summaryrefslogtreecommitdiffstats
path: root/mm/migrate.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* mm/munlock: protect the per-CPU pagevec by a local_lock_tSebastian Andrzej Siewior2022-04-011-1/+1
| | | | | | | | | | | | | | | | | | | | | | The access to mlock_pvec is protected by disabling preemption via get_cpu_var() or implicit by having preemption disabled by the caller (in mlock_page_drain() case). This breaks on PREEMPT_RT since folio_lruvec_lock_irq() acquires a sleeping lock in this section. Create struct mlock_pvec which consits of the local_lock_t and the pagevec. Acquire the local_lock() before accessing the per-CPU pagevec. Replace mlock_page_drain() with a _local() version which is invoked on the local CPU and acquires the local_lock_t and a _remote() version which uses the pagevec from a remote CPU which offline. Link: https://lkml.kernel.org/r/YjizWi9IY0mpvIfb@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Hugh Dickins <hughd@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/migration: add trace events for base page and HugeTLB migrationsAnshuman Khandual2022-03-251-1/+3
| | | | | | | | | | | | | | | | | | | | | | This adds two trace events for base page and HugeTLB page migrations. These events, closely follow the implementation details like setting and removing of PTE migration entries, which are essential operations for migration. The new CREATE_TRACE_POINTS in <mm/rmap.c> covers both <events/migration.h> and <events/tlb.h> based trace events. Hence drop redundant CREATE_TRACE_POINTS from other places which could have otherwise conflicted during build. Link: https://lkml.kernel.org/r/1643368182-9588-3-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reported-by: kernel test robot <lkp@intel.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecacheLinus Torvalds2022-03-231-814/+56
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull folio updates from Matthew Wilcox: - Rewrite how munlock works to massively reduce the contention on i_mmap_rwsem (Hugh Dickins): https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/ - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph Hellwig): https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/ - Convert GUP to use folios and make pincount available for order-1 pages. (Matthew Wilcox) - Convert a few more truncation functions to use folios (Matthew Wilcox) - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew Wilcox) - Convert rmap_walk to use folios (Matthew Wilcox) - Convert most of shrink_page_list() to use a folio (Matthew Wilcox) - Add support for creating large folios in readahead (Matthew Wilcox) * tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache: (114 commits) mm/damon: minor cleanup for damon_pa_young selftests/vm/transhuge-stress: Support file-backed PMD folios mm/filemap: Support VM_HUGEPAGE for file mappings mm/readahead: Switch to page_cache_ra_order mm/readahead: Align file mappings for non-DAX mm/readahead: Add large folio readahead mm: Support arbitrary THP sizes mm: Make large folios depend on THP mm: Fix READ_ONLY_THP warning mm/filemap: Allow large folios to be added to the page cache mm: Turn can_split_huge_page() into can_split_folio() mm/vmscan: Convert pageout() to take a folio mm/vmscan: Turn page_check_references() into folio_check_references() mm/vmscan: Account large folios correctly mm/vmscan: Optimise shrink_page_list for non-PMD-sized folios mm/vmscan: Free non-shmem folios without splitting them mm/rmap: Constify the rmap_walk_control argument mm/rmap: Convert rmap_walk() to take a folio mm: Turn page_anon_vma() into folio_anon_vma() mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read() ...
| * mm/rmap: Convert rmap_walk() to take a folioMatthew Wilcox (Oracle)2022-03-211-6/+4
| | | | | | | | | | | | | | This ripples all the way through to every calling and called function from rmap. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
| * mm/migrate: Convert remove_migration_ptes() to foliosMatthew Wilcox (Oracle)2022-03-211-25/+30
| | | | | | | | | | | | Convert the implementation and all callers. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
| * mm/rmap: Convert try_to_migrate() to foliosMatthew Wilcox (Oracle)2022-03-211-2/+4
| | | | | | | | | | | | | | | | Convert the callers to pass a folio and the try_to_migrate_one() worker to use a folio throughout. Fixes an assumption that a folio must be <= PMD size. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
| * mm: Convert page_vma_mapped_walk to work on PFNsMatthew Wilcox (Oracle)2022-03-211-2/+3
| | | | | | | | | | | | | | | | | | | | page_mapped_in_vma() really just wants to walk one page, but as the code stands, if passed the head page of a compound page, it will walk every page in the compound page. Extract pfn/nr_pages/pgoff from the struct page early, so they can be overridden by page_mapped_in_vma(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
| * mm: Add DEFINE_PAGE_VMA_WALK and DEFINE_FOLIO_VMA_WALKMatthew Wilcox (Oracle)2022-03-211-6/+1
| | | | | | | | | | | | | | | | Instead of declaring a struct page_vma_mapped_walk directly, use these helpers to allow us to transition to a PFN approach in the following patches. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
| * mm: move the migrate_vma_* device migration code into its own fileChristoph Hellwig2022-03-031-753/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Split the code used to migrate to and from ZONE_DEVICE memory from migrate.c into a new file. Link: https://lkml.kernel.org/r/20220210072828.2930359-14-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Tested-by: "Sierra Guiza, Alejandro (Alex)" <alex.sierra@amd.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Chaitanya Kulkarni <kch@nvidia.com> Cc: Christian Knig <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Karol Herbst <kherbst@redhat.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: "Pan, Xinhui" <Xinhui.Pan@amd.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
| * mm: refactor the ZONE_DEVICE handling in migrate_vma_pagesChristoph Hellwig2022-03-031-15/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make the flow a little more clear and prepare for adding a new ZONE_DEVICE memory type. Link: https://lkml.kernel.org/r/20220210072828.2930359-13-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Alistair Popple <apopple@nvidia.com> Tested-by: "Sierra Guiza, Alejandro (Alex)" <alex.sierra@amd.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Chaitanya Kulkarni <kch@nvidia.com> Cc: Christian Knig <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Karol Herbst <kherbst@redhat.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: "Pan, Xinhui" <Xinhui.Pan@amd.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
