summaryrefslogtreecommitdiffstats
path: root/mm/memory.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* mm: avoid setting up anonymous pages into file mappingKirill A. Shutemov2015-07-091-7/+13
| | | | | | | | | | | | | | | | | | | | | | Reading page fault handler code I've noticed that under right circumstances kernel would map anonymous pages into file mappings: if the VMA doesn't have vm_ops->fault() and the VMA wasn't fully populated on ->mmap(), kernel would handle page fault to not populated pte with do_anonymous_page(). Let's change page fault handler to use do_anonymous_page() only on anonymous VMA (->vm_ops == NULL) and make sure that the VMA is not shared. For file mappings without vm_ops->fault() or shred VMA without vm_ops, page fault on pte_none() entry would lead to SIGBUS. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Willy Tarreau <w@1wt.eu> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'for-linus' of ↵Linus Torvalds2015-07-051-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull more vfs updates from Al Viro: "Assorted VFS fixes and related cleanups (IMO the most interesting in that part are f_path-related things and Eric's descriptor-related stuff). UFS regression fixes (it got broken last cycle). 9P fixes. fs-cache series, DAX patches, Jan's file_remove_suid() work" [ I'd say this is much more than "fixes and related cleanups". The file_table locking rule change by Eric Dumazet is a rather big and fundamental update even if the patch isn't huge. - Linus ] * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits) 9p: cope with bogus responses from server in p9_client_{read,write} p9_client_write(): avoid double p9_free_req() 9p: forgetting to cancel request on interrupted zero-copy RPC dax: bdev_direct_access() may sleep block: Add support for DAX reads/writes to block devices dax: Use copy_from_iter_nocache dax: Add block size note to documentation fs/file.c: __fget() and dup2() atomicity rules fs/file.c: don't acquire files->file_lock in fd_install() fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation vfs: avoid creation of inode number 0 in get_next_ino namei: make set_root_rcu() return void make simple_positive() public ufs: use dir_pages instead of ufs_dir_pages() pagemap.h: move dir_pages() over there remove the pointless include of lglock.h fs: cleanup slight list_entry abuse xfs: Correctly lock inode when removing suid and file capabilities fs: Call security_ops->inode_killpriv on truncate fs: Provide function telling whether file_remove_privs() will do anything ...
| * vfs: add file_path() helperMiklos Szeredi2015-06-241-1/+1
| | | | | | | | | | | | | | | | | | | | Turn d_path(&file->f_path, ...); into file_path(file, ...); Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | mm, memcg: Try charging a page before setting page up to dateMel Gorman2015-06-251-4/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Historically memcg overhead was high even if memcg was unused. This has improved a lot but it still showed up in a profile summary as being a problem. /usr/src/linux-4.0-vanilla/mm/memcontrol.c 6.6441 395842 mem_cgroup_try_charge 2.950% 175781 __mem_cgroup_count_vm_event 1.431% 85239 mem_cgroup_page_lruvec 0.456% 27156 mem_cgroup_commit_charge 0.392% 23342 uncharge_list 0.323% 19256 mem_cgroup_update_lru_size 0.278% 16538 memcg_check_events 0.216% 12858 mem_cgroup_charge_statistics.isra.22 0.188% 11172 try_charge 0.150% 8928 commit_charge 0.141% 8388 get_mem_cgroup_from_mm 0.121% 7184 That is showing that 6.64% of system CPU cycles were in memcontrol.c and dominated by mem_cgroup_try_charge. The annotation shows that the bulk of the cost was checking PageSwapCache which is expected to be cache hot but is very expensive. The problem appears to be that __SetPageUptodate is called just before the check which is a write barrier. It is required to make sure struct page and page data is written before the PTE is updated and the data visible to userspace. memcg charging does not require or need the barrier but gets unfairly hit with the cost so this patch attempts the charging before the barrier. Aside from the accidental cost to memcg there is the added benefit that the barrier is avoided if the page cannot be charged. When applied the relevant profile summary is as follows. /usr/src/linux-4.0-chargefirst-v2r1/mm/memcontrol.c 3.7907 223277 __mem_cgroup_count_vm_event 1.143% 67312 mem_cgroup_page_lruvec 0.465% 27403 mem_cgroup_commit_charge 0.381% 22452 uncharge_list 0.332% 19543 mem_cgroup_update_lru_size 0.284% 16704 get_mem_cgroup_from_mm 0.271% 15952 mem_cgroup_try_charge 0.237% 13982 memcg_check_events 0.222% 13058 mem_cgroup_charge_statistics.isra.22 0.185% 10920 commit_charge 0.140% 8235 try_charge 0.131% 7716 That brings the overhead down to 3.79% and leaves the memcg fault accounting to the root cgroup but it's an improvement. The difference in headline performance of the page fault microbench is marginal as memcg is such a small component of it. pft faults 4.0.0 4.0.0 vanilla chargefirst Hmean faults/cpu-1 1443258.1051 ( 0.00%) 1509075.7561 ( 4.56%) Hmean faults/cpu-3 1340385.9270 ( 0.00%) 1339160.7113 ( -0.09%) Hmean faults/cpu-5 875599.0222 ( 0.00%) 874174.1255 ( -0.16%) Hmean faults/cpu-7 601146.6726 ( 0.00%) 601370.9977 ( 0.04%) Hmean faults/cpu-8 510728.2754 ( 0.00%) 510598.8214 ( -0.03%) Hmean faults/sec-1 1432084.7845 ( 0.00%) 1497935.5274 ( 4.60%) Hmean faults/sec-3 3943818.1437 ( 0.00%) 3941920.1520 ( -0.05%) Hmean faults/sec-5 3877573.5867 ( 0.00%) 3869385.7553 ( -0.21%) Hmean faults/sec-7 3991832.0418 ( 0.00%) 3992181.4189 ( 0.01%) Hmean faults/sec-8 3987189.8167 ( 0.00%) 3986452.2204 ( -0.02%) It's only visible at single threaded. The overhead is there for higher threads but other factors dominate. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | sched/preempt, mm/fault: Trigger might_sleep() in might_fault() with ↵David Hildenbrand2015-05-191-12/+6
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | disabled pagefaults Commit 662bbcb2747c ("mm, sched: Allow uaccess in atomic with pagefault_disable()") removed might_sleep() checks for all user access code (that uses might_fault()). The reason was to disable wrong "sleep in atomic" warnings in the following scenario: pagefault_disable() rc = copy_to_user(...) pagefault_enable() Which is valid, as pagefault_disable() increments the preempt counter and therefore disables the pagefault handler. copy_to_user() will not sleep and return an error code if a page is not available. However, as all might_sleep() checks are removed, CONFIG_DEBUG_ATOMIC_SLEEP would no longer detect the following scenario: spin_lock(&lock); rc = copy_to_user(...) spin_unlock(&lock) If the kernel is compiled with preemption turned on, preempt_disable() will make in_atomic() detect disabled preemption. The fault handler would correctly never sleep on user access. However, with preemption turned off, preempt_disable() is usually a NOP (with !CONFIG_PREEMPT_COUNT), therefore in_atomic() will not be able to detect disabled preemption nor disabled pagefaults. The fault handler could sleep. We really want to enable CONFIG_DEBUG_ATOMIC_SLEEP checks for user access functions again, otherwise we can end up with horrible deadlocks. Root of all evil is that pagefault_disable() acts almost as preempt_disable(), depending on preemption being turned on/off. As we now have pagefault_disabled(), we can use it to distinguish whether user acces functions might sleep. Convert might_fault() into a makro that calls __might_fault(), to allow proper file + line messages in case of a might_sleep() warning. Reviewed-and-tested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David.Laight@ACULAB.COM Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: airlied@linux.ie Cc: akpm@linux-foundation.org Cc: benh@kernel.crashing.org Cc: bigeasy@linutronix.de Cc: borntraeger@de.ibm.com Cc: daniel.vetter@intel.com Cc: heiko.carstens@de.ibm.com Cc: herbert@gondor.apana.org.au Cc: hocko@suse.cz Cc: hughd@google.com Cc: mst@redhat.com Cc: paulus@samba.org Cc: ralf@linux-mips.org Cc: schwidefsky@de.ibm.com Cc: yang.shi@windriver.com Link: http://lkml.kernel.org/r/1431359540-32227-3-git-send-email-dahi@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* mm: new pfn_mkwrite same as page_mkwrite for VM_PFNMAPBoaz Harrosh2015-04-161-4/+39
