20929 Comm: blkid Not tainted 4.8.0-rc8-00087-gbe67d60ba944 #1 Hardware name: System manufacturer System Product Name/Z170-K, BIOS 1803 05/06/2016 task: ffff8faa93ecd940 task.stack: ffff8faa7f478000 RIP: page_cache_tree_insert+0xf1/0x100 Call Trace: __add_to_page_cache_locked+0x12e/0x270 add_to_page_cache_lru+0x4e/0xe0 mpage_readpages+0x112/0x1d0 blkdev_readpages+0x1d/0x20 __do_page_cache_readahead+0x1ad/0x290 force_page_cache_readahead+0xaa/0x100 page_cache_sync_readahead+0x3f/0x50 generic_file_read_iter+0x5af/0x740 blkdev_read_iter+0x35/0x40 __vfs_read+0xe1/0x130 vfs_read+0x96/0x130 SyS_read+0x55/0xc0 entry_SYSCALL_64_fastpath+0x13/0x8f Code: 03 00 48 8b 5d d8 65 48 33 1c 25 28 00 00 00 44 89 e8 75 19 48 83 c4 18 5b 41 5c 41 5d 41 5e 5d c3 0f 0b 41 bd ef ff ff ff eb d7 <0f> 0b e8 88 68 ef ff 0f 1f 84 00 RIP page_cache_tree_insert+0xf1/0x100 This is a long-standing bug in the way shadow entries are accounted in the radix tree nodes. The shrinker needs to know when radix tree nodes contain only shadow entries, no pages, so node->count is split in half to count shadows in the upper bits and pages in the lower bits. Unfortunately, the radix tree implementation doesn't know of this and assumes all entries are in node->count. When there is a shadow entry directly in root->rnode and the tree is later extended, the radix tree implementation will copy that entry into the new node and and bump its node->count, i.e. increases the page count bits. Once the shadow gets removed and we subtract from the upper counter, node->count underflows and triggers the warning. Afterwards, without node->count reaching 0 again, the radix tree node is leaked. Limit shadow entries to when we have actual radix tree nodes and can count them properly. That means we lose the ability to detect refaults from files that had only the first page faulted in at eviction time. Fixes: 449dd6984d0e ("mm: keep page cache radix tree nodes in check") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-and-tested-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: workingset: fix crash in shadow node shrinker caused by ↵Johannes Weiner2016-10-011-57/+57
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | replace_page_cache_page() Antonio reports the following crash when using fuse under memory pressure: kernel BUG at /build/linux-a2WvEb/linux-4.4.0/mm/workingset.c:346! invalid opcode: 0000 [#1] SMP Modules linked in: all of them CPU: 2 PID: 63 Comm: kswapd0 Not tainted 4.4.0-36-generic #55-Ubuntu Hardware name: System manufacturer System Product Name/P8H67-M PRO, BIOS 3904 04/27/2013 task: ffff88040cae6040 ti: ffff880407488000 task.ti: ffff880407488000 RIP: shadow_lru_isolate+0x181/0x190 Call Trace: __list_lru_walk_one.isra.3+0x8f/0x130 list_lru_walk_one+0x23/0x30 scan_shadow_nodes+0x34/0x50 shrink_slab.part.40+0x1ed/0x3d0 shrink_zone+0x2ca/0x2e0 kswapd+0x51e/0x990 kthread+0xd8/0xf0 ret_from_fork+0x3f/0x70 which corresponds to the following sanity check in the shadow node tracking: BUG_ON(node->count & RADIX_TREE_COUNT_MASK); The workingset code tracks radix tree nodes that exclusively contain shadow entries of evicted pages in them, and this (somewhat obscure) line checks whether there are real pages left that would interfere with reclaim of the radix tree node under memory pressure. While discussing ways how fuse might sneak pages into the radix tree past the workingset code, Miklos pointed to replace_page_cache_page(), and indeed there is a problem there: it properly accounts for the old page being removed - __delete_from_page_cache() does that - but then does a raw raw radix_tree_insert(), not accounting for the replacement page. Eventually the page count bits in node->count underflow while leaving the node incorrectly linked to the shadow node LRU. To address this, make sure replace_page_cache_page() uses the tracked page insertion code, page_cache_tree_insert(). This fixes the page accounting and makes sure page-containing nodes are properly unlinked from the shadow node LRU again. Also, make the sanity checks a bit less obscure by using the helpers for checking the number of pages and shadows in a radix tree node. Fixes: 449dd6984d0e ("mm: keep page cache radix tree nodes in check") Link: http://lkml.kernel.org/r/20160919155822.29498-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Antonio SJ Musumeci <trapexit@spawn.link> Debugged-by: Miklos Szeredi <miklos@szeredi.hu> Cc: <stable@vger.kernel.org> [3.15+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* block/mm: make bdev_ops->rw_page() take a bool for read/writeJens Axboe2016-08-071-2/+2
| | | | | | | | | | | | | | Commit abf545484d31 changed it from an 'rw' flags type to the newer ops based interface, but now we're effectively leaking some bdev internals to the rest of the kernel. Since we only care about whether it's a read or a write at that level, just pass in a bool 'is_write' parameter instead. Then we can also move op_is_write() and friends back under CONFIG_BLOCK protection. Reviewed-by: Mike Christie <mchristi@redhat.com> Signed-off-by: Jens Axboe <axboe@fb.com>
* mm/block: convert rw_page users to bio op useMike Christie2016-08-041-3/+3