| * mm: refactor the ZONE_DEVICE handling in migrate_vma_insert_pageChristoph Hellwig2022-03-031-16/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make the flow a little more clear and prepare for adding a new ZONE_DEVICE memory type. Link: https://lkml.kernel.org/r/20220210072828.2930359-12-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Alistair Popple <apopple@nvidia.com> Tested-by: "Sierra Guiza, Alejandro (Alex)" <alex.sierra@amd.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Chaitanya Kulkarni <kch@nvidia.com> Cc: Christian Knig <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Karol Herbst <kherbst@redhat.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: "Pan, Xinhui" <Xinhui.Pan@amd.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
| * mm: remove the extra ZONE_DEVICE struct page refcountChristoph Hellwig2022-03-031-6/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ZONE_DEVICE struct pages have an extra reference count that complicates the code for put_page() and several places in the kernel that need to check the reference count to see that a page is not being used (gup, compaction, migration, etc.). Clean up the code so the reference count doesn't need to be treated specially for ZONE_DEVICE pages. Note that this excludes the special idle page wakeup for fsdax pages, which still happens at refcount 1. This is a separate issue and will be sorted out later. Given that only fsdax pages require the notifiacation when the refcount hits 1 now, the PAGEMAP_OPS Kconfig symbol can go away and be replaced with a FS_DAX check for this hook in the put_page fastpath. Based on an earlier patch from Ralph Campbell <rcampbell@nvidia.com>. Link: https://lkml.kernel.org/r/20220210072828.2930359-8-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: "Sierra Guiza, Alejandro (Alex)" <alex.sierra@amd.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Chaitanya Kulkarni <kch@nvidia.com> Cc: Christian Knig <christian.koenig@amd.com> Cc: Karol Herbst <kherbst@redhat.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: "Pan, Xinhui" <Xinhui.Pan@amd.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
| * mm/munlock: page migration needs mlock pagevec drainedHugh Dickins2022-02-171-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Page migration of a VM_LOCKED page tends to fail, because when the old page is unmapped, it is put on the mlock pagevec with raised refcount, which then fails the freeze. At first I thought this would be fixed by a local mlock_page_drain() at the upper rmap_walk() level - which would have nicely batched all the munlocks of that page; but tests show that the task can too easily move to another cpu, leaving pagevec residue behind which fails the migration. So try_to_migrate_one() drain the local pagevec after page_remove_rmap() from a VM_LOCKED vma; and do the same in try_to_unmap_one(), whose TTU_IGNORE_MLOCK users would want the same treatment; and do the same in remove_migration_pte() - not important when successfully inserting a new page, but necessary when hoping to retry after failure. Any new pagevec runs the risk of adding a new way of stranding, and we might discover other corners where mlock_page_drain() or lru_add_drain() would now help. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
| * mm/migrate: __unmap_and_move() push good newpage to LRUHugh Dickins2022-02-171-12/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Compaction, NUMA page movement, THP collapse/split, and memory failure do isolate unevictable pages from their "LRU", losing the record of mlock_count in doing so (isolators are likely to use page->lru for their own private lists, so mlock_count has to be presumed lost). That's unfortunate, and we should put in some work to correct that: one can imagine a function to build up the mlock_count again - but it would require i_mmap_rwsem for read, so be careful where it's called. Or page_referenced_one() and try_to_unmap_one() might do that extra work. But one place that can very easily be improved is page migration's __unmap_and_move(): a small adjustment to where the successful new page is put back on LRU, and its mlock_count (if any) is built back up by remove_migration_ptes(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
| * mm/munlock: rmap call mlock_vma_page() munlock_vma_page()Hugh Dickins2022-02-171-7/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add vma argument to mlock_vma_page() and munlock_vma_page(), make them inline functions which check (vma->vm_flags & VM_LOCKED) before calling mlock_page() and munlock_page() in mm/mlock.c. Add bool compound to mlock_vma_page() and munlock_vma_page(): this is because we have understandable difficulty in accounting pte maps of THPs, and if passed a PageHead page, mlock_page() and munlock_page() cannot tell whether it's a pmd map to be counted or a pte map to be ignored. Add vma arg to page_add_file_rmap() and page_remove_rmap(), like the others, and use that to call mlock_vma_page() at the end of the page adds, and munlock_vma_page() at the end of page_remove_rmap() (end or beginning? unimportant, but end was easier for assertions in testing). No page lock is required (although almost all adds happen to hold it): delete the "Serialize with page migration" BUG_ON(!PageLocked(page))s. Certainly page lock did serialize with page migration, but I'm having difficulty explaining why that was ever important. Mlock accounting on THPs has been hard to define, differed between anon and file, involved PageDoubleMap in some places and not others, required clear_page_mlock() at some points. Keep it simple now: just count the pmds and ignore the ptes, there is no reason for ptes to undo pmd mlocks. page_add_new_anon_rmap() callers unchanged: they have long been calling lru_cache_add_inactive_or_unevictable(), which does its own VM_LOCKED handling (it also checks for not VM_SPECIAL: I think that's overcautious, and inconsistent with other checks, that mmap_region() already prevents VM_LOCKED on VM_SPECIAL; but haven't quite convinced myself to change it). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