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This will allow FS that uses VM_PFNMAP | VM_MIXEDMAP (no page structs) to get notified when access is a write to a read-only PFN. This can happen if we mmap() a file then first mmap-read from it to page-in a read-only PFN, than we mmap-write to the same page. We need this functionality to fix a DAX bug, where in the scenario above we fail to set ctime/mtime though we modified the file. An xfstest is attached to this patchset that shows the failure and the fix. (A DAX patch will follow) This functionality is extra important for us, because upon dirtying of a pmem page we also want to RDMA the page to a remote cluster node. We define a new pfn_mkwrite and do not reuse page_mkwrite because 1 - The name ;-) 2 - But mainly because it would take a very long and tedious audit of all page_mkwrite functions of VM_MIXEDMAP/VM_PFNMAP users. To make sure they do not now CRASH. For example current DAX code (which this is for) would crash. If we would want to reuse page_mkwrite, We will need to first patch all users, so to not-crash-on-no-page. Then enable this patch. But even if I did that I would not sleep so well at night. Adding a new vector is the safest thing to do, and is not that expensive. an extra pointer at a static function vector per driver. Also the new vector is better for performance, because else we Will call all current Kernel vectors, so to: check-ha-no-page-do-nothing and return. No need to call it from do_shared_fault because do_wp_page is called to change pte permissions anyway. Signed-off-by: Yigal Korman <yigal@plexistor.com> Signed-off-by: Boaz Harrosh <boaz@plexistor.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/memory: also print a_ops->readpage in print_bad_pte()Konstantin Khlebnikov2015-04-161-6/+5
| | | | | | | | | | | | | | | | | | | | | | | | A lot of filesystems use generic_file_mmap() and filemap_fault(), f_op->mmap and vm_ops->fault aren't enough to identify filesystem. This prints file name, vm_ops->fault, f_op->mmap and a_ops->readpage (which is almost always implemented and filesystem-specific). Example: [ 23.676410] BUG: Bad page map in process sh pte:1b7e6025 pmd:19bbd067 [ 23.676887] page:ffffea00006df980 count:4 mapcount:1 mapping:ffff8800196426c0 index:0x97 [ 23.677481] flags: 0x10000000000000c(referenced|uptodate) [ 23.677896] page dumped because: bad pte [ 23.678205] addr:00007f52fcb17000 vm_flags:00000075 anon_vma: (null) mapping:ffff8800196426c0 index:97 [ 23.678922] file:libc-2.19.so fault:filemap_fault mmap:generic_file_readonly_mmap readpage:v9fs_vfs_readpage [akpm@linux-foundation.org: use pr_alert, per Kirill] Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Sasha Levin <sasha.levin@oracle.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove rest of ACCESS_ONCE() usagesJason Low2015-04-161-1/+1
| | | | | | | | | | | | | | | | | We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/ tree since it doesn't work reliably on non-scalar types. This patch removes the rest of the usages of ACCESS_ONCE, and use the new READ_ONCE API for the read accesses. This makes things cleaner, instead of using separate/multiple sets of APIs. Signed-off-by: Jason Low <jason.low2@hp.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Davidlohr Bueso <dave@stgolabs.net> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: refactor do_wp_page handling of shared vma into a functionShachar Raindel2015-04-151-38/+48
| | | | | | | | | | | | | | | | | | | | | | | | | | The do_wp_page function is extremely long. Extract the logic for handling a page belonging to a shared vma into a function of its own. This helps the readability of the code, without doing any functional change in it. Signed-off-by: Shachar Raindel <raindel@mellanox.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Haggai Eran <haggaie@mellanox.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Feiner <pfeiner@google.com> Cc: Michel Lespinasse <walken@google.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: refactor do_wp_page, extract the page copy flowShachar Raindel2015-04-151-118/+147
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In some cases, do_wp_page had to copy the page suffering a write fault to a new location. If the function logic decided that to do this, it was done by jumping with a "goto" operation to the relevant code block. This made the code really hard to understand. It is also against the kernel coding style guidelines. This patch extracts the page copy and page table update logic to a separate function. It also clean up the naming, from "gotten" to "wp_page_copy", and adds few comments. Signed-off-by: Shachar Raindel <raindel@mellanox.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Haggai Eran <haggaie@mellanox.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Feiner <pfeiner@google.com> Cc: Michel Lespinasse <walken@google.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: refactor do_wp_page - rewrite the unlock flowShachar Raindel2015-04-151-9/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When do_wp_page is ending, in several cases it needs to unlock the pages and ptls it was accessing. Currently, this logic was "called" by using a goto jump. This makes following the control flow of the function harder. Readability was further hampered by the unlock case containing large amount of logic needed only in one of the 3 cases. Using goto for cleanup is generally allowed. However, moving the trivial unlocking flows to the relevant call sites allow deeper refactoring in the next patch. Signed-off-by: Shachar Raindel <raindel@mellanox.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Haggai Eran <haggaie@mellanox.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Feiner <pfeiner@google.com> Cc: Michel Lespinasse <walken@google.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: refactor do_wp_page, extract the reuse caseShachar Raindel2015-04-151-49/+68
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently do_wp_page contains 265 code lines. It also contains 9 goto statements, of which 5 are targeting labels which are not cleanup related. This makes the function extremely difficult to understand. The following patches are an attempt at breaking the function to its basic components, and making it easier to understand. The patches are straight forward function extractions from do_wp_page. As we extract functions, we remove unneeded parameters and simplify the code as much as possible. However, the functionality is supposed to remain completely unchanged. The patches also attempt to document the functionality of each extracted function. In patch 2, we split the unlock logic to the contain logic relevant to specific needs of each use case, instead of having huge number of conditional decisions in a single unlock flow. This patch (of 4): When do_wp_page is ending, in several cases it needs to reuse the existing page. This is achieved by making the page table writable, and possibly updating the page-cache state. Currently, this logic was "called" by using a goto jump. This makes following the control flow of the function harder. It is also against the coding style guidelines for using goto. As the code can easily be refactored into a specialized function, refactor it out and simplify the code flow in do_wp_page. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Haggai Eran <haggaie@mellanox.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Feiner <pfeiner@google.com> Cc: Michel Lespinasse <walken@google.