summaryrefslogtreecommitdiffstats
path: root/mm/memory.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* Merge branch 'for-linus' of ↵Linus Torvalds2012-08-011-7/+7
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull second vfs pile from Al Viro: "The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the deadlock reproduced by xfstests 068), symlink and hardlink restriction patches, plus assorted cleanups and fixes. Note that another fsfreeze deadlock (emergency thaw one) is *not* dealt with - the series by Fernando conflicts a lot with Jan's, breaks userland ABI (FIFREEZE semantics gets changed) and trades the deadlock for massive vfsmount leak; this is going to be handled next cycle. There probably will be another pull request, but that stuff won't be in it." Fix up trivial conflicts due to unrelated changes next to each other in drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c} * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits) delousing target_core_file a bit Documentation: Correct s_umount state for freeze_fs/unfreeze_fs fs: Remove old freezing mechanism ext2: Implement freezing btrfs: Convert to new freezing mechanism nilfs2: Convert to new freezing mechanism ntfs: Convert to new freezing mechanism fuse: Convert to new freezing mechanism gfs2: Convert to new freezing mechanism ocfs2: Convert to new freezing mechanism xfs: Convert to new freezing code ext4: Convert to new freezing mechanism fs: Protect write paths by sb_start_write - sb_end_write fs: Skip atime update on frozen filesystem fs: Add freezing handling to mnt_want_write() / mnt_drop_write() fs: Improve filesystem freezing handling switch the protection of percpu_counter list to spinlock nfsd: Push mnt_want_write() outside of i_mutex btrfs: Push mnt_want_write() outside of i_mutex fat: Push mnt_want_write() outside of i_mutex ...
| * mm: Update file times from fault path only if .page_mkwrite is not setJan Kara2012-07-301-7/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Filesystems wanting to properly support freezing need to have control when file_update_time() is called. After pushing file_update_time() to all relevant .page_mkwrite implementations we can just stop calling file_update_time() when filesystem implements .page_mkwrite. Tested-by: Kamal Mostafa <kamal@canonical.com> Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com> Tested-by: Dann Frazier <dann.frazier@canonical.com> Tested-by: Massimo Morana <massimo.morana@canonical.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | mm: hugetlbfs: close race during teardown of hugetlbfs shared page tablesMel Gorman2012-08-011-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If a process creates a large hugetlbfs mapping that is eligible for page table sharing and forks heavily with children some of whom fault and others which destroy the mapping then it is possible for page tables to get corrupted. Some teardowns of the mapping encounter a "bad pmd" and output a message to the kernel log. The final teardown will trigger a BUG_ON in mm/filemap.c. This was reproduced in 3.4 but is known to have existed for a long time and goes back at least as far as 2.6.37. It was probably was introduced in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages look like this; [ ..........] Lots of bad pmd messages followed by this [ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7). [ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7). [ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7). [ 127.186778] ------------[ cut here ]------------ [ 127.186781] kernel BUG at mm/filemap.c:134! [ 127.186782] invalid opcode: 0000 [#1] SMP [ 127.186783] CPU 7 [ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod [ 127.186801] [ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR [ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160 [ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002 [ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0 [ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00 [ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003 [ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8 [ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8 [ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000 [ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0 [ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0) [ 127.186821] Stack: [ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b [ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98 [ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000 [ 127.186827] Call Trace: [ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80 [ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220 [ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30 [ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0 [ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0 [ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50 [ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130 [ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0 [ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230 [ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150 [ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30 [ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80 [ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360 [ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170 [ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b [ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0 [ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160 [ 127.186870] RSP <ffff8804144b5c08> [ 127.186871] ---[ end trace 7cbac5d1db69f426 ]--- The bug is a race and not always easy to reproduce. To reproduce it I was doing the following on a single socket I7-based machine with 16G of RAM. $ hugeadm --pool-pages-max DEFAULT:13G $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall $ for i in `seq 1 9000`; do ./hugetlbfs-test; done On my particular machine, it usually triggers within 10 minutes but enabling debug options can change the timing such that it never hits. Once the bug is triggered, the machine is in trouble and needs to be rebooted. The machine will respond but processes accessing proc like "ps aux" will hang due to the BUG_ON. shutdown will also hang and needs a hard reset or a sysrq-b. The basic problem is a race between page table sharing and teardown. For the most part page table sharing depends on i_mmap_mutex. In some cases, it is also taking the mm->page_table_lock for the PTE updates but with shared page tables, it is the i_mmap_mutex that is more important. Unfortunately it appears to be also insufficient. Consider the following situation