* | mm: only re-generate demotion targets when a numa node changes its N_CPU stateOscar Salvador2022-03-221-37/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Abhishek reported that after patch [1], hotplug operations are taking roughly double the expected time. [2] The reason behind is that the CPU callbacks that migrate_on_reclaim_init() sets always call set_migration_target_nodes() whenever a CPU is brought up/down. But we only care about numa nodes going from having cpus to become cpuless, and vice versa, as that influences the demotion_target order. We do already have two CPU callbacks (vmstat_cpu_online() and vmstat_cpu_dead()) that check exactly that, so get rid of the CPU callbacks in migrate_on_reclaim_init() and only call set_migration_target_nodes() from vmstat_cpu_{dead,online}() whenever a numa node change its N_CPU state. [1] https://lore.kernel.org/linux-mm/20210721063926.3024591-2-ying.huang@intel.com/ [2] https://lore.kernel.org/linux-mm/eb438ddd-2919-73d4-bd9f-b7eecdd9577a@linux.vnet.ibm.com/ [osalvador@suse.de: add feedback from Huang Ying] Link: https://lkml.kernel.org/r/20220314150945.12694-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20220310120749.23077-1-osalvador@suse.de Fixes: 884a6e5d1f93b ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reported-by: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | NUMA balancing: optimize page placement for memory tiering systemHuang Ying2022-03-221-2/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are usually different. In such system, because of the memory accessing pattern changing etc, some pages in the slow memory may become hot globally. So in this patch, the NUMA balancing mechanism is enhanced to optimize the page placement among the different memory types according to hot/cold dynamically. In a typical memory tiering system, there are CPUs, fast memory and slow memory in each physical NUMA node. The CPUs and the fast memory will be put in one logical node (called fast memory node), while the slow memory will be put in another (faked) logical node (called slow memory node). That is, the fast memory is regarded as local while the slow memory is regarded as remote. So it's possible for the recently accessed pages in the slow memory node to be promoted to the fast memory node via the existing NUMA balancing mechanism. The original NUMA balancing mechanism will stop to migrate pages if the free memory of the target node becomes below the high watermark. This is a reasonable policy if there's only one memory type. But this makes the original NUMA balancing mechanism almost do not work to optimize page placement among different memory types. Details are as follows. It's the common cases that the working-set size of the workload is larger than the size of the fast memory nodes. Otherwise, it's unnecessary to use the slow memory at all. So, there are almost always no enough free pages in the fast memory nodes, so that the globally hot pages in the slow memory node cannot be promoted to the fast memory node. To solve the issue, we have 2 choices as follows, a. Ignore the free pages watermark checking when promoting hot pages from the slow memory node to the fast memory node. This will create some memory pressure in the fast memory node, thus trigger the memory reclaiming. So that, the cold pages in the fast memory node will be demoted to the slow memory node. b. Define a new watermark called wmark_promo which is higher than wmark_high, and have kswapd reclaiming pages until free pages reach such watermark. The scenario is as follows: when we want to promote hot-pages from a slow memory to a fast memory, but fast memory's free pages would go lower than high watermark with such promotion, we wake up kswapd with wmark_promo watermark in order to demote cold pages and free us up some space. So, next time we want to promote hot-pages we might have a chance of doing so. The choice "a" may create high memory pressure in the fast memory node. If the memory pressure of the workload is high, the memory pressure may become so high that the memory allocation latency of the workload is influenced, e.g. the direct reclaiming may be triggered. The choice "b" works much better at this aspect. If the memory pressure of the workload is high, the hot pages promotion will stop earlier because its allocation watermark is higher than that of the normal memory allocation. So in this patch, choice "b" is implemented. A new zone watermark (WMARK_PROMO) is added. Which is larger than the high watermark and can be controlled via watermark_scale_factor. In addition to the original page placement optimization among sockets, the NUMA balancing mechanism is extended to be used to optimize page placement according to hot/cold among different memory types. So the sysctl user space interface (numa_balancing) is extended in a backward compatible way as follow, so that the users can enable/disable these functionality individually. The sysctl is converted from a Boolean value to a bits field. The definition of the flags is, - 0: NUMA_BALANCING_DISABLED - 1: NUMA_BALANCING_NORMAL - 2: NUMA_BALANCING_MEMORY_TIERING We have tested the patch with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. Thanks Andrew Morton to help fix the document format error. Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | NUMA Balancing: add page promotion counterHuang Ying2022-03-221-3/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "NUMA balancing: optimize memory placement for memory tiering system", v13 With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are different. After commit c221c0b0308f ("device-dax: "Hotplug" persistent memory for use like normal RAM"), the PMEM could be used as the cost-effective volatile memory in separate NUMA nodes. In a typical memory tiering system, there are CPUs, DRAM and PMEM in each physical NUMA node. The CPUs and the DRAM will be put in one logical node, while the PMEM will be put in another (faked) logical node. To optimize the system overall performance, the hot pages should be placed in DRAM node. To do that, we need to identify the hot pages in the PMEM node and migrate them to DRAM node via NUMA migration. In the original NUMA balancing, there are already a set of existing mechanisms to identify the pages recently accessed by the CPUs in a node and migrate the pages to the node. So we can reuse these mechanisms to build the mechanisms to optimize the page placement in the memory tiering system. This is implemented in this patchset. At the other hand, the cold pages should be placed in PMEM node. So, we also need to identify the cold pages in the DRAM node and migrate them to PMEM node. In commit 26aa2d199d6f ("mm/migrate: demote pages during reclaim"), a mechanism to demote the cold DRAM pages to PMEM node under memory pressure is implemented. Based on that, the cold DRAM pages can be demoted to PMEM node proactively to free some memory space on DRAM node to accommodate the promoted hot PMEM pages. This is implemented in this patchset too. We have tested the solution with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. This patch (of 3): In a system with multiple memory types, e.g. DRAM and PMEM, the CPU and DRAM in one socket will be put in one NUMA node as before, while the PMEM will be put in another NUMA node as described in the description of the commit c221c0b0308f ("device-dax: "Hotplug" persistent memory for use like normal RAM"). So, the NUMA