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: numa: slow PTE scan rate if migration failures occurMel Gorman2015-03-261-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dave Chinner reported the following on https://lkml.org/lkml/2015/3/1/226 Across the board the 4.0-rc1 numbers are much slower, and the degradation is far worse when using the large memory footprint configs. Perf points straight at the cause - this is from 4.0-rc1 on the "-o bhash=101073" config: - 56.07% 56.07% [kernel] [k] default_send_IPI_mask_sequence_phys - default_send_IPI_mask_sequence_phys - 99.99% physflat_send_IPI_mask - 99.37% native_send_call_func_ipi smp_call_function_many - native_flush_tlb_others - 99.85% flush_tlb_page ptep_clear_flush try_to_unmap_one rmap_walk try_to_unmap migrate_pages migrate_misplaced_page - handle_mm_fault - 99.73% __do_page_fault trace_do_page_fault do_async_page_fault + async_page_fault 0.63% native_send_call_func_single_ipi generic_exec_single smp_call_function_single This is showing excessive migration activity even though excessive migrations are meant to get throttled. Normally, the scan rate is tuned on a per-task basis depending on the locality of faults. However, if migrations fail for any reason then the PTE scanner may scan faster if the faults continue to be remote. This means there is higher system CPU overhead and fault trapping at exactly the time we know that migrations cannot happen. This patch tracks when migration failures occur and slows the PTE scanner. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Dave Chinner <david@fromorbit.com> Tested-by: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: numa: preserve PTE write permissions across a NUMA hinting faultMel Gorman2015-03-261-5/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Protecting a PTE to trap a NUMA hinting fault clears the writable bit and further faults are needed after trapping a NUMA hinting fault to set the writable bit again. This patch preserves the writable bit when trapping NUMA hinting faults. The impact is obvious from the number of minor faults trapped during the basis balancing benchmark and the system CPU usage; autonumabench 4.0.0-rc4 4.0.0-rc4 baseline preserve Time System-NUMA01 107.13 ( 0.00%) 103.13 ( 3.73%) Time System-NUMA01_THEADLOCAL 131.87 ( 0.00%) 83.30 ( 36.83%) Time System-NUMA02 8.95 ( 0.00%) 10.72 (-19.78%) Time System-NUMA02_SMT 4.57 ( 0.00%) 3.99 ( 12.69%) Time Elapsed-NUMA01 515.78 ( 0.00%) 517.26 ( -0.29%) Time Elapsed-NUMA01_THEADLOCAL 384.10 ( 0.00%) 384.31 ( -0.05%) Time Elapsed-NUMA02 48.86 ( 0.00%) 48.78 ( 0.16%) Time Elapsed-NUMA02_SMT 47.98 ( 0.00%) 48.12 ( -0.29%) 4.0.0-rc4 4.0.0-rc4 baseline preserve User 44383.95 43971.89 System 252.61 201.24 Elapsed 998.68 1000.94 Minor Faults 2597249 1981230 Major Faults 365 364 There is a similar drop in system CPU usage using Dave Chinner's xfsrepair workload 4.0.0-rc4 4.0.0-rc4 baseline preserve Amean real-xfsrepair 454.14 ( 0.00%) 442.36 ( 2.60%) Amean syst-xfsrepair 277.20 ( 0.00%) 204.68 ( 26.16%) The patch looks hacky but the alternatives looked worse. The tidest was to rewalk the page tables after a hinting fault but it was more complex than this approach and the performance was worse. It's not generally safe to just mark the page writable during the fault if it's a write fault as it may have been read-only for COW so that approach was discarded. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Dave Chinner <david@fromorbit.com> Tested-by: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: numa: group related processes based on VMA flags instead of page table flagsMel Gorman2015-03-261-8/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | These are three follow-on patches based on the xfsrepair workload Dave Chinner reported was problematic in 4.0-rc1 due to changes in page table management -- https://lkml.org/lkml/2015/3/1/226. Much of the problem was reduced by commit 53da3bc2ba9e ("mm: fix up numa read-only thread grouping logic") and commit ba68bc0115eb ("mm: thp: Return the correct value for change_huge_pmd"). It was known that the performance in 3.19 was still better even if is far less safe. This series aims to restore the performance without compromising on safety. For the test of this mail, I'm comparing 3.19 against 4.0-rc4 and the three patches applied on top autonumabench 3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 vanilla vanilla vmwrite-v5r8 preserve-v5r8 slowscan-v5r8 Time System-NUMA01 124.00 ( 0.00%) 161.86 (-30.53%) 107.13 ( 13.60%) 103.13 ( 16.83%) 145.01 (-16.94%) Time System-NUMA01_THEADLOCAL 115.54 ( 0.00%) 107.64 ( 6.84%) 131.87 (-14.13%) 83.30 ( 27.90%) 92.35 ( 20.07%) Time System-NUMA02 9.35 ( 0.00%) 10.44 (-11.66%) 8.95 ( 4.28%) 10.72 (-14.65%) 8.16 ( 12.73%) Time System-NUMA02_SMT 3.87 ( 0.00%) 4.63 (-19.64%) 4.57 (-18.09%) 3.99 ( -3.10%) 3.36 ( 13.18%) Time Elapsed-NUMA01 570.06 ( 0.00%) 567.82 ( 0.39%) 515.78 ( 9.52%) 517.26 ( 9.26%) 543.80 ( 4.61%) Time Elapsed-NUMA01_THEADLOCAL 393.69 ( 0.00%) 384.83 ( 2.25%) 384.10 ( 2.44%) 384.31 ( 2.38%) 380.73 ( 3.29%) Time Elapsed-NUMA02 49.09 ( 0.00%) 49.33 ( -0.49%) 48.86 ( 0.47%) 48.78 ( 0.63%) 50.94 ( -3.77%) Time Elapsed-NUMA02_SMT 47.51 ( 0.00%) 47.15 ( 0.76%) 47.98 ( -0.99%) 48.12 ( -1.28%) 49.56 ( -4.31%) 3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8 User 46334.60 46391.94 44383.95 43971.89 44372.12 System 252.84 284.66 252.61 201.24 249.00 Elapsed 1062.14 1050.96 998.68 1000.94 1026.78 Overall the system CPU usage is comparable and the test is naturally a bit variable. The slowing of the scanner hurts numa01 but on this machine it is an adverse workload and patches that dramatically help it often hurt absolutely everything else. Due to patch 2, the fault activity is interesting 3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8 Minor Faults 2097811 2656646 2597249 1981230 1636841 Major Faults 362 450 365 364 365 Note the impact preserving the write bit across protection updates and fault reduces faults. NUMA alloc hit 1229008 1217015 1191660 1178322 1199681 NUMA alloc miss 0 0 0 0 0 NUMA interleave hit 0 0 0 0 0 NUMA alloc local 1228514 1216317 1190871 1177448 1199021 NUMA base PTE updates 245706197 240041607 238195516 244704842 115012800 NUMA huge PMD updates 479530 468448 464868 477573 224487 NUMA page range updates 491225557 479886983 476207932 489222218 229950144 NUMA hint faults 659753 656503 641678 656926 294842 NUMA hint local faults 381604 373963 360478 337585 186249 NUMA hint local percent 57 56 56 51 63 NUMA pages migrated 5412140 6374899 6266530 5277468 5755096 AutoNUMA cost 5121% 5083% 4994% 5097% 2388% Here the impact of slowing the PTE scanner on migratrion failures is obvious as "NUMA base PTE updates" and "NUMA huge PMD updates" are massively reduced even though the headline performance is very similar. As xfsrepair was the reported workload here is the impact of the series on it. xfsrepair 3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 vanilla vanilla vmwrite-v5r8 preserve-v5r8 slowscan-v5r8 Min real-fsmark 1183.29 ( 0.00%) 1165.73 ( 1.48%) 1152.78 ( 2.58%) 1153.64 ( 2.51%) 1177.62 ( 0.48%) Min syst-fsmark 4107.85 ( 0.00%) 4027.75 ( 1.95%) 3986.74 ( 2.95%) 3979.16 ( 3.13%) 4048.76 ( 1.44%) Min real-xfsrepair 441.51 ( 0.00%) 463.96 ( -5.08%) 449.50 ( -1.81%) 440.08 ( 0.32%) 439.87 ( 0.37%) Min syst-xfsrepair 195.76 ( 0.00%) 278.47 (-42.25%) 262.34 (-34.01%) 203.70 ( -4.06%) 143.64 ( 26.62%) Amean real-fsmark 1188.30 ( 0.00%) 1177.34 ( 0.92%) 1157.97 ( 2.55%) 1158.21 ( 2.53%) 1182.22 ( 0.51%) Amean syst-fsmark 4111.37 ( 0.00%) 4055.70 ( 1.35%) 3987.19 ( 3.02%) 3998.72 ( 2.74%) 4061.69 ( 1.21%) Amean real-xfsrepair 450.88 ( 0.00%) 468.32 ( -3.87%) 454.14 ( -0.72%) 442.36 ( 1.89%) 440.59 ( 2.28%) Amean syst-xfsrepair 199.66 ( 0.00%) 290.60 (-45.55%) 277.20 (-38.84%) 204.68 ( -2.51%) 150.55 ( 24.60%) Stddev real-fsmark 4.12 ( 0.00%) 10.82 (-162.29%) 4.14 ( -0.28%) 5.98 (-45.05%) 4.60 (-11.53%) Stddev syst-fsmark 2.63 ( 0.00%) 20.32 (-671.82%) 0.37 ( 85.89%) 16.47 (-525.59%) 15.05 (-471.79%) Stddev real-xfsrepair 6.87 ( 0.00%) 4.55 ( 33.75%) 3.46 ( 49.58%) 1.78 ( 74.12%) 0.52 ( 92.50%) Stddev syst-xfsrepair 3.02 ( 0.00%) 10.30 (-241.37%) 13.17 (-336.37%) 0.71 ( 76.63%) 5.00 (-65.61%) CoeffVar real-fsmark 0.35 ( 0.00%) 0.92 (-164.73%) 0.36 ( -2.91%) 0.52 (-48.82%) 0.39 (-12.10%) CoeffVar syst-fsmark 0.06 ( 0.00%) 0.50 (-682.41%) 0.01 ( 85.45%) 0.41 (-543.22%) 0.37 (-478.78%) CoeffVar real-xfsrepair 1.52 ( 0.00%) 0.97 ( 36.21%) 0.76 ( 49.94%) 0.40 ( 73.62%) 0.12 ( 92.33%) CoeffVar syst-xfsrepair 1.51 ( 0.00%) 3.54 (-134.54%) 4.75 (-214.31%) 0.34 ( 77.20%) 3.32 (-119.63%) Max real-fsmark 1193.39 ( 0.00%) 1191.77 ( 0.14%) 1162.90 ( 2.55%) 1166.66 ( 2.24%) 1188.50 ( 0.41%) Max syst-fsmark 4114.18 ( 0.00%) 4075.45 ( 0.94%) 3987.65 ( 3.08%) 4019.45 ( 2.30%) 4082.80 ( 0.76%) Max real-xfsrepair 457.80 ( 0.00%) 474.60 ( -3.67%) 457.82 ( -0.00%) 444.42 ( 2.92%) 441.03 ( 3.66%) Max syst-xfsrepair 203.11 ( 0.00%) 303.65 (-49.50%) 294.35 (-44.92%) 205.33 ( -1.09%) 155.28 ( 23.55%) The really relevant lines as syst-xfsrepair which is the system CPU usage when running xfsrepair. Note that on my machine the overhead was 45% higher on 4.0-rc4 which may be part of what Dave is seeing. Once we preserve the write bit across faults, it's only 2.51% higher on average. With the full series applied, system CPU usage is 24.6% lower on average. Again, the impact of preserving the write bit on minor faults is obvious and the impact of slowing scanning after migration failures is obvious on the PTE updates. Note also that the number of pages migrated is much reduced even though the headline performance is comparable. 