Process A Process B --------- --------- hugetlb_fault shmdt LockWrite(mmap_sem) do_munmap unmap_region unmap_vmas unmap_single_vma unmap_hugepage_range Lock(i_mmap_mutex) Lock(mm->page_table_lock) huge_pmd_unshare/unmap tables <--- (1) Unlock(mm->page_table_lock) Unlock(i_mmap_mutex) huge_pte_alloc ... Lock(i_mmap_mutex) ... vma_prio_walk, find svma, spte ... Lock(mm->page_table_lock) ... share spte ... Unlock(mm->page_table_lock) ... Unlock(i_mmap_mutex) ... hugetlb_no_page <--- (2) free_pgtables unlink_file_vma hugetlb_free_pgd_range remove_vma_list In this scenario, it is possible for Process A to share page tables with Process B that is trying to tear them down. The i_mmap_mutex on its own does not prevent Process A walking Process B's page tables. At (1) above, the page tables are not shared yet so it unmaps the PMDs. Process A sets up page table sharing and at (2) faults a new entry. Process B then trips up on it in free_pgtables. This patch fixes the problem by adding a new function __unmap_hugepage_range_final that is only called when the VMA is about to be destroyed. This function clears VM_MAYSHARE during unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA ineligible for sharing and avoids the race. Superficially this looks like it would then be vunerable to truncate and madvise issues but hugetlbfs has its own truncate handlers so does not use unmap_mapping_range() and does not support madvise(DONTNEED). This should be treated as a -stable candidate if it is merged. Test program is as follows. The test case was mostly written by Michal Hocko with a few minor changes to reproduce this bug. ==== CUT HERE ==== static size_t huge_page_size = (2UL << 20); static size_t nr_huge_page_A = 512; static size_t nr_huge_page_B = 5632; unsigned int get_random(unsigned int max) { struct timeval tv; gettimeofday(&tv, NULL); srandom(tv.tv_usec); return random() % max; } static void play(void *addr, size_t size) { unsigned char *start = addr, *end = start + size, *a; start += get_random(size/2); /* we could itterate on huge pages but let's give it more time. */ for (a = start; a < end; a += 4096) *a = 0; } int main(int argc, char **argv) { key_t key = IPC_PRIVATE; size_t sizeA = nr_huge_page_A * huge_page_size; size_t sizeB = nr_huge_page_B * huge_page_size; int shmidA, shmidB; void *addrA = NULL, *addrB = NULL; int nr_children = 300, n = 0; if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) { perror("shmget:"); return 1; } if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) { perror("shmat"); return 1; } if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) { perror("shmget:"); return 1; } if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) { perror("shmat"); return 1; } fork_child: switch(fork()) { case 0: switch (n%3) { case 0: play(addrA, sizeA); break; case 1: play(addrB, sizeB); break; case 2: break; } break; case -1: perror("fork:"); break; default: if (++n < nr_children) goto fork_child; play(addrA, sizeA); break; } shmdt(addrA); shmdt(addrB); do { wait(NULL); } while (--n > 0); shmctl(shmidA, IPC_RMID, NULL); shmctl(shmidB, IPC_RMID, NULL); return 0; } [akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build] Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm/memory.c:print_vma_addr(): call up_read(&mm->mmap_sem) directlyJeff Liu2012-08-011-1/+1
| | | | | | | | | | | | | | | | | | Call up_read(&mm->mmap_sem) directly since we have already got mm via current->mm at the beginning of print_vma_addr(). Signed-off-by: Jie Liu <jeff.liu@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | hugetlb: use mmu_gather instead of a temporary linked list for accumulating ↵Aneesh Kumar K.V2012-08-011-2/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | pages Use a mmu_gather instead of a temporary linked list for accumulating pages when we unmap a hugepage range Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge branch 'x86-mm-for-linus' of ↵Linus Torvalds2012-07-261-0/+9
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86/mm changes from Peter Anvin: "The big change here is the patchset by Alex Shi to use INVLPG to flush only the affected pages when we only need to flush a small page range. It also removes the special INVALIDATE_TLB_VECTOR interrupts (32 vectors!) and replace it with an ordinary IPI function call." Fix up trivial conflicts in arch/x86/include/asm/apic.h (added code next to changed line) * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/tlb: Fix build warning and crash when building for !SMP x86/tlb: do flush_tlb_kernel_range by 'invlpg' x86/tlb: replace INVALIDATE_TLB_VECTOR by CALL_FUNCTION_VECTOR x86/tlb: enable tlb flush range support for x86 mm/mmu_gather: enable tlb flush range in generic mmu_gather x86/tlb: add tlb_flushall_shift knob into debugfs x86/tlb: add tlb_flushall_shift for specific CPU x86/tlb: fall back to flush all when meet a THP large page x86/flush_tlb: try flush_tlb_single one by one in flush_tlb_range x86/tlb_info: get last level TLB entry number of CPU x86: Add read_mostly declaration/definition to variables from smp.h x86: Define early read-mostly per-cpu macros
| * mm/mmu_gather: enable tlb flush range in generic mmu_gatherAlex Shi2012-06-281-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch enabled the tlb flush range support in generic mmu layer. Most of arch has self tlb flush range support, like ARM/IA64 etc. X86 arch has no this support in hardware yet. But another instruction 'invlpg' can implement this function in some degree. So, enable this feather in generic layer for x86 now. and maybe useful for other archs in further. Generic mmu_gather struct is protected by micro HAVE_GENERIC_MMU_GATHER. Other archs that has flush range supported own self mmu_gather struct. So, now this change is safe for them. In future we may unify this struct and related functions on multiple archs. Thanks for Peter Zijlstra time and time reminder for multiple architecture code safe! Signed-off-by: Alex Shi <alex.shi@intel.com> Link: http://lkml.kernel.org/r/1340845344-27557-7-git-send-email-alex.shi@intel.com Signed-off-by: H. Peter Anvin <hpa@zytor.com>
* | mm/memory.c: fix kernel-doc warningsRandy Dunlap2012-06-201-1/+1
| | | | | | | | | | | | | | | | | | | | | | Fix kernel-doc warnings in mm/memory.c: Warning(mm/memory.c:1377): No description found for parameter 'start' Warning(mm/memory.c:1377): Excess function parameter 'address' description in 'zap_page_range' Signed-off-by: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm, thp: print useful information when mmap_sem is unlocked in zap_pmd_rangeDavid Rientjes2012-06-201-1/+9