balancing mechanism will identify all PMEM accesses as remote access and try to promote the PMEM pages to DRAM. To distinguish the number of the inter-type promoted pages from that of the inter-socket migrated pages. A new vmstat count is added. The counter is per-node (count in the target node). So this can be used to identify promotion imbalance among the NUMA nodes. Link: https://lkml.kernel.org/r/20220301085329.3210428-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20220221084529.1052339-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20220221084529.1052339-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm/migrate: fix race between lock page and clear PG_Isolatedandrew.yang2022-03-221-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When memory is tight, system may start to compact memory for large continuous memory demands. If one process tries to lock a memory page that is being locked and isolated for compaction, it may wait a long time or even forever. This is because compaction will perform non-atomic PG_Isolated clear while holding page lock, this may overwrite PG_waiters set by the process that can't obtain the page lock and add itself to the waiting queue to wait for the lock to be unlocked. CPU1 CPU2 lock_page(page); (successful) lock_page(); (failed) __ClearPageIsolated(page); SetPageWaiters(page) (may be overwritten) unlock_page(page); The solution is to not perform non-atomic operation on page flags while holding page lock. Link: https://lkml.kernel.org/r/20220315030515.20263-1-andrew.yang@mediatek.com Signed-off-by: andrew.yang <andrew.yang@mediatek.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: "Vlastimil Babka" <vbabka@suse.cz> Cc: David Howells <dhowells@redhat.com> Cc: "William Kucharski" <william.kucharski@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Nicholas Tang <nicholas.tang@mediatek.com> Cc: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm,migrate: fix establishing demotion targetHuang Ying2022-03-221-2/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In commit ac16ec835314 ("mm: migrate: support multiple target nodes demotion"), after the first demotion target node is found, we will continue to check the next candidate obtained via find_next_best_node(). This is to find all demotion target nodes with same NUMA distance. But one side effect of find_next_best_node() is that the candidate node returned will be set in "used" parameter, even if the candidate node isn't passed in the following NUMA distance checking, the candidate node will not be used as demotion target node for the following nodes. For example, for system as follows, node distances: node 0 1 2 3 0: 10 21 17 28 1: 21 10 28 17 2: 17 28 10 28 3: 28 17 28 10 when we establish demotion target node for node 0, in the first round node 2 is added to the demotion target node set. Then in the second round, node 3 is checked and failed because distance(0, 3) > distance(0, 2). But node 3 is set in "used" nodemask too. When we establish demotion target node for node 1, there is no available node. This is wrong, node 3 should be set as the demotion target of node 1. To fix this, if the candidate node is failed to pass the distance checking, it will be cleared in "used" nodemask. So that it can be used for the following node. The bug can be reproduced and fixed with this patch on a 2 socket server machine with DRAM and PMEM. Link: https://lkml.kernel.org/r/20220128055940.1792614-1-ying.huang@intel.com Fixes: ac16ec835314 ("mm: migrate: support multiple target nodes demotion") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm/fs: delete PF_SWAPWRITEHugh Dickins2022-03-221-7/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PF_SWAPWRITE has been redundant since v3.2 commit ee72886d8ed5 ("mm: vmscan: do not writeback filesystem pages in direct reclaim"). Coincidentally, NeilBrown's current patch "remove inode_congested()" deletes may_write_to_inode(), which appeared to be the one function which took notice of PF_SWAPWRITE. But if you study the old logic, and the conditions under which may_write_to_inode() was called, you discover that flag and function have been pointless for a decade. Link: https://lkml.kernel.org/r/75e80e7-742d-e3bd-531-614db8961e4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: NeilBrown <neilb@suse.de> Cc: Jan Kara <jack@suse.de> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: remove unneeded local variable follflagsMiaohe Lin2022-03-221-3/+1
| | | | | | | | | | | | | | | | | | | | | | We can pass FOLL_GET | FOLL_DUMP to follow_page directly to simplify the code a bit in add_page_for_migration and split_huge_pages_pid. Link: https://lkml.kernel.org/r/20220311072002.35575-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: replace multiple dcache flush with flush_dcache_folio()Muchun Song2022-03-221-6/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Simplify the code by using flush_dcache_folio(). Link: https://lkml.kernel.org/r/20220210123058.79206-8-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lars Persson <lars.persson@axis.com> Cc: Peter Xu <peterx@redhat.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: fix missing cache flush for all tail pages of compound pageMuchun Song2022-03-221-2/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The D-cache maintenance inside move_to_new_page() only consider one page, there is still D-cache maintenance issue for tail pages of compound page (e.g. THP or HugeTLB). THP migration is only enabled on x86_64, ARM64 and powerpc, while powerpc and arm64 need to maintain the consistency between I-Cache and D-Cache, which depends on flush_dcache_page() to maintain the consistency between I-Cache and D-Cache. But there is no issues on arm64 and powerpc since they already considers the compound page cache flushing in their icache flush function. HugeTLB migration is enabled on arm, arm64, mips, parisc, powerpc, riscv, s390 and sh, while arm has handled the compound page cache flush in flush_dcache_page(), but most others do not. In theory, the issue exists on many architectures. Fix this by not using flush_dcache_folio() since it is not backportable. Link: https://lkml.kernel.org/r/20220210123058.79206-3-songmuchun@bytedance.com Fixes: 290408d4a250 ("hugetlb: hugepage migration core") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lars Persson <lars.persson@axis.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Peter Xu <peterx@redhat.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm/gup: follow_pfn_pte(): -EEXIST cleanupJohn Hubbard2022-03-221-0/+7