3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8 Minor Faults 153466827 254507978 249163829 153501373 105737890 Major Faults 610 702 690 649 724 NUMA base PTE updates 217735049 210756527 217729596 216937111 144344993 NUMA huge PMD updates 129294 85044 106921 127246 79887 NUMA pages migrated 21938995 29705270 28594162 22687324 16258075 3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8 Mean sdb-avgqusz 13.47 2.54 2.55 2.47 2.49 Mean sdb-avgrqsz 202.32 140.22 139.50 139.02 138.12 Mean sdb-await 25.92 5.09 5.33 5.02 5.22 Mean sdb-r_await 4.71 0.19 0.83 0.51 0.11 Mean sdb-w_await 104.13 5.21 5.38 5.05 5.32 Mean sdb-svctm 0.59 0.13 0.14 0.13 0.14 Mean sdb-rrqm 0.16 0.00 0.00 0.00 0.00 Mean sdb-wrqm 3.59 1799.43 1826.84 1812.21 1785.67 Max sdb-avgqusz 111.06 12.13 14.05 11.66 15.60 Max sdb-avgrqsz 255.60 190.34 190.01 187.33 191.78 Max sdb-await 168.24 39.28 49.22 44.64 65.62 Max sdb-r_await 660.00 52.00 280.00 76.00 12.00 Max sdb-w_await 7804.00 39.28 49.22 44.64 65.62 Max sdb-svctm 4.00 2.82 2.86 1.98 2.84 Max sdb-rrqm 8.30 0.00 0.00 0.00 0.00 Max sdb-wrqm 34.20 5372.80 5278.60 5386.60 5546.15 FWIW, I also checked SPECjbb in different configurations but it's similar observations -- minor faults lower, PTE update activity lower and performance is roughly comparable against 3.19. This patch (of 3): Threads that share writable data within pages are grouped together as related tasks. This decision is based on whether the PTE is marked dirty which is subject to timing races between the PTE scanner update and when the application writes the page. If the page is file-backed, then background flushes and sync also affect placement. This is unpredictable behaviour which is impossible to reason about so this patch makes grouping decisions based on the VMA flags. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Dave Chinner <david@fromorbit.com> Tested-by: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: fix up numa read-only thread grouping logicLinus Torvalds2015-03-121-1/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dave Chinner reported that commit 4d9424669946 ("mm: convert p[te|md]_mknonnuma and remaining page table manipulations") slowed down his xfsrepair test enormously. In particular, it was using more system time due to extra TLB flushing. The ultimate reason turns out to be how the change to use the regular page table accessor functions broke the NUMA grouping logic. The old special mknuma/mknonnuma code accessed the page table present bit and the magic NUMA bit directly, while the new code just changes the page protections using PROT_NONE and the regular vma protections. That sounds equivalent, and from a fault standpoint it really is, but a subtle side effect is that the *other* protection bits of the page table entries also change. And the code to decide how to group the NUMA entries together used the writable bit to decide whether a particular page was likely to be shared read-only or not. And with the change to make the NUMA handling use the regular permission setting functions, that writable bit was basically always cleared for private mappings due to COW. So even if the page actually ends up being written to in the end, the NUMA balancing would act as if it was always shared RO. This code is a heuristic anyway, so the fix - at least for now - is to instead check whether the page is dirty rather than writable. The bit doesn't change with protection changes. NOTE! This also adds a FIXME comment to revisit this issue, Not only should we probably re-visit the whole "is this a shared read-only page" heuristic (we might want to take the vma permissions into account and base this more on those than the per-page ones, and also look at whether the particular access that triggers it is a write or not), but the whole COW issue shows that we should think about the NUMA fault handling some more. For example, maybe we should do the early-COW thing that a regular fault does. Or maybe we should accept that while using the same bits as PROTNONE was a good thing (and got rid of the specual NUMA bit), we might still want to just preseve the other protection bits across NUMA faulting. Those are bigger questions, left for later. This just fixes up the heuristic so that it at least approximates working again. More analysis and work needed. Reported-by: Dave Chinner <david@fromorbit.com> Tested-by: Mel Gorman <mgorman@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org>, Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: allow page fault handlers to perform the COWMatthew Wilcox2015-02-171-9/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently COW of an XIP file is done by first bringing in a read-only mapping, then retrying the fault and copying the page. It is much more efficient to tell the fault handler that a COW is being attempted (by passing in the pre-allocated page in the vm_fault structure), and allow the handler to perform the COW operation itself. The handler cannot insert the page itself if there is already a read-only mapping at that address, so allow the handler to return VM_FAULT_LOCKED and set the fault_page to be NULL. This indicates to the MM code that the i_mmap_lock is held instead of the page lock. Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andreas Dilger <andreas.dilger@intel.com> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Jens Axboe <axboe@kernel.dk> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: fix XIP fault vs truncate raceMatthew Wilcox2015-02-171-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | DAX is a replacement for the variation of XIP currently supported by the ext2 filesystem. We have three different things in the tree called 'XIP', and the new focus is on access to data rather than executables, so a name change was in order. DAX stands for Direct Access. The X is for eXciting. The new focus on data access has resulted in more careful attention to races that exist in the current XIP code, but are not hit by the use-case that it was designed for. XIP's architecture worked fine for ext2, but DAX is architected to work with modern filsystems such as ext4 and XFS. DAX is not intended for use with btrfs; the value that btrfs adds relies on manipulating data and writing data to different locations, while DAX's value is for write-in-place and keeping the kernel from touching the data. DAX was developed in order to support NV-DIMMs, but it's become clear that its usefuless extends beyond NV-DIMMs and there are several potential customers including the tracing machinery. Other people want to place the kernel log in an area of memory, as long as they have a BIOS that does not clear DRAM on reboot. Patch 1 is a bug fix, probably worth including in 3.18. Patches 2 & 3 are infrastructure for DAX. Patches 4-8 replace the XIP code with its DAX equivalents, transforming ext2 to use the DAX code as we go. Note that patch 10 is the Documentation patch. Patches 9-15 clean up after the XIP code, removing the infrastructure that is no longer needed and renaming various XIP things to DAX. Most of these patches were added after Jan found things he didn't like in an earlier version of the ext4 patch ... that had been copied from ext2. So ext2 i being transformed to do things the same way that ext4 will later. The ability to mount ext2 filesystems with the 'xip' option is retained, although the 'dax' option is now preferred. Patch 16 adds some DAX infrastructure to support ext4. Patch 17 adds