|/ | | | | | | | | | | Andrea asked for addr, end, vma->vm_start, and vma->vm_end to be emitted when !rwsem_is_locked(&tlb->mm->mmap_sem). Otherwise, debugging the underlying issue is more difficult. Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp, memcg: split hugepage for memcg oom on cowDavid Rientjes2012-05-301-3/+15
| | | | | | | | | | | | | | | | | | | | On COW, a new hugepage is allocated and charged to the memcg. If the system is oom or the charge to the memcg fails, however, the fault handler will return VM_FAULT_OOM which results in an oom kill. Instead, it's possible to fallback to splitting the hugepage so that the COW results only in an order-0 page being allocated and charged to the memcg which has a higher liklihood to succeed. This is expensive because the hugepage must be split in the page fault handler, but it is much better than unnecessarily oom killing a process. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <jweiner@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove swap token codeRik van Riel2012-05-301-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The swap token code no longer fits in with the current VM model. It does not play well with cgroups or the better NUMA placement code in development, since we have only one swap token globally. It also has the potential to mess with scalability of the system, by increasing the number of non-reclaimable pages on the active and inactive anon LRU lists. Last but not least, the swap token code has been broken for a year without complaints, as reported by Konstantin Khlebnikov. This suggests we no longer have much use for it. The days of sub-1G memory systems with heavy use of swap are over. If we ever need thrashing reducing code in the future, we will have to implement something that does scale. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hughd@google.com> Acked-by: Bob Picco <bpicco@meloft.net> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'perf-uprobes-for-linus' of ↵Linus Torvalds2012-05-241-0/+3
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull user-space probe instrumentation from Ingo Molnar: "The uprobes code originates from SystemTap and has been used for years in Fedora and RHEL kernels. This version is much rewritten, reviews from PeterZ, Oleg and myself shaped the end result. This tree includes uprobes support in 'perf probe' - but SystemTap (and other tools) can take advantage of user probe points as well. Sample usage of uprobes via perf, for example to profile malloc() calls without modifying user-space binaries. First boot a new kernel with CONFIG_UPROBE_EVENT=y enabled. If you don't know which function you want to probe you can pick one from 'perf top' or can get a list all functions that can be probed within libc (binaries can be specified as well): $ perf probe -F -x /lib/libc.so.6 To probe libc's malloc(): $ perf probe -x /lib64/libc.so.6 malloc Added new event: probe_libc:malloc (on 0x7eac0) You can now use it in all perf tools, such as: perf record -e probe_libc:malloc -aR sleep 1 Make use of it to create a call graph (as the flat profile is going to look very boring): $ perf record -e probe_libc:malloc -gR make [ perf record: Woken up 173 times to write data ] [ perf record: Captured and wrote 44.190 MB perf.data (~1930712 $ perf report | less 32.03% git libc-2.15.so [.] malloc | --- malloc 29.49% cc1 libc-2.15.so [.] malloc | --- malloc | |--0.95%-- 0x208eb1000000000 | |--0.63%-- htab_traverse_noresize 11.04% as libc-2.15.so [.] malloc | --- malloc | 7.15% ld libc-2.15.so [.] malloc | --- malloc | 5.07% sh libc-2.15.so [.] malloc | --- malloc | 4.99% python-config libc-2.15.so [.] malloc | --- malloc | 4.54% make libc-2.15.so [.] malloc | --- malloc | |--7.34%-- glob | | | |--93.18%-- 0x41588f | | | --6.82%-- glob | 0x41588f ... Or: $ perf report -g flat | less # Overhead Command Shared Object Symbol # ........ ............. ............. .......... # 32.03% git libc-2.15.so [.] malloc 27.19% malloc 29.49% cc1 libc-2.15.so [.] malloc 24.77% malloc 11.04% as libc-2.15.so [.] malloc 11.02% malloc 7.15% ld libc-2.15.so [.] malloc 6.57% malloc ... The core uprobes design is fairly straightforward: uprobes probe points register themselves at (inode:offset) addresses of libraries/binaries, after which all existing (or new) vmas that map that address will have a software breakpoint injected at that address. vmas are COW-ed to preserve original content. The probe points are kept in an rbtree. If user-space executes the probed inode:offset instruction address then an event is generated which can be recovered from the regular perf event channels and mmap-ed ring-buffer. Multiple probes at the same address are supported, they create a dynamic callback list of event consumers. The basic model is further complicated by the XOL speedup: the original instruction that is probed is copied (in an architecture specific fashion) and executed out of line when the probe triggers. The XOL area is a single vma per process, with a fixed number of entries (which limits probe execution parallelism). The API: uprobes are installed/removed via /sys/kernel/debug/tracing/uprobe_events, the API is integrated to align with the kprobes interface as much as possible, but is separate to it. Injecting a probe point is privileged operation, which can be relaxed by setting perf_paranoid to -1. You can use multiple probes as well and mix them with kprobes and regular PMU events or tracepoints, when instrumenting a task." Fix up trivial conflicts in mm/memory.c due to previous cleanup of unmap_single_vma(). * 'perf-uprobes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits) perf probe: Detect probe target when m/x options are absent perf probe: Provide perf interface for uprobes tracing: Fix kconfig warning due to a typo tracing: Provide trace events interface for uprobes tracing: Extract out common code for kprobes/uprobes trace events tracing: Modify is_delete, is_return from int to bool uprobes/core: Decrement uprobe count before the pages are unmapped uprobes/core: Make background page replacement logic account for rss_stat counters uprobes/core: Optimize probe hits with the help of a counter uprobes/core: Allocate XOL slots for uprobes use uprobes/core: Handle breakpoint and singlestep exceptions uprobes/core: Rename bkpt to swbp uprobes/core: Make order of function parameters consistent across functions uprobes/core: Make macro names consistent uprobes: Update copyright notices uprobes/core: Move insn to arch specific structure uprobes/core: Remove uprobe_opcode_sz uprobes/core: Make instruction tables volatile uprobes: Move to kernel/events/ uprobes/core: Clean up, refactor and improve the code ...