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Remove a quirky special case from follow_pfn_pte(), and adjust its callers to match. Caller changes include: __get_user_pages(): Regardless of any FOLL_* flags, get_user_pages() and its variants should handle PFN-only entries by stopping early, if the caller expected **pages to be filled in. This makes for a more reliable API, as compared to the previous approach of skipping over such entries (and thus leaving them silently unwritten). move_pages(): squash the -EEXIST error return from follow_page() into -EFAULT, because -EFAULT is listed in the man page, whereas -EEXIST is not. Link: https://lkml.kernel.org/r/20220204020010.68930-3-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Peter Xu <peterx@redhat.com> Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/migrate.c: rework migration_entry_wait() to not take a pagerefAlistair Popple2022-01-221-34/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This fixes the FIXME in migrate_vma_check_page(). Before migrating a page migration code will take a reference and check there are no unexpected page references, failing the migration if there are. When a thread faults on a migration entry it will take a temporary reference to the page to wait for the page to become unlocked signifying the migration entry has been removed. This reference is dropped just prior to waiting on the page lock, however the extra reference can cause migration failures so it is desirable to avoid taking it. As migration code already has a reference to the migrating page an extra reference to wait on PG_locked is unnecessary so long as the reference can't be dropped whilst setting up the wait. When faulting on a migration entry the ptl is taken to check the migration entry. Removing a migration entry also requires the ptl, and migration code won't drop its page reference until after the migration entry has been removed. Therefore retaining the ptl of a migration entry is sufficient to ensure the page has a reference. Reworking migration_entry_wait() to hold the ptl until the wait setup is complete means the extra page reference is no longer needed. [apopple@nvidia.com: v5] Link: https://lkml.kernel.org/r/20211213033848.1973946-1-apopple@nvidia.com Link: https://lkml.kernel.org/r/20211118020754.954425-1-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'akpm' (patches from Andrew)Linus Torvalds2022-01-151-124/+253
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Merge misc updates from Andrew Morton: "146 patches. Subsystems affected by this patch series: kthread, ia64, scripts, ntfs, squashfs, ocfs2, vfs, and mm (slab-generic, slab, kmemleak, dax, kasan, debug, pagecache, gup, shmem, frontswap, memremap, memcg, selftests, pagemap, dma, vmalloc, memory-failure, hugetlb, userfaultfd, vmscan, mempolicy, oom-kill, hugetlbfs, migration, thp, ksm, page-poison, percpu, rmap, zswap, zram, cleanups, hmm, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (146 commits) mm/damon: hide kernel pointer from tracepoint event mm/damon/vaddr: hide kernel pointer from damon_va_three_regions() failure log mm/damon/vaddr: use pr_debug() for damon_va_three_regions() failure logging mm/damon/dbgfs: remove an unnecessary variable mm/damon: move the implementation of damon_insert_region to damon.h mm/damon: add access checking for hugetlb pages Docs/admin-guide/mm/damon/usage: update for schemes statistics mm/damon/dbgfs: support all DAMOS stats Docs/admin-guide/mm/damon/reclaim: document statistics parameters mm/damon/reclaim: provide reclamation statistics mm/damon/schemes: account how many times quota limit has exceeded mm/damon/schemes: account scheme actions that successfully applied mm/damon: remove a mistakenly added comment for a future feature Docs/admin-guide/mm/damon/usage: update for kdamond_pid and (mk|rm)_contexts Docs/admin-guide/mm/damon/usage: mention tracepoint at the beginning Docs/admin-guide/mm/damon/usage: remove redundant information Docs/admin-guide/mm/damon/usage: update for scheme quotas and watermarks mm/damon: convert macro functions to static inline functions mm/damon: modify damon_rand() macro to static inline function mm/damon: move damon_rand() definition into damon.h ...
| * mm/migrate: remove redundant variables used in a for-loopColin Ian King2022-01-151-3/+2
| | | | | | | | | | | | | | | | | | | | | | The variable addr is being set and incremented in a for-loop but not actually being used. It is redundant and so addr and also variable start can be removed. Link: https://lkml.kernel.org/r/20211221185729.609630-1-colin.i.king@gmail.com Signed-off-by: Colin Ian King <colin.i.king@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * mm/migrate: move node demotion code to near its userHuang Ying2022-01-151-133/+132
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now, node_demotion and next_demotion_node() are placed between __unmap_and_move() and unmap_and_move(). This hurts code readability. So move them near their users in the file. There's no functionality change in this patch. Link: https://lkml.kernel.org/r/20211206031227.3323097-1-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Wei Xu <weixugc@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * mm: migrate: add more comments for selecting target node randomlyBaolin Wang2022-01-151-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As Yang Shi suggested [1], it will be helpful to explain why we should select target node randomly now if there are multiple target nodes. [1] https://lore.kernel.org/all/CAHbLzkqSqCL+g7dfzeOw8fPyeEC0BBv13Ny1UVGHDkadnQdR=g@mail.gmail.com/ Link: https://lkml.kernel.org/r/c31d36bd097c6e9e69fc0f409c43b78e53e64fc2.1637766801.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * mm: migrate: support multiple target nodes demotionBaolin Wang2022-01-151-35/+129
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * mm: migrate: correct the hugetlb migration statsBaolin Wang2022-01-151-9/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Correct the migration stats for hugetlb with using compound_nr() instead of thp_nr_pages(), meanwhile change 'nr_failed_pages' to record the number of normal pages failed to migrate, including THP and hugetlb, and 'nr_succeeded' will record the number of normal pages migrated successfully. [baolin.wang@linux.alibaba.com: fix docs, per Mike] Link: https://lkml.kernel.org/r/141bdfc6-f898-3cc3-f692-726c5f6cb74d@linux.alibaba.com Link: https://lkml.kernel.org/r/71a4b6c22f208728fe8c78ad26375436c4ff9704.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * mm: migrate: fix the return value of migrate_pages()Baolin Wang2022-01-151-16/+47