DAX support to ext4. It is broadly similar to ext2's DAX support, but it is more efficient than ext4's due to its support for unwritten extents. Patch 18 is another cleanup patch renaming XIP to DAX. My thanks to Mathieu Desnoyers for his reviews of the v11 patchset. Most of the changes below were based on his feedback. This patch (of 18): Pagecache faults recheck i_size after taking the page lock to ensure that the fault didn't race against a truncate. We don't have a page to lock in the XIP case, so use i_mmap_lock_read() instead. It is locked in the truncate path in unmap_mapping_range() after updating i_size. So while we hold it in the fault path, we are guaranteed that either i_size has already been updated in the truncate path, or that the truncate will subsequently call zap_page_range_single() and so remove the mapping we have just inserted. There is a window of time in which i_size has been reduced and the thread has a mapping to a page which will be removed from the file, but this is harmless as the page will not be allocated to a different purpose before the thread's access to it is revoked. [akpm@linux-foundation.org: switch to i_mmap_lock_read(), add comment in unmap_single_vma()] Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andreas Dilger <andreas.dilger@intel.com> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/memory.c: actually remap enough memoryGrazvydas Ignotas2015-02-131-1/+1
| | | | | | | | | | | | | | For whatever reason, generic_access_phys() only remaps one page, but actually allows to access arbitrary size. It's quite easy to trigger large reads, like printing out large structure with gdb, which leads to a crash. Fix it by remapping correct size. Fixes: 28b2ee20c7cb ("access_process_vm device memory infrastructure") Signed-off-by: Grazvydas Ignotas <notasas@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: numa: add paranoid check around pte_protnone_numaMel Gorman2015-02-131-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | pte_protnone_numa is only safe to use after VMA checks for PROT_NONE are complete. Treating a real PROT_NONE PTE as a NUMA hinting fault is going to result in strangeness so add a check for it. BUG_ON looks like overkill but if this is hit then it's a serious bug that could result in corruption so do not even try recovering. It would have been more comprehensive to check VMA flags in pte_protnone_numa but it would have made the API ugly just for a debugging check. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Jones <davej@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Rik van Riel <riel@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: numa: do not trap faults on the huge zero pageMel Gorman2015-02-131-1/+0
| | | | | | | | | | | | | | | | | | | | Faults on the huge zero page are pointless and there is a BUG_ON to catch them during fault time. This patch reintroduces a check that avoids marking the zero page PAGE_NONE. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Jones <davej@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Rik van Riel <riel@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: convert p[te|md]_mknonnuma and remaining page table manipulationsMel Gorman2015-02-131-4/+6
| | | | | | | | | | | | | | | | | | | | | With PROT_NONE, the traditional page table manipulation functions are sufficient. [andre.przywara@arm.com: fix compiler warning in pmdp_invalidate()] [akpm@linux-foundation.org: fix build with STRICT_MM_TYPECHECKS] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Jones <davej@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: convert p[te|md]_numa users to p[te|md]_protnone_numaMel Gorman2015-02-131-2/+2
| | | | | | | | | | | | | | | | | | | | | | Convert existing users of pte_numa and friends to the new helper. Note that the kernel is broken after this patch is applied until the other page table modifiers are also altered. This patch layout is to make review easier. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Tested-by: Sasha Levin <sasha.levin@oracle.com> Cc: Dave Jones <davej@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Rik van Riel <riel@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: account pmd page tables to the processKirill A. Shutemov2015-02-121-6/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dave noticed that unprivileged process can allocate significant amount of memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and memory cgroup. The trick is to allocate a lot of PMD page tables. Linux kernel doesn't account PMD tables to the process, only PTE. The use-cases below use few tricks to allocate a lot of PMD page tables while keeping VmRSS and VmPTE low. oom_score for the process will be 0. #include <errno.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/mman.h> #include <sys/prctl.h> #define PUD_SIZE (1UL << 30) #define PMD_SIZE (1UL << 21) #define NR_PUD 130000 int main(void) { char *addr = NULL; unsigned long i; prctl(PR_SET_THP_DISABLE); for (i = 0; i < NR_PUD ; i++) { addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); if (addr == MAP_FAILED) { perror("mmap"); break; } *addr = 'x'; munmap(addr, PMD_SIZE); mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ, MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0); if (addr == MAP_FAILED) perror("re-mmap"), exit(1); } printf("PID %d consumed %lu KiB in PMD page tables\n", getpid(), i * 4096 >> 10); return pause(); } The patch addresses the issue by account PMD tables to the process the same way we account PTE. The main place where PMD tables is accounted is __pmd_alloc() and free_pmd_range(). But there're few corner cases: - HugeTLB can share PMD page tables. The patch handles by accounting the table to all processes who share it. - x86 PAE pre-allocates few PMD tables on fork. - Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity check on exit(2). Accounting only happens on configuration where PMD page table's level is present (PMD is not folded). As with nr_ptes we use per-mm counter. The counter value is used to calculate baseline for badness score by oom-killer. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: David Rientjes <rientjes@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'akpm' (patches from Andrew)Linus Torvalds2015-02-111-192/+84
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Merge misc updates from Andrew Morton: "Bite-sized chunks this time, to avoid the MTA ratelimiting woes. - fs/notify updates - ocfs2 - some of MM" That laconic "some MM" is mainly the removal of remap_file_pages(), which is a big simplification of the VM, and which gets rid of a *lot* of random cruft and special cases because we no longer support the non-linear mappings that it used. From a user interface perspective, nothing has changed, because the remap_file_pages() syscall still exists, it's just done by emulating the old behavior by creating a lot of individual small mappings instead of one non-linear one. The emulation is slower than the old "native" non-linear mappings, but nobody really uses or cares about remap_file_pages(), and simplifying the VM is a big advantage. * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (78 commits) memcg: zap memcg_slab_caches and memcg_slab_mutex memcg: zap memcg_name argument of memcg_create_kmem_cache memcg: zap __memcg_{charge,uncharge}_slab mm/page_alloc.c: place zone_id check before VM_BUG_ON_PAGE check mm: hugetlb: fix type of hugetlb_treat_as_movable variable mm, hugetlb: remove unnecessary lower bound on sysctl handlers"? mm: memory: merge shared-writable dirtying branches in do_wp_page() mm: memory: remove ->vm_file check on shared writable vmas xtensa: drop _PAGE_FILE and pte_file()-related helpers x86: drop _PAGE_FILE and pte_file()-related helpers unicore32: drop pte_file()-related helpers um: drop _PAGE_FILE and pte_file()-related helpers tile: drop pte_file()-related helpers sparc: drop pte_file()-related helpers sh: drop _PAGE_FILE and pte_file()-related helpers score: drop _PAGE_FILE and pte_file()-related helpers s390: drop pte_file()-related helpers parisc: drop _PAGE_FILE and pte_file()-related helpers openrisc: drop _PAGE_FILE and pte_file()-related helpers nios2: drop _PAGE_FILE and pte_file()-related helpers ...