| * uprobes/core: Decrement uprobe count before the pages are unmappedSrikar Dronamraju2012-04-141-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Uprobes has a callback (uprobe_munmap()) in the unmap path to maintain the uprobes count. In the exit path this callback gets called in unlink_file_vma(). However by the time unlink_file_vma() is called, the pages would have been unmapped (in unmap_vmas()) and the task->rss_stat counts accounted (in zap_pte_range()). If the exiting process has probepoints, uprobe_munmap() checks if the breakpoint instruction was around before decrementing the probe count. This results in a file backed page being reread by uprobe_munmap() and hence it does not find the breakpoint. This patch fixes this problem by moving the callback to unmap_single_vma(). Since unmap_single_vma() may not unmap the complete vma, add start and end parameters to uprobe_munmap(). This bug became apparent courtesy of commit c3f0327f8e9d ("mm: add rss counters consistency check"). Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com> Cc: Linux-mm <linux-mm@kvack.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Anton Arapov <anton@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20120411103527.23245.9835.sendpatchset@srdronam.in.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | vm: remove 'nr_accounted' calculations from the unmap_vmas() interfacesLinus Torvalds2012-05-061-11/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The VM accounting makes no sense at this level, and half of the callers didn't ever actually use the end result. The only time we want to unaccount the memory is when we actually remove the vma, so do the accounting at that point instead. This simplifies the interfaces (no need to pass down that silly page counter to functions that really don't care), and also makes it much more obvious what is actually going on: we do vm_[un]acct_memory() when adding or removing the vma, not on random page walking. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | vm: simplify unmap_vmas() calling conventionLinus Torvalds2012-05-061-9/+9
|/ | | | | | | | None of the callers want to pass in 'zap_details', and it doesn't even make sense for the case of actually unmapping vma's. So remove the argument, and clean up the interface. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* coredump: remove VM_ALWAYSDUMP flagJason Baron2012-03-241-7/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The motivation for this patchset was that I was looking at a way for a qemu-kvm process, to exclude the guest memory from its core dump, which can be quite large. There are already a number of filter flags in /proc/<pid>/coredump_filter, however, these allow one to specify 'types' of kernel memory, not specific address ranges (which is needed in this case). Since there are no more vma flags available, the first patch eliminates the need for the 'VM_ALWAYSDUMP' flag. The flag is used internally by the kernel to mark vdso and vsyscall pages. However, it is simple enough to check if a vma covers a vdso or vsyscall page without the need for this flag. The second patch then replaces the 'VM_ALWAYSDUMP' flag with a new 'VM_NODUMP' flag, which can be set by userspace using new madvise flags: 'MADV_DONTDUMP', and unset via 'MADV_DODUMP'. The core dump filters continue to work the same as before unless 'MADV_DONTDUMP' is set on the region. The qemu code which implements this features is at: http://people.redhat.com/~jbaron/qemu-dump/qemu-dump.patch In my testing the qemu core dump shrunk from 383MB -> 13MB with this patch. I also believe that the 'MADV_DONTDUMP' flag might be useful for security sensitive apps, which might want to select which areas are dumped. This patch: The VM_ALWAYSDUMP flag is currently used by the coredump code to indicate that a vma is part of a vsyscall or vdso section. However, we can determine if a vma is in one these sections by checking it against the gate_vma and checking for a non-NULL return value from arch_vma_name(). Thus, freeing a valuable vma bit. Signed-off-by: Jason Baron <jbaron@redhat.com> Acked-by: Roland McGrath <roland@hack.frob.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'akpm' (Andrew's patch-bomb)Linus Torvalds2012-03-221-34/+19
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Merge first batch of patches from Andrew Morton: "A few misc things and all the MM queue" * emailed from Andrew Morton <akpm@linux-foundation.org>: (92 commits) memcg: avoid THP split in task migration thp: add HPAGE_PMD_* definitions for !CONFIG_TRANSPARENT_HUGEPAGE memcg: clean up existing move charge code mm/memcontrol.c: remove unnecessary 'break' in mem_cgroup_read() mm/memcontrol.c: remove redundant BUG_ON() in mem_cgroup_usage_unregister_event() mm/memcontrol.c: s/stealed/stolen/ memcg: fix performance of mem_cgroup_begin_update_page_stat() memcg: remove PCG_FILE_MAPPED memcg: use new logic for page stat accounting memcg: remove PCG_MOVE_LOCK flag from page_cgroup memcg: simplify move_account() check memcg: remove EXPORT_SYMBOL(mem_cgroup_update_page_stat) memcg: kill dead prev_priority stubs memcg: remove PCG_CACHE page_cgroup flag memcg: let css_get_next() rely upon rcu_read_lock() cgroup: revert ss_id_lock to spinlock idr: make idr_get_next() good for rcu_read_lock() memcg: remove unnecessary thp check in page stat accounting memcg: remove redundant returns memcg: enum lru_list lru ...