| | | | | | | | | | | | | | | | The rw_page users were not converted to use bio/req ops. As a result bdev_write_page is not passing down REQ_OP_WRITE and the IOs will be sent down as reads. Signed-off-by: Mike Christie <mchristi@redhat.com> Fixes: 4e1b2d52a80d ("block, fs, drivers: remove REQ_OP compat defs and related code") Modified by me to: 1) Drop op_flags passing into ->rw_page(), as we don't use it. 2) Make op_is_write() and friends safe to use for !CONFIG_BLOCK Signed-off-by: Jens Axboe <axboe@fb.com>
* Merge branch 'for-linus' of ↵Linus Torvalds2016-07-291-1/+2
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse Pull fuse updates from Miklos Szeredi: "This fixes error propagation from writeback to fsync/close for writeback cache mode as well as adding a missing capability flag to the INIT message. The rest are cleanups. (The commits are recent but all the code actually sat in -next for a while now. The recommits are due to conflict avoidance and the addition of Cc: stable@...)" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse: fuse: use filemap_check_errors() mm: export filemap_check_errors() to modules fuse: fix wrong assignment of ->flags in fuse_send_init() fuse: fuse_flush must check mapping->flags for errors fuse: fsync() did not return IO errors fuse: don't mess with blocking signals new helper: wait_event_killable_exclusive() fuse: improve aio directIO write performance for size extending writes
| * mm: export filemap_check_errors() to modulesMiklos Szeredi2016-07-291-1/+2
| | | | | | | | | | | | Can be used by fuse, btrfs and f2fs to replace opencoded variants. Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
* | mm: move most file-based accounting to the nodeMel Gorman2016-07-291-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are now a number of accounting oddities such as mapped file pages being accounted for on the node while the total number of file pages are accounted on the zone. This can be coped with to some extent but it's confusing so this patch moves the relevant file-based accounted. Due to throttling logic in the page allocator for reliable OOM detection, it is still necessary to track dirty and writeback pages on a per-zone basis. [mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting] Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm, vmscan: move lru_lock to the nodeMel Gorman2016-07-291-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Node-based reclaim requires node-based LRUs and locking. This is a preparation patch that just moves the lru_lock to the node so later patches are easier to review. It is a mechanical change but note this patch makes contention worse because the LRU lock is hotter and direct reclaim and kswapd can contend on the same lock even when reclaiming from different zones. Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | shmem: add huge pages supportKirill A. Shutemov2016-07-271-1/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Here's basic implementation of huge pages support for shmem/tmpfs. It's all pretty streight-forward: - shmem_getpage() allcoates huge page if it can and try to inserd into radix tree with shmem_add_to_page_cache(); - shmem_add_to_page_cache() puts the page onto radix-tree if there's space for it; - shmem_undo_range() removes huge pages, if it fully within range. Partial truncate of huge pages zero out this part of THP. This have visible effect on fallocate(FALLOC_FL_PUNCH_HOLE) behaviour. As we don't really create hole in this case, lseek(SEEK_HOLE) may have inconsistent results depending what pages happened to be allocated. - no need to change shmem_fault: core-mm will map an compound page as huge if VMA is suitable; Link: http://lkml.kernel.org/r/1466021202-61880-30-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | filemap: prepare find and delete operations for huge pagesKirill A. Shutemov2016-07-271-56/+122
| | | | | | | | | | | | | | | | | | | | | | | | | | | | For now, we would have HPAGE_PMD_NR entries in radix tree for every huge page. That's suboptimal and it will be changed to use Matthew's multi-order entries later. 'add' operation is not changed, because we don't need it to implement hugetmpfs: shmem uses its own implementation. Link: http://lkml.kernel.org/r/1466021202-61880-25-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: postpone page table allocation until we have page to mapKirill A. Shutemov2016-07-271-6/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The idea (and most of code) is borrowed again: from Hugh's patchset on huge tmpfs[1]. Instead of allocation pte page table upfront, we postpone this until we have page to map in hands. This approach opens possibility to map the page as huge if filesystem supports this. Comparing to Hugh's patch I've pushed page table allocation a bit further: into do_set_pte(). This way we can postpone allocation even in faultaround case without moving do_fault_around() after __do_fault(). do_set_pte() got renamed to alloc_set_pte() as it can allocate page table if required. [1] http://lkml.kernel.org/r/alpine.LSU.2.11.1502202015090.14414@eggly.anvils Link: http://lkml.kernel.org/r/1466021202-61880-10-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: introduce fault_envKirill A. Shutemov2016-07-271-14/+14