| * mm: memory: merge shared-writable dirtying branches in do_wp_page()Johannes Weiner2015-02-101-31/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Whether there is a vm_ops->page_mkwrite or not, the page dirtying is pretty much the same. Make sure the page references are the same in both cases, then merge the two branches. It's tempting to go even further and page-lock the !page_mkwrite case, to get it in line with everybody else setting the page table and thus further simplify the model. But that's not quite compelling enough to justify dropping the pte lock, then relocking and verifying the entry for filesystems without ->page_mkwrite, which notably includes tmpfs. Leave it for now and lock the page late in the !page_mkwrite case. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * mm: memory: remove ->vm_file check on shared writable vmasJohannes Weiner2015-02-101-5/+2
| | | | | | | | | | | | | | | | | | | | | | Shared anonymous mmaps are implemented with shmem files, so all VMAs with shared writable semantics also have an underlying backing file. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * mm: remove rest usage of VM_NONLINEAR and pte_file()Kirill A. Shutemov2015-02-101-41/+37
| | | | | | | | | | | | | | | | | | | | One bit in ->vm_flags is unused now! Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * mm: drop support of non-linear mapping from fault codepathKirill A. Shutemov2015-02-101-56/+9
| | | | | | | | | | | | | | | | | | We don't create non-linear mappings anymore. Let's drop code which handles them on page fault. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * mm: drop support of non-linear mapping from unmap/zap codepathKirill A. Shutemov2015-02-101-61/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We have remap_file_pages(2) emulation in -mm tree for few release cycles and we plan to have it mainline in v3.20. This patchset removes rest of VM_NONLINEAR infrastructure. Patches 1-8 take care about generic code. They are pretty straight-forward and can be applied without other of patches. Rest patches removes pte_file()-related stuff from architecture-specific code. It usually frees up one bit in non-present pte. I've tried to reuse that bit for swap offset, where I was able to figure out how to do that. For obvious reason I cannot test all that arch-specific code and would like to see acks from maintainers. In total, remap_file_pages(2) required about 1.4K lines of not-so-trivial kernel code. That's too much for functionality nobody uses. Tested-by: Felipe Balbi <balbi@ti.com> This patch (of 38): We don't create non-linear mappings anymore. Let's drop code which handles them on unmap/zap. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge tag 'stable/for-linus-3.20-rc0-tag' of ↵Linus Torvalds2015-02-101-0/+2
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip Pull xen features and fixes from David Vrabel: - Reworked handling for foreign (grant mapped) pages to simplify the code, enable a number of additional use cases and fix a number of long-standing bugs. - Prefer the TSC over the Xen PV clock when dom0 (and the TSC is stable). - Assorted other cleanup and minor bug fixes. * tag 'stable/for-linus-3.20-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (25 commits) xen/manage: Fix USB interaction issues when resuming xenbus: Add proper handling of XS_ERROR from Xenbus for transactions. xen/gntdev: provide find_special_page VMA operation xen/gntdev: mark userspace PTEs as special on x86 PV guests xen-blkback: safely unmap grants in case they are still in use xen/gntdev: safely unmap grants in case they are still in use xen/gntdev: convert priv->lock to a mutex xen/grant-table: add a mechanism to safely unmap pages that are in use xen-netback: use foreign page information from the pages themselves xen: mark grant mapped pages as foreign xen/grant-table: add helpers for allocating pages x86/xen: require ballooned pages for grant maps xen: remove scratch frames for ballooned pages and m2p override xen/grant-table: pre-populate kernel unmap ops for xen_gnttab_unmap_refs() mm: add 'foreign' alias for the 'pinned' page flag mm: provide a find_special_page vma operation x86/xen: cleanup arch/x86/xen/mmu.c x86/xen: add some __init annotations in arch/x86/xen/mmu.c x86/xen: add some __init and static annotations in arch/x86/xen/setup.c x86/xen: use correct types for addresses in arch/x86/xen/setup.c ...
| * mm: provide a find_special_page vma operationDavid Vrabel2015-01-281-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The optional find_special_page VMA operation is used to lookup the pages backing a VMA. This is useful in cases where the normal mechanisms for finding the page don't work. This is only called if the PTE is special. One use case is a Xen PV guest mapping foreign pages into userspace. In a Xen PV guest, the PTEs contain MFNs so get_user_pages() (for example) must do an MFN to PFN (M2P) lookup before it can get the page. For foreign pages (those owned by another guest) the M2P lookup returns the PFN as seen by the foreign guest (which would be completely the wrong page for the local guest). This cannot be fixed up improving the M2P lookup since one MFN may be mapped onto two or more pages so getting the right page is impossible given just the MFN. Signed-off-by: David Vrabel <david.vrabel@citrix.com> Acked-by: Andrew Morton <akpm@linux-foundation.org>
* | vm: make stack guard page errors return VM_FAULT_SIGSEGV rather than SIGBUSLinus Torvalds2015-01-291-1/+1
|/ | | | | | | | | | | | | | | | | | | | The stack guard page error case has long incorrectly caused a SIGBUS rather than a SIGSEGV, but nobody actually noticed until commit fee7e49d4514 ("mm: propagate error from stack expansion even for guard page") because that error case was never actually triggered in any normal situations. Now that we actually report the error, people noticed the wrong signal that resulted. So far, only the test suite of libsigsegv seems to have actually cared, but there are real applications that use libsigsegv, so let's not wait for any of those to break. Reported-and-tested-by: Takashi Iwai <tiwai@suse.de> Tested-by: Jan Engelhardt <jengelh@inai.de> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots" Cc: linux-arch@vger.kernel.org Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: mmu_gather: use tlb->end != 0 only for TLB invalidationWill Deacon2015-01-131-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | When batching up address ranges for TLB invalidation, we check tlb->end != 0 to indicate that some pages have actually been unmapped. As of commit f045bbb9fa1b ("mmu_gather: fix over-eager tlb_flush_mmu_free() calling"), we use the same check for freeing these pages in order to avoid a performance regression where we call free_pages_and_swap_cache even when no pages are actually queued up. Unfortunately, the range could have been reset (tlb->end = 0) by tlb_end_vma, which has been shown to cause memory leaks on arm64. Furthermore, investigation into these leaks revealed that the fullmm case on task exit no longer invalidates the TLB, by virtue of tlb->end == 0 (in 3.18, need_flush would have been set). This patch resolves the problem by reverting commit f045bbb9fa1b, using instead tlb->local.nr as the predicate for page freeing in tlb_flush_mmu_free and ensuring that tlb->end is initialised to a non-zero value in the fullmm case. Tested-by: Mark Langsdorf <mlangsdo@redhat.com> Tested-by: Dave Hansen <dave@sr71.net> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: protect set_page_dirty() from ongoing truncationJohannes Weiner2015-01-091-10/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Tejun, while reviewing the code, spotted the following race condition between the dirtying and truncation of a page: __set_page_dirty_nobuffers() __delete_from_page_cache() if (TestSetPageDirty(page)) page->mapping = NULL if (PageDirty()) dec_zone_page_state(page, NR_FILE_DIRTY); dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); if (page->mapping) account_page_dirtied(page) __inc_zone_page_state(page, NR_FILE_DIRTY); __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); which results in an imbalance of NR_FILE_DIRTY and BDI_RECLAIMABLE. Dirtiers usually lock out truncation, either by holding the page lock directly, or in case of zap_pte_range(), by pinning the mapcount with the page table lock held. The notable exception to this rule, though, is do_wp_page(), for which this race exists. However, do_wp_page() already waits