| * mm, counters: fold __sync_task_rss_stat() into sync_mm_rss()David Rientjes2012-03-221-7/+2
| | | | | | | | | | | | | | | | | | | | There's no difference between sync_mm_rss() and __sync_task_rss_stat(), so fold the latter into the former. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * mm, counters: remove task argument to sync_mm_rss() and __sync_task_rss_stat()David Rientjes2012-03-221-9/+9
| | | | | | | | | | | | | | | | | | | | | | | | sync_mm_rss() can only be used for current to avoid race conditions in iterating and clearing its per-task counters. Remove the task argument for it and its helper function, __sync_task_rss_stat(), to avoid thinking it can be used safely for anything other than current. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * mm: make get_mm_counter static-inlineKonstantin Khlebnikov2012-03-221-18/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make get_mm_counter() always static inline, it is simple enough for that. And remove unused set_mm_counter() bloat-o-meter: add/remove: 0/1 grow/shrink: 4/12 up/down: 99/-341 (-242) function old new delta try_to_unmap_one 886 952 +66 sys_remap_file_pages 1214 1230 +16 dup_mm 1684 1700 +16 do_exit 2277 2278 +1 zap_page_range 208 205 -3 unmap_region 304 296 -8 static.oom_kill_process 554 546 -8 try_to_unmap_file 1716 1700 -16 getrusage 925 909 -16 flush_old_exec 1704 1688 -16 static.dump_header 416 390 -26 acct_update_integrals 218 187 -31 do_task_stat 2986 2954 -32 get_mm_counter 34 - -34 xacct_add_tsk 371 334 -37 task_statm 172 118 -54 task_mem 383 323 -60 try_to_unmap_one() grows because update_hiwater_rss() now completely inline. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read modeAndrea Arcangeli2012-03-221-4/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge branch 'vm' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfsLinus Torvalds2012-03-211-53/+80
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | Pull munmap/truncate race fixes from Al Viro: "Fixes for racy use of unmap_vmas() on truncate-related codepaths" * 'vm' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: VM: make zap_page_range() callers that act on a single VMA use separate helper VM: make unmap_vmas() return void VM: don't bother with feeding upper limit to tlb_finish_mmu() in exit_mmap() VM: make zap_page_range() return void VM: can't go through the inner loop in unmap_vmas() more than once... VM: unmap_page_range() can return void
| * VM: make zap_page_range() callers that act on a single VMA use separate helperAl Viro2012-03-211-39/+74
| | | | | | | | | | | | ... and not rely on ->vm_next being there for them... Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
| * VM: make unmap_vmas() return voidAl Viro2012-03-211-5/+1
| | | | | | | | | | | | | | same story - nobody uses it and it's been pointless since "mm: Remove i_mmap_lock lockbreak" went in. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
| * VM: make zap_page_range() return voidAl Viro2012-03-211-3/+2
| | | | | | | | | | | | | | | | ... since all callers ignore its return value and it's been useless since commit 97a894136f29802da19a15541de3c019e1ca147e (mm: Remove i_mmap_lock lockbreak) anyway. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
| * VM: can't go through the inner loop in unmap_vmas() more than once...Al Viro2012-03-211-2/+2
| | | | | | | | Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
| * VM: unmap_page_range() can return voidAl Viro2012-03-211-9/+6
| | | | | | | | | | | | return value is always the 4th ('end') argument. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | mm: remove the second argument of k[un]map_atomic()Cong Wang2012-03-201-2/+2
|/ | | | Signed-off-by: Cong Wang <amwang@redhat.com>
* mm: fix rss count leakage during migrationKonstantin Khlebnikov2012-01-231-9/+28
| | | | | | | | | | | | | | | | | | | Memory migration fills a pte with a migration entry and it doesn't update the rss counters. Then it replaces the migration entry with the new page (or the old one if migration failed). But between these two passes this pte can be unmaped, or a task can fork a child and it will get a copy of this migration entry. Nobody accounts for this in the rss counters. This patch properly adjust rss counters for migration entries in zap_pte_range() and copy_one_pte(). Thus we avoid extra atomic operations on the migration fast-path. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Hugh Dickins <hughd@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: add tlb_remove_pmd_tlb_entryShaohua Li2012-01-131-2/+2
| | | | | | | | | | | | | | | | | | | | | We have tlb_remove_tlb_entry to indicate a pte tlb flush entry should be flushed, but not a corresponding API for pmd entry. This isn't a problem so far because THP is only for x86 currently and tlb_flush() under x86 will flush entire TLB. But this is confusion and could be missed if thp is ported to other arch. Also convert tlb->need_flush = 1 to a VM_BUG_ON(!tlb->need_flush) in __tlb_remove_page() as suggested by Andrea Arcangeli. The __tlb_remove_page() function is supposed to be called after tlb_remove_xxx_tlb_entry() and we can catch any misuse. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'modsplit-Oct31_2011' of ↵Linus Torvalds2011-11-071-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux * 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: (230 commits) Revert "tracing: Include module.h in define_trace.h" irq: don't put module.h into irq.h for tracking irqgen modules. bluetooth: macroize two small inlines to avoid module.h ip_vs.h: fix implicit use of module_get/module_put from module.h nf_conntrack.h: fix up fallout from implicit moduleparam.h presence include: replace linux/module.h with "struct module" wherever possible include: convert various register fcns to macros to avoid include chaining crypto.h: remove unused crypto_tfm_alg_modname() inline uwb.h: fix implicit use of asm/page.h for PAGE_SIZE pm_runtime.h: explicitly requires notifier.h linux/dmaengine.h: fix implicit use of bitmap.h and asm/page.h miscdevice.h: fix up implicit use of lists and types stop_machine.h: fix implicit use of smp.h for smp_processor_id of: fix implicit use of errno.h in include/linux/of.h of_platform.h: delete needless include <linux/module.h> acpi: remove module.h include from platform/aclinux.h miscdevice.h: delete unnecessary inclusion of module.h device_cgroup.h: delete needless include <linux/module.h> net: sch_generic remove redundant use of <linux/module.h> net: inet_timewait_sock doesnt need <linux/module.h> ... Fix up trivial conflicts (other header files, and removal of the ab3550 mfd driver) in - drivers/media/dvb/frontends/dibx000_common.c - drivers/media/video/{mt9m111.c,ov6650.c} - drivers/mfd/ab3550-core.c - include/linux/dmaengine.h
| * mm: Map most files to use export.h instead of module.hPaul Gortmaker2011-10-311-1/+1
| | | | | | | | | | | | | | | | The files changed within are only using the EXPORT_SYMBOL macro variants. They are not using core modular infrastructure and hence don't need module.h but only the export.h header. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