|/ | | | | | | | | | | | | | | | | | | | | | The idea borrowed from Peter's patch from patchset on speculative page faults[1]: Instead of passing around the endless list of function arguments, replace the lot with a single structure so we can change context without endless function signature changes. The changes are mostly mechanical with exception of faultaround code: filemap_map_pages() got reworked a bit. This patch is preparation for the next one. [1] http://lkml.kernel.org/r/20141020222841.302891540@infradead.org Link: http://lkml.kernel.org/r/1466021202-61880-9-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Revert "mm: make faultaround produce old ptes"Kirill A. Shutemov2016-06-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | This reverts commit 5c0a85fad949212b3e059692deecdeed74ae7ec7. The commit causes ~6% regression in unixbench. Let's revert it for now and consider other solution for reclaim problem later. Link: http://lkml.kernel.org/r/1465893750-44080-2-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: "Huang, Ying" <ying.huang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'dax-locking-for-4.7' of ↵Linus Torvalds2016-05-271-9/+21
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm Pull DAX locking updates from Ross Zwisler: "Filesystem DAX locking for 4.7 - We use a bit in an exceptional radix tree entry as a lock bit and use it similarly to how page lock is used for normal faults. This fixes races between hole instantiation and read faults of the same index. - Filesystem DAX PMD faults are disabled, and will be re-enabled when PMD locking is implemented" * tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: dax: Remove i_mmap_lock protection dax: Use radix tree entry lock to protect cow faults dax: New fault locking dax: Allow DAX code to replace exceptional entries dax: Define DAX lock bit for radix tree exceptional entry dax: Make huge page handling depend of CONFIG_BROKEN dax: Fix condition for filling of PMD holes
| * dax: New fault lockingJan Kara2016-05-191-2/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently DAX page fault locking is racy. CPU0 (write fault) CPU1 (read fault) __dax_fault() __dax_fault() get_block(inode, block, &bh, 0) -> not mapped get_block(inode, block, &bh, 0) -> not mapped if (!buffer_mapped(&bh)) if (vmf->flags & FAULT_FLAG_WRITE) get_block(inode, block, &bh, 1) -> allocates blocks if (page) -> no if (!buffer_mapped(&bh)) if (vmf->flags & FAULT_FLAG_WRITE) { } else { dax_load_hole(); } dax_insert_mapping() And we are in a situation where we fail in dax_radix_entry() with -EIO. Another problem with the current DAX page fault locking is that there is no race-free way to clear dirty tag in the radix tree. We can always end up with clean radix tree and dirty data in CPU cache. We fix the first problem by introducing locking of exceptional radix tree entries in DAX mappings acting very similarly to page lock and thus synchronizing properly faults against the same mapping index. The same lock can later be used to avoid races when clearing radix tree dirty tag. Reviewed-by: NeilBrown <neilb@suse.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
| * dax: Allow DAX code to replace exceptional entriesJan Kara2016-05-191-7/+14
| | | | | | | | | | | | | | | | | | | | | | | | Currently we forbid page_cache_tree_insert() to replace exceptional radix tree entries for DAX inodes. However to make DAX faults race free we will lock radix tree entries and when hole is created, we need to replace such locked radix tree entry with a hole page. So modify page_cache_tree_insert() to allow that. Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
* | radix-tree: introduce radix_tree_replace_clear_tags()Matthew Wilcox2016-05-211-20/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In addition to replacing the entry, we also clear all associated tags. This is really a one-off special for page_cache_tree_delete() which had far too much detailed knowledge about how the radix tree works. For efficiency, factor node_tag_clear() out of radix_tree_tag_clear() It can be used by radix_tree_delete_item() as well as radix_tree_replace_clear_tags(). Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.com> Cc: Neil Brown <neilb@suse.de> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: make faultaround produce old ptesKirill A. Shutemov2016-05-211-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, faultaround code produces young pte. This can screw up vmscan behaviour[1], as it makes vmscan think that these pages are hot and not push them out on first round. During sparse file access faultaround gets more pages mapped and all of them are young. Under memory pressure, this makes vmscan swap out anon pages instead, or to drop other page cache pages which otherwise stay resident. Modify faultaround to produce old ptes, so they can easily be reclaimed under memory pressure. This can to some extend defeat the purpose of faultaround on machines without hardware accessed bit as it will not help us with reducing the number of minor page faults. We may want to disable faultaround on such machines altogether, but that's subject for separate patchset. Minchan: "I tested 512M mmap sequential word read test on non-HW access bit system (i.e., ARM) and confirmed it doesn't increase minor fault any more. old: 4096 fault_around minor fault: 131291 elapsed time: 6747645 usec new: 65536 fault_around minor fault: 131291 elapsed time: 6709263 usec 0.56% benefit" [1] https://lkml.kernel.org/r/1460992636-711-1-git-send-email-vinmenon@codeaurora.org Link: http://lkml.kernel.org/r/1463488366-47723-1-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Minchan Kim <minchan@kernel.org> Tested-by: Minchan Kim <minchan@kernel.org> Acked-by: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: filemap: only do access activations on readsJohannes Weiner2016-05-211-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Andres observed that his database workload is struggling with the transaction journal creating pressure on frequently read pages. Access patterns like transaction journals frequently write the same pages over and over, but in the majority of cases those pages are never read back. There are no caching benefits to be had for those pages, so activating them and having them put pressure on pages that do benefit from caching is a bad choice. Leave page activations to read accesses and don't promote pages based on writes alone. It could be said that partially written pages do contain cache-worthy data, because even if *userspace* does not access the unwritten part, the kernel still has to read it from the filesystem for correctness. However, a counter argument is that these pages enjoy at least *some* protection over other inactive file pages through the writeback cache, in the sense that dirty pages are written back with a delay and cache reclaim leaves them alone until they have been written back to disk. Should that turn out to be insufficient and we see increased read IO from partial writes under memory pressure, we can always go back and update grab_cache_page_write_begin() to take (pos, len) so that it can tell partial writes from pages that don't need partial reads. But for now, keep it simple. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Andres Freund <andres@anarazel.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: workingset: only do workingset activations on readsRik van Riel2016-05-211-1/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is a follow-up to http://www.spinics.net/lists/linux-mm/msg101739.html where Andres reported his database workingset being pushed out by the minimum size enforcement of the inactive file list - currently 50% of cache - as well as repeatedly written file pages that are never actually read. Two changes fell out of the discussions. The first change observes that pages that are only ever written don't benefit from caching beyond what the writeback cache does for partial page writes, and so we shouldn't promote them to the active file list where they compete with pages whose cached data is actually accessed repeatedly. This change comes in two patches - one for in-cache write accesses and one for refaults triggered by writes, neither of which should promote a cache page. Second, with the refault detection we don't need to set 50% of the cache aside for used-once cache anymore since we can detect frequently used pages even when they are evicted between accesses. We can allow the active list to be bigger and thus protect a bigger workingset that isn't challenged by streamers. Depending on the access patterns, this can increase major faults during workingset transitions for better performance during stable phases. This patch (of 3): When rewriting a page, the data in that page is replaced with new data. This means that evicting something else from the active file list, in order to cache data that will be replaced by something else, is likely to be a waste of memory. It is better to save the active list for frequently read pages, because reads actually use the data that is in the page. This patch ignores partial writes, because it is unclear whether the complexity of identifying those is worth any potential performance gain obtained from better caching pages that see repeated partial writes at large enough intervals to not get caught by the use-twice promotion code used for the inactive file list. Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Andres Freund <andres@anarazel.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm/page_ref: use page_ref helper instead of direct modification of _countJoonsoo Kim2016-05-201-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | page_reference manipulation functions are introduced to track down reference count change of the page. Use it instead of direct modification of _count. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Sunil Goutham <sgoutham@cavium.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | fs: simplify the generic_write_sync prototypeChristoph Hellwig2016-05-021-7/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The kiocb already has the new position, so use that. The only interesting case is AIO, where we currently don't bother updating ki_pos. We're about to free the kiocb after we're done, so we might as well update it to make everyone's life simpler. While we're at it also return the bytes written argument passed in if we were successful so that the boilerplate error switch code in the callers can go away. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | fs: add IOCB_SYNC and IOCB_DSYNCChristoph Hellwig2016-05-021-1/+1
| | | | | | | | | | | | | | | | | | This will allow us to do per-I/O sync file writes, as required by a lot of fileservers or storage targets. XXX: Will need a few additional audits for O_DSYNC Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | direct-io: eliminate the offset argument to ->direct_IOChristoph Hellwig2016-05-021-3/+2