for a locked page to unlock before setting the dirty bit, in order to prevent a race where clear_page_dirty() misses the page bit in the presence of dirty ptes. Upgrade that wait to a fully locked set_page_dirty() to also cover the situation explained above. Afterwards, the code in set_page_dirty() dealing with a truncation race is no longer needed. Remove it. Reported-by: Tejun Heo <tj@kernel.org> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: propagate error from stack expansion even for guard pageLinus Torvalds2015-01-061-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | Jay Foad reports that the address sanitizer test (asan) sometimes gets confused by a stack pointer that ends up being outside the stack vma that is reported by /proc/maps. This happens due to an interaction between RLIMIT_STACK and the guard page: when we do the guard page check, we ignore the potential error from the stack expansion, which effectively results in a missing guard page, since the expected stack expansion won't have been done. And since /proc/maps explicitly ignores the guard page (commit d7824370e263: "mm: fix up some user-visible effects of the stack guard page"), the stack pointer ends up being outside the reported stack area. This is the minimal patch: it just propagates the error. It also effectively makes the guard page part of the stack limit, which in turn measn that the actual real stack is one page less than the stack limit. Let's see if anybody notices. We could teach acct_stack_growth() to allow an extra page for a grow-up/grow-down stack in the rlimit test, but I don't want to add more complexity if it isn't needed. Reported-and-tested-by: Jay Foad <jay.foad@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Revert "mm/memory.c: share the i_mmap_rwsem"Kirill A. Shutemov2014-12-221-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | This reverts commit c8475d144abb1e62958cc5ec281d2a9e161c1946. There are several[1][2] of bug reports which points to this commit as potential cause[3]. Let's revert it until we figure out what's going on. [1] https://lkml.org/lkml/2014/11/14/342 [2] https://lkml.org/lkml/2014/12/22/213 [3] https://lkml.org/lkml/2014/12/9/741 Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'for-linus' of ↵Linus Torvalds2014-12-211-1/+10
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux Pull ACCESS_ONCE cleanup preparation from Christian Borntraeger: "kernel: Provide READ_ONCE and ASSIGN_ONCE As discussed on LKML http://marc.info/?i=54611D86.4040306%40de.ibm.com ACCESS_ONCE might fail with specific compilers for non-scalar accesses. Here is a set of patches to tackle that problem. The first patch introduce READ_ONCE and ASSIGN_ONCE. If the data structure is larger than the machine word size memcpy is used and a warning is emitted. The next patches fix up several in-tree users of ACCESS_ONCE on non-scalar types. This does not yet contain a patch that forces ACCESS_ONCE to work only on scalar types. This is targetted for the next merge window as Linux next already contains new offenders regarding ACCESS_ONCE vs. non-scalar types" * tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux: s390/kvm: REPLACE barrier fixup with READ_ONCE arm/spinlock: Replace ACCESS_ONCE with READ_ONCE arm64/spinlock: Replace ACCESS_ONCE READ_ONCE mips/gup: Replace ACCESS_ONCE with READ_ONCE x86/gup: Replace ACCESS_ONCE with READ_ONCE x86/spinlock: Replace ACCESS_ONCE with READ_ONCE mm: replace ACCESS_ONCE with READ_ONCE or barriers kernel: Provide READ_ONCE and ASSIGN_ONCE
| * mm: replace ACCESS_ONCE with READ_ONCE or barriersChristian Borntraeger2014-12-181-1/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ACCESS_ONCE does not work reliably on non-scalar types. For example gcc 4.6 and 4.7 might remove the volatile tag for such accesses during the SRA (scalar replacement of aggregates) step (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145) Let's change the code to access the page table elements with READ_ONCE that does implicit scalar accesses for the gup code. mm_find_pmd is tricky, because m68k and sparc(32bit) define pmd_t as array of longs. This code requires just that the pmd_present and pmd_trans_huge check are done on the same value, so a barrier is sufficent. A similar case is in handle_pte_fault. On ppc44x the word size is 32 bit, but a pte is 64 bit. A barrier is ok as well. Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Cc: linux-mm@kvack.org Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
* | mm/memory.c:do_shared_fault(): add commentAndrew Morton2014-12-191-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Belatedly document the changes in commit f0c6d4d295e4 ("mm: introduce do_shared_fault() and drop do_fault()"). Cc: Andi Kleen <ak@linux.intel.com> Cc: Bob Liu <lliubbo@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Rik van Riel <riel@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mmu_gather: fix over-eager tlb_flush_mmu_free() callingLinus Torvalds2014-12-171-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dave Hansen reports that commit fb7332a9fedf ("mmu_gather: move minimal range calculations into generic code") caused a performance problem: "tlb_finish_mmu() goes up about 9x in the profiles (~0.4%->3.6%) and tlb_flush_mmu_free() takes about 3.1% of CPU time with the patch applied, but does not show up at all on the commit before" and the reason is that Will moved the test for whether we need to flush from tlb_flush_mmu() into tlb_flush_mmu_tlbonly(). But that meant that tlb_flush_mmu_free() basically lost that check. Move it back into tlb_flush_mmu() where it belongs, so that it covers both tlb_flush_mmu_tlbonly() _and_ tlb_flush_mmu_free(). Reported-and-tested-by: Dave Hansen <dave@sr71.net> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linuxLinus Torvalds2014-12-161-1/+2
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull drm updates from Dave Airlie: "Highlights: - AMD KFD driver merge This is the AMD HSA interface for exposing a lowlevel interface for GPGPU use. They have an open source userspace built on top of this interface, and the code looks as good as it was going to get out of tree. - Initial atomic modesetting work The need for an atomic modesetting interface to allow userspace to try and send a complete set of modesetting state to the driver has arisen, and been suffering from neglect this past year. No more, the start of the common code and changes for msm driver to use it are in this tree. Ongoing work to get the userspace ioctl finished and the code clean will probably wait until next kernel. - DisplayID 1.3 and tiled monitor exposed to userspace. Tiled monitor property is now exposed for userspace to make use of. - Rockchip drm driver merged. - imx gpu driver moved out of staging Other stuff: - core: panel - MIPI DSI + new panels. expose suggested x/y properties for virtual GPUs - i915: Initial Skylake (SKL) support gen3/4 reset work start of dri1/ums removal infoframe tracking fixes for lots of things. - nouveau: tegra k1 voltage support GM204 modesetting support GT21x memory reclocking work - radeon: CI dpm fixes GPUVM improvements Initial DPM fan control - rcar-du: HDMI support added removed some support for old boards slave encoder driver for Analog Devices adv7511 - exynos: Exynos4415 SoC support - msm: a4xx gpu support atomic helper conversion - tegra: iommu support universal plane support ganged-mode DSI support - sti: HDMI i2c improvements - vmwgfx: some late fixes. - qxl: use suggested x/y properties" * 'drm-next' of git://people.freedesktop.org/~airlied/linux: (969 commits) drm: sti: fix module compilation issue drm/i915: save/restore GMBUS freq across suspend/resume on gen4 drm: sti: correctly cleanup CRTC and planes drm: sti: add HQVDP plane drm: sti: add cursor plane drm: sti: enable auxiliary CRTC drm: sti: fix delay in VTG programming drm: sti: prepare sti_tvout to support auxiliary crtc drm: sti: use drm_crtc_vblank_{on/off} instead of drm_vblank_{on/off} drm: sti: fix hdmi avi infoframe drm: sti: remove event lock while disabling vblank drm: sti: simplify gdp code drm: sti: clear all mixer control drm: sti: remove gpio for HDMI hot plug detection drm: sti: allow to change hdmi ddc i2c adapter drm/doc: Document drm_add_modes_noedid() usage drm/i915: Remove '& 0xffff' from the mask given to WA_REG() drm/i915: Invert the mask and val arguments in wa_add() and WA_REG() drm: Zero out DRM object memory upon cleanup drm/i915/bdw: Fix the write setting up the WIZ hashing mode ...