* | mm: thp: tail page refcounting fixAndrea Arcangeli2011-11-031-1/+1
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Michel while working on the working set estimation code, noticed that calling get_page_unless_zero() on a random pfn_to_page(random_pfn) wasn't safe, if the pfn ended up being a tail page of a transparent hugepage under splitting by __split_huge_page_refcount(). He then found the problem could also theoretically materialize with page_cache_get_speculative() during the speculative radix tree lookups that uses get_page_unless_zero() in SMP if the radix tree page is freed and reallocated and get_user_pages is called on it before page_cache_get_speculative has a chance to call get_page_unless_zero(). So the best way to fix the problem is to keep page_tail->_count zero at all times. This will guarantee that get_page_unless_zero() can never succeed on any tail page. page_tail->_mapcount is guaranteed zero and is unused for all tail pages of a compound page, so we can simply account the tail page references there and transfer them to tail_page->_count in __split_huge_page_refcount() (in addition to the head_page->_mapcount). While debugging this s/_count/_mapcount/ change I also noticed get_page is called by direct-io.c on pages returned by get_user_pages. That wasn't entirely safe because the two atomic_inc in get_page weren't atomic. As opposed to other get_user_page users like secondary-MMU page fault to establish the shadow pagetables would never call any superflous get_page after get_user_page returns. It's safer to make get_page universally safe for tail pages and to use get_page_foll() within follow_page (inside get_user_pages()). get_page_foll() is safe to do the refcounting for tail pages without taking any locks because it is run within PT lock protected critical sections (PT lock for pte and page_table_lock for pmd_trans_huge). The standard get_page() as invoked by direct-io instead will now take the compound_lock but still only for tail pages. The direct-io paths are usually I/O bound and the compound_lock is per THP so very finegrined, so there's no risk of scalability issues with it. A simple direct-io benchmarks with all lockdep prove locking and spinlock debugging infrastructure enabled shows identical performance and no overhead. So it's worth it. Ideally direct-io should stop calling get_page() on pages returned by get_user_pages(). The spinlock in get_page() is already optimized away for no-THP builds but doing get_page() on tail pages returned by GUP is generally a rare operation and usually only run in I/O paths. This new refcounting on page_tail->_mapcount in addition to avoiding new RCU critical sections will also allow the working set estimation code to work without any further complexity associated to the tail page refcounting with THP. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reported-by: Michel Lespinasse <walken@google.com> Reviewed-by: Michel Lespinasse <walken@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: <stable@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/futex: fix futex writes on archs with SW tracking of dirty & youngBenjamin Herrenschmidt2011-07-261-1/+57
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I haven't reproduced it myself but the fail scenario is that on such machines (notably ARM and some embedded powerpc), if you manage to hit that futex path on a writable page whose dirty bit has gone from the PTE, you'll livelock inside the kernel from what I can tell. It will go in a loop of trying the atomic access, failing, trying gup to "fix it up", getting succcess from gup, go back to the atomic access, failing again because dirty wasn't fixed etc... So I think you essentially hang in the kernel. The scenario is probably rare'ish because affected architecture are embedded and tend to not swap much (if at all) so we probably rarely hit the case where dirty is missing or young is missing, but I think Shan has a piece of SW that can reliably reproduce it using a shared writable mapping & fork or something like that. On archs who use SW tracking of dirty & young, a page without dirty is effectively mapped read-only and a page without young unaccessible in the PTE. Additionally, some architectures might lazily flush the TLB when relaxing write protection (by doing only a local flush), and expect a fault to invalidate the stale entry if it's still present on another processor. The futex code assumes that if the "in_atomic()" access -EFAULT's, it can "fix it up" by causing get_user_pages() which would then be equivalent to taking the fault. However that isn't the case. get_user_pages() will not call handle_mm_fault() in the case where the PTE seems to have the right permissions, regardless of the dirty and young state. It will eventually update those bits ... in the struct page, but not in the PTE. Additionally, it will not handle the lazy TLB flushing that can be required by some architectures in the fault case. Basically, gup is the wrong interface for the job. The patch provides a more appropriate one which boils down to just calling handle_mm_fault() since what we are trying to do is simulate a real page fault. The futex code currently attempts to write to user memory within a pagefault disabled section, and if that fails, tries to fix it up using get_user_pages(). This doesn't work on archs where the dirty and young bits are maintained by software, since they will gate access permission in the TLB, and will not be updated by gup(). In addition, there's an expectation on some archs that a spurious write fault triggers a local TLB flush, and that is missing from the picture as well. I decided that adding those "features" to gup() would be too much for this already too complex function, and instead added a new simpler fixup_user_fault() which is essentially a wrapper around handle_mm_fault() which the futex code can call. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix some nits Darren saw, fiddle comment layout] Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reported-by: Shan Hai <haishan.bai@gmail.com> Tested-by: Shan Hai <haishan.bai@gmail.com> Cc: David Laight <David.Laight@ACULAB.COM> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Darren Hart <darren.hart@intel.