| | | | | | | | | | | | | | | | Including blkdev_direct_IO and dax_do_io. It has to be ki_pos to actually work, so eliminate the superflous argument. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | filemap: remove the pos argument to generic_file_direct_writeChristoph Hellwig2016-05-021-2/+3
| | | | | | | | | | Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | filemap: remove pos variables in generic_file_read_iterChristoph Hellwig2016-05-021-8/+7
|/ | | | | | | Just use ki_pos directly to make everyones life easier. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macrosKirill A. Shutemov2016-04-041-63/+63
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/filemap: generic_file_read_iter(): check for zero reads unconditionallyNicolai Stange2016-03-261-3/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If - generic_file_read_iter() gets called with a zero read length, - the read offset is at a page boundary, - IOCB_DIRECT is not set - and the page in question hasn't made it into the page cache yet, then do_generic_file_read() will trigger a readahead with a req_size hint of zero. Since roundup_pow_of_two(0) is undefined, UBSAN reports UBSAN: Undefined behaviour in include/linux/log2.h:63:13 shift exponent 64 is too large for 64-bit type 'long unsigned int' CPU: 3 PID: 1017 Comm: sa1 Tainted: G L 4.5.0-next-20160318+ #14 [...] Call Trace: [...] [<ffffffff813ef61a>] ondemand_readahead+0x3aa/0x3d0 [<ffffffff813ef61a>] ? ondemand_readahead+0x3aa/0x3d0 [<ffffffff813c73bd>] ? find_get_entry+0x2d/0x210 [<ffffffff813ef9c3>] page_cache_sync_readahead+0x63/0xa0 [<ffffffff813cc04d>] do_generic_file_read+0x80d/0xf90 [<ffffffff813cc955>] generic_file_read_iter+0x185/0x420 [...] [<ffffffff81510b06>] __vfs_read+0x256/0x3d0 [...] when get_init_ra_size() gets called from ondemand_readahead(). The net effect is that the initial readahead size is arch dependent for requested read lengths of zero: for example, since 1UL << (sizeof(unsigned long) * 8) evaluates to 1 on x86 while its result is 0 on ARMv7, the initial readahead size becomes 4 on the former and 0 on the latter. What's more, whether or not the file access timestamp is updated for zero length reads is decided differently for the two cases of IOCB_DIRECT being set or cleared: in the first case, generic_file_read_iter() explicitly skips updating that timestamp while in the latter case, it is always updated through the call to do_generic_file_read(). According to POSIX, zero length reads "do not modify the last data access timestamp" and thus, the IOCB_DIRECT behaviour is POSIXly correct. Let generic_file_read_iter() unconditionally check the requested read length at its entry and return immediately with success if it is zero. Signed-off-by: Nicolai Stange <nicstange@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: use radix_tree_iter_retry()Matthew Wilcox2016-03-171-36/+17
| | | | | | | | | | | | | | | Instead of a 'goto restart', we can now use radix_tree_iter_retry() to restart from our current position. This will make a difference when there are more ways to happen across an indirect pointer. And it eliminates some confusing gotos. [vbabka@suse.cz: remove now-obsolete-and-misleading comment] Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* radix_tree: add support for multi-order entriesMatthew Wilcox2016-03-171-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With huge pages, it is convenient to have the radix tree be able to return an entry that covers multiple indices. Previous attempts to deal with the problem have involved inserting N duplicate entries, which is a waste of memory and leads to problems trying to handle aliased tags, or probing the tree multiple times to find alternative entries which might cover the requested index. This approach inserts one canonical entry into the tree for a given range of indices, and may also insert other entries in order to ensure that lookups find the canonical entry. This solution only tolerates inserting powers of two that are greater than the fanout of the tree. If we wish to expand the radix tree's abilities to support large-ish pages that is less than the fanout at the penultimate level of the tree, then we would need to add one more step in lookup to ensure that any sibling nodes in the final level of the tree are dereferenced and we return the canonical entry that they reference. Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove unnecessary uses of lock_page_memcg()Johannes Weiner2016-03-161-6/+1
| | | | | | | | | | | | | | | There are several users that nest lock_page_memcg() inside lock_page() to prevent page->mem_cgroup from changing. But the page lock prevents pages from moving between cgroups, so that is unnecessary overhead. Remove lock_page_memcg() in contexts with locked contexts and fix the debug code in the page stat functions to be okay with the page lock. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: simplify lock_page_memcg()Johannes Weiner2016-03-161-12/+8