| * \ Merge tag 'v3.18' into drm-nextDave Airlie2014-12-081-13/+13
| |\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Linux 3.18 Backmerge Linus tree into -next as we had conflicts in i915/radeon/nouveau, and everyone was solving them individually. * tag 'v3.18': (57 commits) Linux 3.18 watchdog: s3c2410_wdt: Fix the mask bit offset for Exynos7 uapi: fix to export linux/vm_sockets.h i2c: cadence: Set the hardware time-out register to maximum value i2c: davinci: generate STP always when NACK is received ahci: disable MSI on SAMSUNG 0xa800 SSD context_tracking: Restore previous state in schedule_user slab: fix nodeid bounds check for non-contiguous node IDs lib/genalloc.c: export devm_gen_pool_create() for modules mm: fix anon_vma_clone() error treatment mm: fix swapoff hang after page migration and fork fat: fix oops on corrupted vfat fs ipc/sem.c: fully initialize sem_array before making it visible drivers/input/evdev.c: don't kfree() a vmalloc address cxgb4: Fill in supported link mode for SFP modules xen-netfront: Remove BUGs on paged skb data which crosses a page boundary mm/vmpressure.c: fix race in vmpressure_work_fn() mm: frontswap: invalidate expired data on a dup-store failure mm: do not overwrite reserved pages counter at show_mem() drm/radeon: kernel panic in drm_calc_vbltimestamp_from_scanoutpos with 3.18.0-rc6 ... Conflicts: drivers/gpu/drm/i915/intel_display.c drivers/gpu/drm/nouveau/nouveau_drm.c drivers/gpu/drm/radeon/radeon_cs.c
| * | | mmu_notifier: call mmu_notifier_invalidate_range() from VMMJoerg Roedel2014-11-131-1/+2
| | |/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add calls to the new mmu_notifier_invalidate_range() function to all places in the VMM that need it. Signed-off-by: Joerg Roedel <jroedel@suse.de> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Jay Cornwall <Jay.Cornwall@amd.com> Cc: Oded Gabbay <Oded.Gabbay@amd.com> Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
* | | mm: export find_extend_vma() and handle_mm_fault() for driver useJesse Barnes2014-12-131-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This lets drivers like the AMD IOMMUv2 driver handle faults a bit more simply, rather than doing tricks with page refs and get_user_pages(). Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Oded Gabbay <oded.gabbay@amd.com> Cc: Joerg Roedel <jroedel@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm/memory.c: share the i_mmap_rwsemDavidlohr Bueso2014-12-131-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The unmap_mapping_range family of functions do the unmapping of user pages (ultimately via zap_page_range_single) without touching the actual interval tree, thus share the lock. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Acked-by: Hugh Dickins <hughd@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: use new helper functions around the i_mmap_mutexDavidlohr Bueso2014-12-131-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Convert all open coded mutex_lock/unlock calls to the i_mmap_[lock/unlock]_write() helpers. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: "Kirill A. Shutemov" <kirill@shutemov.name> Acked-by: Hugh Dickins <hughd@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | Merge branch 'for-linus' of ↵Linus Torvalds2014-12-121-1/+1
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux Pull s390 updates from Martin Schwidefsky: "The most notable change for this pull request is the ftrace rework from Heiko. It brings a small performance improvement and the ground work to support a new gcc option to replace the mcount blocks with a single nop. Two new s390 specific system calls are added to emulate user space mmio for PCI, an artifact of the how PCI memory is accessed. Two patches for the memory management with changes to common code. For KVM mm_forbids_zeropage is added which disables the empty zero page for an mm that is used by a KVM process. And an optimization, pmdp_get_and_clear_full is added analog to ptep_get_and_clear_full. Some micro optimization for the cmpxchg and the spinlock code. And as usual bug fixes and cleanups" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (46 commits) s390/cputime: fix 31-bit compile s390/scm_block: make the number of reqs per HW req configurable s390/scm_block: handle multiple requests in one HW request s390/scm_block: allocate aidaw pages only when necessary s390/scm_block: use mempool to manage aidaw requests s390/eadm: change timeout value s390/mm: fix memory leak of ptlock in pmd_free_tlb s390: use local symbol names in entry[64].S s390/ptrace: always include vector registers in core files s390/simd: clear vector register pointer on fork/clone s390: translate cputime magic constants to macros s390/idle: convert open coded idle time seqcount s390/idle: add missing irq off lockdep annotation s390/debug: avoid function call for debug_sprintf_* s390/kprobes: fix instruction copy for out of line execution s390: remove diag 44 calls from cpu_relax() s390/dasd: retry partition detection s390/dasd: fix list corruption for sleep_on requests s390/dasd: fix infinite term I/O loop s390/dasd: remove unused code ...
| * | | mm: introduce mm_forbids_zeropage functionDominik Dingel2014-10-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a new function stub to allow architectures to disable for an mm_structthe backing of non-present, anonymous pages with read-only empty zero pages. Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* | | | Merge tag 'arm64-upstream' of ↵Linus Torvalds2014-12-091-22/+8
|\ \ \ \ | |_|_|/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "Here's the usual mixed bag of arm64 updates, also including some related EFI changes (Acked by Matt) and the MMU gather range cleanup (Acked by you). Changes include: - support for alternative instruction patching from Andre - seccomp from Akashi - some AArch32 instruction emulation, required by the Android folks - optimisations for exception entry/exit code, cmpxchg, pcpu atomics - mmu_gather range calculations moved into core code - EFI updates from Ard, including long-awaited SMBIOS support - /proc/cpuinfo fixes to align with the format used by arch/arm/ - a few non-critical fixes across the architecture" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (70 commits) arm64: remove the unnecessary arm64_swiotlb_init() arm64: add module support for alternatives fixups arm64: perf: Prevent wraparound during overflow arm64/include/asm: Fixed a warning about 'struct pt_regs' arm64: Provide a namespace to NCAPS arm64: bpf: lift restriction on last instruction arm64: Implement support for read-mostly sections arm64: compat: align cacheflush syscall with arch/arm arm64: add seccomp support arm64: add SIGSYS siginfo for compat task arm64: add seccomp syscall for compat task asm-generic: add generic seccomp.h for secure computing mode 1 arm64: ptrace: allow tracer to skip a system call arm64: ptrace: add NT_ARM_SYSTEM_CALL regset arm64: Move some head.text functions to executable section arm64: jump labels: NOP out NOP -> NOP replacement arm64: add support to dump the kernel page tables arm64: Add FIX_HOLE to permanent fixed addresses arm64: alternatives: fix pr_fmt string for consistency arm64: vmlinux.lds.S: don't discard .exit.* sections at link-time ...