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: preallocate page before lock_page() at filemap COWKAMEZAWA Hiroyuki2011-07-261-22/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently we are keeping faulted page locked throughout whole __do_fault call (except for page_mkwrite code path) after calling file system's fault code. If we do early COW, we allocate a new page which has to be charged for a memcg (mem_cgroup_newpage_charge). This function, however, might block for unbounded amount of time if memcg oom killer is disabled or fork-bomb is running because the only way out of the OOM situation is either an external event or OOM-situation fix. In the end we are keeping the faulted page locked and blocking other processes from faulting it in which is not good at all because we are basically punishing potentially an unrelated process for OOM condition in a different group (I have seen stuck system because of ld-2.11.1.so being locked). We can do test easily. % cgcreate -g memory:A % cgset -r memory.limit_in_bytes=64M A % cgset -r memory.memsw.limit_in_bytes=64M A % cd kernel_dir; cgexec -g memory:A make -j Then, the whole system will live-locked until you kill 'make -j' by hands (or push reboot...) This is because some important page in a a shared library are locked. Considering again, the new page is not necessary to be allocated with lock_page() held. And usual page allocation may dive into long memory reclaim loop with holding lock_page() and can cause very long latency. There are 3 ways. 1. do allocation/charge before lock_page() Pros. - simple and can handle page allocation in the same manner. This will reduce holding time of lock_page() in general. Cons. - we do page allocation even if ->fault() returns error. 2. do charge after unlock_page(). Even if charge fails, it's just OOM. Pros. - no impact to non-memcg path. Cons. - implemenation requires special cares of LRU and we need to modify page_add_new_anon_rmap()... 3. do unlock->charge->lock again method. Pros. - no impact to non-memcg path. Cons. - This may kill LOCK_PAGE_RETRY optimization. We need to release lock and get it again... This patch moves "charge" and memory allocation for COW page before lock_page(). Then, we can avoid scanning LRU with holding a lock on a page and latency under lock_page() will be reduced. Then, above livelock disappears. [akpm@linux-foundation.org: fix code layout] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reported-by: Lutz Vieweg <lvml@5t9.de> Original-idea-by: Michal Hocko <mhocko@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/memory.c: remove ZAP_BLOCK_SIZEAndrew Morton2011-07-261-11/+0
| | | | | | | | | ZAP_BLOCK_SIZE became unused in the preemptible-mmu_gather work ("mm: Remove i_mmap_lock lockbreak"). So zap it. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: __tlb_remove_page() check the correct batchShaohua Li2011-07-091-0/+1
| | | | | | | | | | __tlb_remove_page() switches to a new batch page, but still checks space in the old batch. This check always fails, and causes a forced tlb flush. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: move vmtruncate_range to truncate.cHugh Dickins2011-06-281-24/+0
| | | | | | | | | | You would expect to find vmtruncate_range() next to vmtruncate() in mm/truncate.c: move it there. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: fix wrong kunmap_atomic() pointerSteven Rostedt2011-06-161-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Running a ktest.pl test, I hit the following bug on x86_32: ------------[ cut here ]------------ WARNING: at arch/x86/mm/highmem_32.c:81 __kunmap_atomic+0x64/0xc1() Hardware name: Modules linked in: Pid: 93, comm: sh Not tainted 2.6.39-test+ #1 Call Trace: [<c04450da>] warn_slowpath_common+0x7c/0x91 [<c042f5df>] ? __kunmap_atomic+0x64/0xc1 [<c042f5df>] ? __kunmap_atomic+0x64/0xc1^M [<c0445111>] warn_slowpath_null+0x22/0x24 [<c042f5df>] __kunmap_atomic+0x64/0xc1 [<c04d4a22>] unmap_vmas+0x43a/0x4e0 [<c04d9065>] exit_mmap+0x91/0xd2 [<c0443057>] mmput+0x43/0xad [<c0448358>] exit_mm+0x111/0x119 [<c044855f>] do_exit+0x1ff/0x5fa [<c0454ea2>] ? set_current_blocked+0x3c/0x40 [<c0454f24>] ? sigprocmask+0x7e/0x8e [<c0448b55>] do_group_exit+0x65/0x88 [<c0448b90>] sys_exit_group+0x18/0x1c [<c0c3915f>] sysenter_do_call+0x12/0x38 ---[ end trace 8055f74ea3c0eb62 ]--- Running a ktest.pl git bisect, found the culprit: commit e303297e6c3a ("mm: extended batches for generic mmu_gather") But although this was the commit triggering the bug, it was not the one originally responsible for the bug. That was commit d16dfc550f53 ("mm: mmu_gather rework"). The code in zap_pte_range() has something that looks like the following: pte = pte_offset_map_lock(mm, pmd, addr, &ptl); do { [...] } while (pte++, addr += PAGE_SIZE, addr != end); pte_unmap_unlock(pte - 1, ptl); The pte starts off pointing at the first element in the page table directory that was returned by the pte_offset_map_lock(). When it's done with the page, pte will be pointing to anything between the next entry and the first entry of the next page inclusive. By doing a pte - 1, this puts the pte back onto the original page, which is all that pte_unmap_unlock() needs. In most archs (64 bit), this is not an issue as the pte is ignored in the pte_unmap_unlock(). But on 32 bit archs, where things may be kmapped, it is essential that the pte passed to pte_unmap_unlock() resides on the same page that was given by pte_offest_map_lock(). The problem came in d16dfc55 ("mm: mmu_gather rework") where it introduced a "break;" from the while loop. This alone did not seem to easily trigger the bug. But the modifications made by e303297e6 caused that "break;" to be hit on the first iteration, before the pte++. The pte not being incremented will now cause pte_unmap_unlock(pte - 1) to be pointing to the previous page. This will cause the wrong page to be unmapped, and also trigger the warning above. The simple solution is to just save the pointer given by pte_offset_map_lock() and use it in the unlock. Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/memory.c: fix kernel-doc notationRandy Dunlap2011-06-161-1/+1
| | | | | | | | | | | Fix new kernel-doc warnings in mm/memory.c: Warning(mm/memory.c:1327): No description found for parameter 'tlb' Warning(mm/memory.c:1327): Excess function parameter 'tlbp' description in 'unmap_vmas' Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg: add the pagefault count into memcg statsYing Han2011-05-271-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Two new stats in per-memcg memory.stat which tracks the number of page faults and number of major page faults. "pgfault" "pgmajfault" They are different from "pgpgin"/"pgpgout" stat which count number of pages charged/discharged to the cgroup and have no meaning of reading/ writing page to disk. It is valuable to track the two stats for both measuring application's performance as well as the efficiency of the kernel page reclaim path. Counting pagefaults per process is useful, but we also need the aggregated value since processes are monitored and controlled in cgroup basis in memcg. Functional test: check the total number of pgfault/pgmajfault of all memcgs and compare with global vmstat value: $ cat /proc/vmstat | grep fault pgfault 1070751 pgmajfault 553 $ cat /dev/cgroup/memory.stat | grep fault pgfault 1071138 pgmajfault 553 total_pgfault 1071142 total_pgmajfault 553 $ cat /dev/cgroup/A/memory.stat | grep fault pgfault 199 pgmajfault 0 total_pgfault 199 total_pgmajfault 0 Performance test: run page fault test(pft) wit 16 thread on faulting in 15G anon pages in 16G container. There is no regression noticed on the "flt/cpu/s" Sample output from pft: TAG pft:anon-sys-default: Gb Thr CLine User System Wall flt/cpu/s fault/wsec 15 16 1 0.67s 233.41s 14.76s 16798.546 266356.260 +-------------------------------------------------------------------------+ N Min Max Median Avg Stddev x 10 16682.962 17344.027 16913.524 16928.812 166.5362 + 10 16695.568 16923.896 16820.604 16824.652 84.816568 No difference proven at 95.0% confidence [akpm@linux-foundation.org: fix build] [hughd@google.com: shmem fix] Signed-off-by: Ying Han <yinghan@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: don't access vm_flags as 'int'KOSAKI Motohiro2011-05-261-1/+1