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * mm: change page type prior to adding page table entryPasha Tatashin2022-01-151-3/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "page table check", v3. Ensure that some memory corruptions are prevented by checking at the time of insertion of entries into user page tables that there is no illegal sharing. We have recently found a problem [1] that existed in kernel since 4.14. The problem was caused by broken page ref count and led to memory leaking from one process into another. The problem was accidentally detected by studying a dump of one process and noticing that one page contains memory that should not belong to this process. There are some other page->_refcount related problems that were recently fixed: [2], [3] which potentially could also lead to illegal sharing. In addition to hardening refcount [4] itself, this work is an attempt to prevent this class of memory corruption issues. It uses a simple state machine that is independent from regular MM logic to check for illegal sharing at time pages are inserted and removed from page tables. [1] https://lore.kernel.org/all/xr9335nxwc5y.fsf@gthelen2.svl.corp.google.com [2] https://lore.kernel.org/all/1582661774-30925-2-git-send-email-akaher@vmware.com [3] https://lore.kernel.org/all/20210622021423.154662-3-mike.kravetz@oracle.com [4] https://lore.kernel.org/all/20211221150140.988298-1-pasha.tatashin@soleen.com This patch (of 4): There are a few places where we first update the entry in the user page table, and later change the struct page to indicate that this is anonymous or file page. In most places, however, we first configure the page metadata and then insert entries into the page table. Page table check, will use the information from struct page to verify the type of entry is inserted. Change the order in all places to first update struct page, and later to update page table. This means that we first do calls that may change the type of page (anon or file): page_move_anon_rmap page_add_anon_rmap do_page_add_anon_rmap page_add_new_anon_rmap page_add_file_rmap hugepage_add_anon_rmap hugepage_add_new_anon_rmap And after that do calls that add entries to the page table: set_huge_pte_at set_pte_at Link: https://lkml.kernel.org/r/20211221154650.1047963-1-pasha.tatashin@soleen.com Link: https://lkml.kernel.org/r/20211221154650.1047963-2-pasha.tatashin@soleen.com Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: David Rientjes <rientjes@google.com> Cc: Paul Turner <pjt@google.com> Cc: Wei Xu <weixugc@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Will Deacon <will@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: Use multi-index entries in the page cacheMatthew Wilcox (Oracle)2022-01-081-8/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We currently store large folios as 2^N consecutive entries. While this consumes rather more memory than necessary, it also turns out to be buggy. A writeback operation which starts within a tail page of a dirty folio will not write back the folio as the xarray's dirty bit is only set on the head index. With multi-index entries, the dirty bit will be found no matter where in the folio the operation starts. This does end up simplifying the page cache slightly, although not as much as I had hoped. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
* | filemap: Add folio_put_wait_locked()Matthew Wilcox (Oracle)2022-01-041-11/+10
|/ | | | | | | | | | | | | | | Convert all three callers of put_and_wait_on_page_locked() to folio_put_wait_locked(). This shrinks the kernel overall by 19 bytes. filemap_update_page() shrinks by 19 bytes while __migration_entry_wait() is unchanged. folio_put_wait_locked() is 14 bytes smaller than put_and_wait_on_page_locked(), but pmd_migration_entry_wait() grows by 14 bytes. It removes the assumption from pmd_migration_entry_wait() that pages cannot be larger than a PMD (which is true today, but may be interesting to explore in the future). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
* mm/migrate.c: remove MIGRATE_PFN_LOCKEDAlistair Popple2021-11-111-117/+28
| | | | | | | | | | | | | | | | | | | | | | | | | MIGRATE_PFN_LOCKED is used to indicate to migrate_vma_prepare() that a source page was already locked during migrate_vma_collect(). If it wasn't then the a second attempt is made to lock the page. However if the first attempt failed it's unlikely a second attempt will succeed, and the retry adds complexity. So clean this up by removing the retry and MIGRATE_PFN_LOCKED flag. Destination pages are also meant to have the MIGRATE_PFN_LOCKED flag set, but nothing actually checks that. Link: https://lkml.kernel.org/r/20211025041608.289017-1-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Skeggs <bskeggs@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: migrate: simplify the file-backed pages validation when migrating its ↵Baolin Wang2021-11-111-6/+0
| | | | | | | | | | | | | | | | | | | | | | mapping There is no need to validate the file-backed page's refcount before trying to freeze the page's expected refcount, instead we can rely on the folio_ref_freeze() to validate if the page has the expected refcount before migrating its mapping. Moreover we are always under the page lock when migrating the page mapping, which means nowhere else can remove it from the page cache, so we can remove the xas_load() validation under the i_pages lock. Link: https://lkml.kernel.org/r/cover.1629447552.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/df4c129fd8e86a95dbc55f4663d77441cc0d3bd1.1629447552.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'akpm' (patches from Andrew)Linus Torvalds2021-11-061-0/+61
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Merge misc updates from Andrew Morton: "257 patches. Subsystems affected by this patch series: scripts, ocfs2, vfs, and mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache, gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools, memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm, vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram, cleanups, kfence, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits) mm/damon: remove return value from before_terminate callback mm/damon: fix a few spelling mistakes in comments and a pr_debug message mm/damon: simplify stop mechanism Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions Docs/admin-guide/mm/damon/start: simplify the content Docs/admin-guide/mm/damon/start: fix a wrong link Docs/admin-guide/mm/damon/start: fix wrong example commands mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on mm/damon: remove unnecessary variable initialization Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM) selftests/damon: support watermarks mm/damon/dbgfs: support watermarks mm/damon/schemes: activate schemes based on a watermarks mechanism tools/selftests/damon: update for regions prioritization of schemes mm/damon/dbgfs: support prioritization weights mm/damon/vaddr,paddr: support pageout prioritization mm/damon/schemes: prioritize regions within the quotas mm/damon/selftests: support schemes quotas mm/damon/dbgfs: support quotas of schemes ...