| | | | | | | | | | | | | | Now that migration doesn't clear page->mem_cgroup of live pages anymore, it's safe to make lock_page_memcg() and the memcg stat functions take pages, and spare the callers from memcg objects. [akpm@linux-foundation.org: fix warnings] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: migrate: do not touch page->mem_cgroup of live pagesJohannes Weiner2016-03-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Changing a page's memcg association complicates dealing with the page, so we want to limit this as much as possible. Page migration e.g. does not have to do that. Just like page cache replacement, it can forcibly charge a replacement page, and then uncharge the old page when it gets freed. Temporarily overcharging the cgroup by a single page is not an issue in practice, and charging is so cheap nowadays that this is much preferrable to the headache of messing with live pages. The only place that still changes the page->mem_cgroup binding of live pages is when pages move along with a task to another cgroup. But that path isolates the page from the LRU, takes the page lock, and the move lock (lock_page_memcg()). That means page->mem_cgroup is always stable in callers that have the page isolated from the LRU or locked. Lighter unlocked paths, like writeback accounting, can use lock_page_memcg(). [akpm@linux-foundation.org: fix build] [vdavydov@virtuozzo.com: fix lockdep splat] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: generalize locking for the page->mem_cgroup bindingJohannes Weiner2016-03-161-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | These patches tag the page cache radix tree eviction entries with the memcg an evicted page belonged to, thus making per-cgroup LRU reclaim work properly and be as adaptive to new cache workingsets as global reclaim already is. This should have been part of the original thrash detection patch series, but was deferred due to the complexity of those patches. This patch (of 5): So far the only sites that needed to exclude charge migration to stabilize page->mem_cgroup have been per-cgroup page statistics, hence the name mem_cgroup_begin_page_stat(). But per-cgroup thrash detection will add another site that needs to ensure page->mem_cgroup lifetime. Rename these locking functions to the more generic lock_page_memcg() and unlock_page_memcg(). Since charge migration is a cgroup1 feature only, we might be able to delete it at some point, and these now easy to identify locking sites along with it. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: filemap: avoid unnecessary calls to lock_page when waiting for IO to ↵Mel Gorman2016-03-161-0/+49
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | complete during a read In the generic read paths the kernel looks up a page in the page cache and if it's up to date, it is used. If not, the page lock is acquired to wait for IO to complete and then check the page. If multiple processes are waiting on IO, they all serialise against the lock and duplicate the checks. This is unnecessary. The page lock in itself does not give any guarantees to the callers about the page state as it can be immediately truncated or reclaimed after the page is unlocked. It's sufficient to wait_on_page_locked and then continue if the page is up to date on wakeup. It is possible that a truncated but up-to-date page is returned but the reference taken during read prevents it disappearing underneath the caller and the data is still valid if PageUptodate. The overall impact is small as even if processes serialise on the lock, the lock section is tiny once the IO is complete. Profiles indicated that unlock_page and friends are generally a tiny portion of a read-intensive workload. An artificial test was created that had instances of dd access a cache-cold file on an ext4 filesystem and measure how long the read took. paralleldd 4.4.0 4.4.0 vanilla avoidlock Amean Elapsd-1 5.28 ( 0.00%) 5.15 ( 2.50%) Amean Elapsd-4 5.29 ( 0.00%) 5.17 ( 2.12%) Amean Elapsd-7 5.28 ( 0.00%) 5.18 ( 1.78%) Amean Elapsd-12 5.20 ( 0.00%) 5.33 ( -2.50%) Amean Elapsd-21 5.14 ( 0.00%) 5.21 ( -1.41%) Amean Elapsd-30 5.30 ( 0.00%) 5.12 ( 3.38%) Amean Elapsd-48 5.78 ( 0.00%) 5.42 ( 6.21%) Amean Elapsd-79 6.78 ( 0.00%) 6.62 ( 2.46%) Amean Elapsd-110 9.09 ( 0.00%) 8.99 ( 1.15%) Amean Elapsd-128 10.60 ( 0.00%) 10.43 ( 1.66%) The impact is small but intuitively, it makes sense to avoid unnecessary calls to lock_page. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: filemap: remove redundant code in do_read_cache_pageMel Gorman2016-03-161-31/+12
| | | | | | | | | | | | do_read_cache_page and __read_cache_page duplicate page filler code when filling the page for the first time. This patch simply removes the duplicate logic. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: __delete_from_page_cache show Bad page if mappedHugh Dickins2016-03-101-1/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit e1534ae95004 ("mm: differentiate page_mapped() from page_mapcount() for compound pages") changed the famous BUG_ON(page_mapped(page)) in __delete_from_page_cache() to VM_BUG_ON_PAGE(page_mapped(page)): which gives us more info when CONFIG_DEBUG_VM=y, but nothing at all when not. Although it has not usually been very helpul, being hit long after the error in question, we do need to know if it actually happens on users' systems; but reinstating a crash there is likely to be opposed :) In the non-debug case, pr_alert("BUG: Bad page cache") plus dump_page(), dump_stack(), add_taint() - I don't really believe LOCKDEP_NOW_UNRELIABLE, but that seems to be the standard procedure now. Move that, or the VM_BUG_ON_PAGE(), up before the deletion from tree: so that the unNULLified page->mapping gives a little more information. If the inode is being evicted (rather than truncated), it won't have any vmas left, so it's safe(ish) to assume that the raised mapcount is erroneous, and we can discount it from page_count to avoid leaking the page (I'm less worried by leaking the occasional 4kB, than losing a potential 2MB page with each 4kB page leaked). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* dax: move writeback calls into the filesystemsRoss Zwisler2016-02-271-8/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | Previously calls to dax_writeback_mapping_range() for all DAX filesystems (ext2, ext4 & xfs) were centralized in filemap_write_and_wait_range(). dax_writeback_mapping_range() needs a struct block_device, and it used to get that from inode->i_sb->s_bdev. This is correct for normal inodes mounted on ext2, ext4 and XFS filesystems, but is incorrect for DAX raw block devices and for XFS real-time files. Instead, call dax_writeback_mapping_range() directly from the filesystem ->writepages function so that it can supply us with a valid block device. This also fixes DAX code to properly flush caches in response to sync(2). Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Jan Kara <jack@suse.cz> Cc: Al Viro <viro@ftp.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jens Axboe <axboe@fb.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: fix filemap.c kernel doc warningRandy Dunlap2016-02-121-0/+1
| | | | | | | | | | | Add missing kernel-doc notation for function parameter 'gfp_mask' to fix kernel-doc warning. mm/filemap.c:1898: warning: No description found for parameter 'gfp_mask' Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'for-linus' of ↵Linus Torvalds2016-01-231-2/+2
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull final vfs updates from Al Viro: - The ->i_mutex wrappers (with small prereq in lustre) - a fix for too early freeing of symlink bodies on shmem (they need to be RCU-delayed) (-stable fodder) - followup to dedupe stuff merged this cycle * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: vfs: abort dedupe loop if fatal signals are pending make sure that freeing shmem fast symlinks is RCU-delayed wrappers for ->i_mutex access lustre: remove unused declaration
| * wrappers for ->i_mutex accessAl Viro2016-01-231-2/+2
| | | | | | | | | | | | | | | | | | | | | | parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested}, inode_foo(inode) being mutex_foo(&inode->i_mutex). Please, use those for access to ->i_mutex; over the coming cycle ->i_mutex will become rwsem, with ->lookup() done with it held only shared. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | dax: add support for fsync/syncRoss Zwisler2016-01-231-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | To properly handle fsync/msync in an efficient way DAX needs to track dirty pages so it is able to flush them durably to media on demand. The tracking of dirty pages is done via the radix tree in struct address_space. This radix tree is already used by the page writeback infrastructure for tracking dirty pages associated with an open file, and it already has support for exceptional (non struct page*) entries. We build upon these features to add exceptional entries to the radix tree for DAX dirty PMD or PTE pages at fault time. [dan.j.williams@intel.com: fix dax_pmd_dbg build warning] Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jeff Layton <jlayton@poochiereds.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: add find_get_entries_tag()Ross Zwisler2016-01-231-0/+68
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add find_get_entries_tag() to the family of functions that include find_get_entries(), find_get_pages() and find_get_pages_tag(). This is needed for DAX dirty page handling because we need a list of both page offsets and radix tree entries ('indices' and 'entries' in this function) that are marked with the PAGECACHE_TAG_TOWRITE tag. Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeff Layton <jlayton@poochiereds.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | dax: support dirty DAX entries in radix treeRoss Zwisler2016-01-231-6/+11
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add support for tracking dirty DAX entries in the struct address_space radix tree. This tree is already used for dirty page writeback, and it already supports the use of exceptional (non struct page*) entries. In order to properly track dirty DAX pages we will insert new exceptional entries into the radix tree that represent dirty DAX PTE or PMD pages. These exceptional entries will also contain the writeback addresses for the PTE or PMD faults that we can use at fsync/msync time. There are currently two types of exceptional entries (shmem and shadow) that can be placed into the radix tree, and this adds a third. We rely on the fact that only one type of exceptional entry can be found in a given radix tree based on its usage. This happens for free with DAX vs shmem but we explicitly prevent shadow entries from being added to radix trees for DAX mappings. The only shadow entries that would be generated for DAX radix trees would be to track zero page mappings that were created for holes. These pages would receive minimal benefit from having shadow entries, and the choice to have only one type of exceptional entry in a given radix tree makes the logic simpler both in clear_exceptional_entry() and in the rest of DAX. Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jeff Layton <jlayton@poochiereds.