| | | | | | | | | | | The type of vma->vm_flags is 'unsigned long'. Neither 'int' nor 'unsigned int'. This patch fixes such misuse. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> [ Changed to use a typedef - we'll extend it to cover more cases later, since there has been discussion about making it a 64-bit type.. - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: uninline large generic tlb.h functionsPeter Zijlstra2011-05-251-2/+122
| | | | | | | | | | | Some of these functions have grown beyond inline sanity, move them out-of-line. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Requested-by: Andrew Morton <akpm@linux-foundation.org> Requested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: Convert i_mmap_lock to a mutexPeter Zijlstra2011-05-251-2/+2
| | | | | | | | | | | | | | | | | | | | | | Straightforward conversion of i_mmap_lock to a mutex. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: Remove i_mmap_lock lockbreakPeter Zijlstra2011-05-251-168/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hugh says: "The only significant loser, I think, would be page reclaim (when concurrent with truncation): could spin for a long time waiting for the i_mmap_mutex it expects would soon be dropped? " Counter points: - cpu contention makes the spin stop (need_resched()) - zap pages should be freeing pages at a higher rate than reclaim ever can I think the simplification of the truncate code is definitely worth it. Effectively reverts: 2aa15890f3c ("mm: prevent concurrent unmap_mapping_range() on the same inode") and takes out the code that caused its problem. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: extended batches for generic mmu_gatherPeter Zijlstra2011-05-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | Instead of using a single batch (the small on-stack, or an allocated page), try and extend the batch every time it runs out and only flush once either the extend fails or we're done. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Requested-by: Nick Piggin <npiggin@kernel.dk> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, powerpc: move the RCU page-table freeing into generic codePeter Zijlstra2011-05-251-0/+77
| | | | | | | | | | | | | | | | | | | | | | | | In case other architectures require RCU freed page-tables to implement gup_fast() and software filled hashes and similar things, provide the means to do so by moving the logic into generic code. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Requested-by: David Miller <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: mmu_gather reworkPeter Zijlstra2011-05-251-23/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rework the existing mmu_gather infrastructure. The direct purpose of these patches was to allow preemptible mmu_gather, but even without that I think these patches provide an improvement to the status quo. The first 9 patches rework the mmu_gather infrastructure. For review purpose I've split them into generic and per-arch patches with the last of those a generic cleanup. The next patch provides generic RCU page-table freeing, and the followup is a patch converting s390 to use this. I've also got 4 patches from DaveM lined up (not included in this series) that uses this to implement gup_fast() for sparc64. Then there is one patch that extends the generic mmu_gather batching. After that follow the mm preemptibility patches, these make part of the mm a lot more preemptible. It converts i_mmap_lock and anon_vma->lock to mutexes which together with the mmu_gather rework makes mmu_gather preemptible as well. Making i_mmap_lock a mutex also enables a clean-up of the truncate code. This also allows for preemptible mmu_notifiers, something that XPMEM I think wants. Furthermore, it removes the new and universially detested unmap_mutex. This patch: Remove the first obstacle towards a fully preemptible mmu_gather. The current scheme assumes mmu_gather is always done with preemption disabled and uses per-cpu storage for the page batches. Change this to try and allocate a page for batching and in case of failure, use a small on-stack array to make some progress. Preemptible mmu_gather is desired in general and usable once i_mmap_lock becomes a mutex. Doing it before the mutex conversion saves us from having to rework the code by moving the mmu_gather bits inside the pte_lock. Also avoid flushing the tlb batches from under the pte lock, this is useful even without the i_mmap_lock conversion as it significantly reduces pte lock hold times. [akpm@linux-foundation.org: fix comment tpyo] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: make expand_downwards() symmetrical with expand_upwards()Michal Hocko2011-05-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | Currently we have expand_upwards exported while expand_downwards is accessible only via expand_stack or expand_stack_downwards. check_stack_guard_page is a nice example of the asymmetry. It uses expand_stack for VM_GROWSDOWN while expand_upwards is called for VM_GROWSUP case. Let's clean this up by exporting both functions and make those names consistent. Let's use expand_{upwards,downwards} because expanding doesn't always involve stack manipulation (an example is ia64_do_page_fault which uses expand_upwards for registers backing store expansion). expand_downwards has to be defined for both CONFIG_STACK_GROWS{UP,DOWN} because get_arg_page calls the downwards version in the early process initialization phase for growsup configuration. Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: Hugh Dickins <hughd@google.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Don't lock guardpage if the stack is growing upMikulas Patocka2011-05-101-9/+7
| | | | | | | | | | | | | | | | | | | | | Linux kernel excludes guard page when performing mlock on a VMA with down-growing stack. However, some architectures have up-growing stack and locking the guard page should be excluded in this case too. This patch fixes lvm2 on PA-RISC (and possibly other architectures with up-growing stack). lvm2 calculates number of used pages when locking and when unlocking and reports an internal error if the numbers mismatch. [ Patch changed fairly extensively to also fix /proc/<pid>/maps for the grows-up case, and to move things around a bit to clean it all up and share the infrstructure with the /proc bits. Tested on ia64 that has both grow-up and grow-down segments - Linus ] Signed-off-by: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz> Tested-by: Tony Luck <tony.luck@gmail.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>