| * mm: migrate: make demotion knob depend on migrationYang Shi2021-11-061-0/+61
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The memory demotion needs to call migrate_pages() to do the jobs. And it is controlled by a knob, however, the knob doesn't depend on CONFIG_MIGRATION. The knob could be truned on even though MIGRATION is disabled, this will not cause any crash since migrate_pages() would just return -ENOSYS. But it is definitely not optimal to go through demotion path then retry regular swap every time. And it doesn't make too much sense to have the knob visible to the users when !MIGRATION. Move the related code from mempolicy.[h|c] to migrate.[h|c]. Link: https://lkml.kernel.org/r/20211015005559.246709-1-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecacheLinus Torvalds2021-11-011-95/+94
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull memory folios from Matthew Wilcox: "Add memory folios, a new type to represent either order-0 pages or the head page of a compound page. This should be enough infrastructure to support filesystems converting from pages to folios. The point of all this churn is to allow filesystems and the page cache to manage memory in larger chunks than PAGE_SIZE. The original plan was to use compound pages like THP does, but I ran into problems with some functions expecting only a head page while others expect the precise page containing a particular byte. The folio type allows a function to declare that it's expecting only a head page. Almost incidentally, this allows us to remove various calls to VM_BUG_ON(PageTail(page)) and compound_head(). This converts just parts of the core MM and the page cache. For 5.17, we intend to convert various filesystems (XFS and AFS are ready; other filesystems may make it) and also convert more of the MM and page cache to folios. For 5.18, multi-page folios should be ready. The multi-page folios offer some improvement to some workloads. The 80% win is real, but appears to be an artificial benchmark (postgres startup, which isn't a serious workload). Real workloads (eg building the kernel, running postgres in a steady state, etc) seem to benefit between 0-10%. I haven't heard of any performance losses as a result of this series. Nobody has done any serious performance tuning; I imagine that tweaking the readahead algorithm could provide some more interesting wins. There are also other places where we could choose to create large folios and currently do not, such as writes that are larger than PAGE_SIZE. I'd like to thank all my reviewers who've offered review/ack tags: Christoph Hellwig, David Howells, Jan Kara, Jeff Layton, Johannes Weiner, Kirill A. Shutemov, Michal Hocko, Mike Rapoport, Vlastimil Babka, William Kucharski, Yu Zhao and Zi Yan. I'd also like to thank those who gave feedback I incorporated but haven't offered up review tags for this part of the series: Nick Piggin, Mel Gorman, Ming Lei, Darrick Wong, Ted Ts'o, John Hubbard, Hugh Dickins, and probably a few others who I forget" * tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecache: (90 commits) mm/writeback: Add folio_write_one mm/filemap: Add FGP_STABLE mm/filemap: Add filemap_get_folio mm/filemap: Convert mapping_get_entry to return a folio mm/filemap: Add filemap_add_folio() mm/filemap: Add filemap_alloc_folio mm/page_alloc: Add folio allocation functions mm/lru: Add folio_add_lru() mm/lru: Convert __pagevec_lru_add_fn to take a folio mm: Add folio_evictable() mm/workingset: Convert workingset_refault() to take a folio mm/filemap: Add readahead_folio() mm/filemap: Add folio_mkwrite_check_truncate() mm/filemap: Add i_blocks_per_folio() mm/writeback: Add folio_redirty_for_writepage() mm/writeback: Add folio_account_redirty() mm/writeback: Add folio_clear_dirty_for_io() mm/writeback: Add folio_cancel_dirty() mm/writeback: Add folio_account_cleaned() mm/writeback: Add filemap_dirty_folio() ...