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: differentiate page_mapped() from page_mapcount() for compound pagesKirill A. Shutemov2016-01-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Let's define page_mapped() to be true for compound pages if any sub-pages of the compound page is mapped (with PMD or PTE). On other hand page_mapcount() return mapcount for this particular small page. This will make cases like page_get_anon_vma() behave correctly once we allow huge pages to be mapped with PTE. Most users outside core-mm should use page_mapcount() instead of page_mapped(). Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg: adjust to support new THP refcountingKirill A. Shutemov2016-01-161-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As with rmap, with new refcounting we cannot rely on PageTransHuge() to check if we need to charge size of huge page form the cgroup. We need to get information from caller to know whether it was mapped with PMD or PTE. We do uncharge when last reference on the page gone. At that point if we see PageTransHuge() it means we need to unchange whole huge page. The tricky part is partial unmap -- when we try to unmap part of huge page. We don't do a special handing of this situation, meaning we don't uncharge the part of huge page unless last user is gone or split_huge_page() is triggered. In case of cgroup memory pressure happens the partial unmapped page will be split through shrinker. This should be good enough. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* page-flags: define PG_locked behavior on compound pagesKirill A. Shutemov2016-01-161-6/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | lock_page() must operate on the whole compound page. It doesn't make much sense to lock part of compound page. Change code to use head page's PG_locked, if tail page is passed. This patch also gets rid of custom helper functions -- __set_page_locked() and __clear_page_locked(). They are replaced with helpers generated by __SETPAGEFLAG/__CLEARPAGEFLAG. Tail pages to these helper would trigger VM_BUG_ON(). SLUB uses PG_locked as a bit spin locked. IIUC, tail pages should never appear there. VM_BUG_ON() is added to make sure that this assumption is correct. [akpm@linux-foundation.org: fix fs/cifs/file.c] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: allow GFP_{FS,IO} for page_cache_read page cache allocationMichal Hocko2016-01-151-5/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | page_cache_read has been historically using page_cache_alloc_cold to allocate a new page. This means that mapping_gfp_mask is used as the base for the gfp_mask. Many filesystems are setting this mask to GFP_NOFS to prevent from fs recursion issues. page_cache_read is called from the vm_operations_struct::fault() context during the page fault. This context doesn't need the reclaim protection normally. ceph and ocfs2 which call filemap_fault from their fault handlers seem to be OK because they are not taking any fs lock before invoking generic implementation. xfs which takes XFS_MMAPLOCK_SHARED is safe from the reclaim recursion POV because this lock serializes truncate and punch hole with the page faults and it doesn't get involved in the reclaim. There is simply no reason to deliberately use a weaker allocation context when a __GFP_FS | __GFP_IO can be used. The GFP_NOFS protection might be even harmful. There is a push to fail GFP_NOFS allocations rather than loop within allocator indefinitely with a very limited reclaim ability. Once we start failing those requests the OOM killer might be triggered prematurely because the page cache allocation failure is propagated up the page fault path and end up in pagefault_out_of_memory. We cannot play with mapping_gfp_mask directly because that would be racy wrt. parallel page faults and it might interfere with other users who really rely on NOFS semantic from the stored gfp_mask. The mask is also inode proper so it would even be a layering violation. What we can do instead is to push the gfp_mask into struct vm_fault and allow fs layer to overwrite it should the callback need to be called with a different allocation context. Initialize the default to (mapping_gfp_mask | __GFP_FS | __GFP_IO) because this should be safe from the page fault path normally. Why do we care about mapping_gfp_mask at all then? Because this doesn't hold only reclaim protection flags but it also might contain zone and movability restrictions (GFP_DMA32, __GFP_MOVABLE and others) so we have to respect those. Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Jan Kara <jack@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Mel Gorman <mgorman@suse.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Mark Fasheh <mfasheh@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, fs: introduce mapping_gfp_constraint()Michal Hocko2015-11-071-2/+2
| | | | | | | | | | | | | | | | There are many places which use mapping_gfp_mask to restrict a more generic gfp mask which would be used for allocations which are not directly related to the page cache but they are performed in the same context. Let's introduce a helper function which makes the restriction explicit and easier to track. This patch doesn't introduce any functional changes. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Michal Hocko <mhocko@suse.com> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>