| * mm/migrate: Add folio_migrate_copy()Matthew Wilcox (Oracle)2021-10-181-9/+5
| | | | | | | | | | | | | | | | | | | | This is the folio equivalent of migrate_page_copy(), which is retained as a wrapper for filesystems which are not yet converted to folios. Also convert copy_huge_page() to folio_copy(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
| * mm/migrate: Add folio_migrate_flags()Matthew Wilcox (Oracle)2021-10-181-43/+41
| | | | | | | | | | | | | | | | | | | | | | | | | | Turn migrate_page_states() into a wrapper around folio_migrate_flags(). Also convert two functions only called from folio_migrate_flags() to be folio-based. ksm_migrate_page() becomes folio_migrate_ksm() and copy_page_owner() becomes folio_copy_owner(). folio_migrate_flags() alone shrinks by two thirds -- 1967 bytes down to 642 bytes. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
| * mm/migrate: Add folio_migrate_mapping()Matthew Wilcox (Oracle)2021-10-181-41/+44
| | | | | | | | | | | | | | | | | | | | Reimplement migrate_page_move_mapping() as a wrapper around folio_migrate_mapping(). Saves 193 bytes of kernel text. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
| * mm/memcg: Convert mem_cgroup_migrate() to take foliosMatthew Wilcox (Oracle)2021-09-271-1/+3
| | | | | | | | | | | | | | | | | | | | | | Convert all callers of mem_cgroup_migrate() to call page_folio() first. They all look like they're using head pages already, but this proves it. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
| * mm/memcg: Convert mem_cgroup_charge() to take a folioMatthew Wilcox (Oracle)2021-09-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | Convert all callers of mem_cgroup_charge() to call page_folio() on the page they're currently passing in. Many of them will be converted to use folios themselves soon. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
* | mm/migrate: fix CPUHP state to update node demotion orderHuang Ying2021-10-191-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The node demotion order needs to be updated during CPU hotplug. Because whether a NUMA node has CPU may influence the demotion order. The update function should be called during CPU online/offline after the node_states[N_CPU] has been updated. That is done in CPUHP_AP_ONLINE_DYN during CPU online and in CPUHP_MM_VMSTAT_DEAD during CPU offline. But in commit 884a6e5d1f93 ("mm/migrate: update node demotion order on hotplug events"), the function to update node demotion order is called in CPUHP_AP_ONLINE_DYN during CPU online/offline. This doesn't satisfy the order requirement. For example, there are 4 CPUs (P0, P1, P2, P3) in 2 sockets (P0, P1 in S0 and P2, P3 in S1), the demotion order is - S0 -> NUMA_NO_NODE - S1 -> NUMA_NO_NODE After P2 and P3 is offlined, because S1 has no CPU now, the demotion order should have been changed to - S0 -> S1 - S1 -> NO_NODE but it isn't changed, because the order updating callback for CPU hotplug doesn't see the new nodemask. After that, if P1 is offlined, the demotion order is changed to the expected order as above. So in this patch, we added CPUHP_AP_MM_DEMOTION_ONLINE and CPUHP_MM_DEMOTION_DEAD to be called after CPUHP_AP_ONLINE_DYN and CPUHP_MM_VMSTAT_DEAD during CPU online and offline, and register the update function on them. Link: https://lkml.kernel.org/r/20210929060351.7293-1-ying.huang@intel.com Fixes: 884a6e5d1f93 ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm/migrate: add CPU hotplug to demotion #ifdefDave Hansen2021-10-191-21/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Once upon a time, the node demotion updates were driven solely by memory hotplug events. But now, there are handlers for both CPU and memory hotplug. However, the #ifdef around the code checks only memory hotplug. A system that has HOTPLUG_CPU=y but MEMORY_HOTPLUG=n would miss CPU hotplug events. Update the #ifdef around the common code. Add memory and CPU-specific #ifdefs for their handlers. These memory/CPU #ifdefs avoid unused function warnings when their Kconfig option is off. [arnd@arndb.de: rework hotplug_memory_notifier() stub] Link: https://lkml.kernel.org/r/20211013144029.2154629-1-arnd@kernel.org Link: https://lkml.kernel.org/r/20210924161255.E5FE8F7E@davehans-spike.ostc.intel.com Fixes: 884a6e5d1f93 ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm/migrate: optimize hotplug-time demotion order updatesDave Hansen2021-10-191-1/+11
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "mm/migrate: 5.15 fixes for automatic demotion", v2. This contains two fixes for the "automatic demotion" code which was merged into 5.15: * Fix memory hotplug performance regression by watching suppressing any real action on irrelevant hotplug events. * Ensure CPU hotplug handler is registered when memory hotplug is disabled. This patch (of 2): == tl;dr == Automatic demotion opted for a simple, lazy approach to handling hotplug events. This noticeably slows down memory hotplug[1]. Optimize away updates to the demotion order when memory hotplug events should have no effect. This has no effect on CPU hotplug. There is no known problem on the CPU side and any work there will be in a separate series. == Background == Automatic demotion is a memory migration strategy to ensure that new allocations have room in faster memory tiers on tiered memory systems. The kernel maintains an array (node_demotion[]) to drive these migrations. The node_demotion[] path is calculated by starting at nodes with CPUs and then "walking" to nodes with memory. Only hotplug events which online or offline a node with memory (N_ONLINE) or CPUs (N_CPU) will actually affect the migration order. == Problem == However, the current code is lazy. It completely regenerates the migration order on *any* CPU or memory hotplug event. The logic was that these events are extremely rare and that the overhead from indiscriminate order regeneration is minimal. Part of the update logic involves a synchronize_rcu(), which is a pretty big hammer. Its overhead was large enough to be detected by some 0day tests that watch memory hotplug performance[1]. == Solution == Add a new helper (node_demotion_topo_changed()) which can differentiate between superfluous and impactful hotplug events. Skip the expensive update operation for superfluous events. == Aside: Locking == It took me a few moments to declare the locking to be safe enough for node_demotion_topo_changed() to work. It all hinges on the memory hotplug lock: During memory hotplug events, 'mem_hotplug_lock' is held for write. This ensures that two memory hotplug events can not be called simultaneously. CPU hotplug has a similar lock (cpuhp_state_mutex) which also provides mutual exclusion between CPU hotplug events. In addition, the demotion code acquire and hold the mem_hotplug_lock for read during its CPU hotplug handlers. This provides mutual exclusion between the demotion memory hotplug callbacks and the CPU hotplug callbacks. This effectively allows treating the migration target generation code to act as if it is single-threaded. 1. https://lore.kernel.org/all/20210905135932.GE15026@xsang-OptiPlex-9020/ Link: https://lkml.kernel.org/r/20210924161251.093CCD06@davehans-spike.ostc.intel.com Link: https://lkml.kernel.org/r/20210924161253.D7673E31@davehans-spike.ostc.intel.com Fixes: 884a6e5d1f93 ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reported-by: kernel test robot <oliver.sang@intel.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* compat: remove some compat entry pointsArnd Bergmann2021-09-091-13/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | These are all handled correctly when calling the native system call entry point, so remove the special cases. Link: https://lkml.kernel.org/r/20210727144859.4150043-6-arnd@kernel.org Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>