| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a new GFP flag __GFP_SKIP_ZERO that allows to skip memory
initialization. The flag is only effective with HW_TAGS KASAN.
This flag will be used by vmalloc code for page_alloc allocations backing
vmalloc() mappings in a following patch. The reason to skip memory
initialization for these pages in page_alloc is because vmalloc code will
be initializing them instead.
With the current implementation, when __GFP_SKIP_ZERO is provided,
__GFP_ZEROTAGS is ignored. This doesn't matter, as these two flags are
never provided at the same time. However, if this is changed in the
future, this particular implementation detail can be changed as well.
Link: https://lkml.kernel.org/r/0d53efeff345de7d708e0baa0d8829167772521e.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a new GFP flag __GFP_SKIP_KASAN_UNPOISON that allows skipping KASAN
poisoning for page_alloc allocations. The flag is only effective with
HW_TAGS KASAN.
This flag will be used by vmalloc code for page_alloc allocations backing
vmalloc() mappings in a following patch. The reason to skip KASAN
poisoning for these pages in page_alloc is because vmalloc code will be
poisoning them instead.
Also reword the comment for __GFP_SKIP_KASAN_POISON.
Link: https://lkml.kernel.org/r/35c97d77a704f6ff971dd3bfe4be95855744108e.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rework the checks around kasan_unpoison_pages() call in post_alloc_hook().
The logical condition for calling this function is:
- If a software KASAN mode is enabled, we need to mark shadow memory.
- Otherwise, HW_TAGS KASAN is enabled, and it only makes sense to set
tags if they haven't already been cleared by tag_clear_highpage(),
which is indicated by init_tags.
This patch concludes the changes for post_alloc_hook().
Link: https://lkml.kernel.org/r/0ecebd0d7ccd79150e3620ea4185a32d3dfe912f.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Pull the kernel_init_free_pages() call in post_alloc_hook() out of the big
if clause for better code readability. This also allows for more
simplifications in the following patch.
This patch does no functional changes.
Link: https://lkml.kernel.org/r/a7a76456501eb37ddf9fca6529cee9555e59cdb1.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Pull the SetPageSkipKASanPoison() call in post_alloc_hook() out of the big
if clause for better code readability. This also allows for more
simplifications in the following patches.
Also turn the kasan_has_integrated_init() check into the proper
kasan_hw_tags_enabled() one. These checks evaluate to the same value, but
logically skipping kasan poisoning has nothing to do with integrated init.
Link: https://lkml.kernel.org/r/7214c1698b754ccfaa44a792113c95cc1f807c48.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move tag_clear_highpage() loops out of the kasan_has_integrated_init()
clause as a code simplification.
This patch does no functional changes.
Link: https://lkml.kernel.org/r/587e3fc36358b88049320a89cc8dc6deaecb0cda.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, the code responsible for initializing and poisoning memory in
post_alloc_hook() is scattered across two locations: kasan_alloc_pages()
hook for HW_TAGS KASAN and post_alloc_hook() itself. This is confusing.
This and a few following patches combine the code from these two
locations. Along the way, these patches do a step-by-step restructure the
many performed checks to make them easier to follow.
Replace the only caller of kasan_alloc_pages() with its implementation.
As kasan_has_integrated_init() is only true when CONFIG_KASAN_HW_TAGS is
enabled, moving the code does no functional changes.
Also move init and init_tags variables definitions out of
kasan_has_integrated_init() clause in post_alloc_hook(), as they have the
same values regardless of what the if condition evaluates to.
This patch is not useful by itself but makes the simplifications in the
following patches easier to follow.
Link: https://lkml.kernel.org/r/5ac7e0b30f5cbb177ec363ddd7878a3141289592.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Separate code for zeroing memory from the code clearing tags in
post_alloc_hook().
This patch is not useful by itself but makes the simplifications in the
following patches easier to follow.
This patch does no functional changes.
Link: https://lkml.kernel.org/r/2283fde963adfd8a2b29a92066f106cc16661a3c.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
skip_kasan_poison is only used in a single place. Call
should_skip_kasan_poison() directly for simplicity.
Link: https://lkml.kernel.org/r/1d33212e79bc9ef0b4d3863f903875823e89046f.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Suggested-by: Marco Elver <elver@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since commit 7a3b83537188 ("kasan: use separate (un)poison implementation
for integrated init"), when all init, kasan_has_integrated_init(), and
skip_kasan_poison are true, free_pages_prepare() doesn't initialize the
page. This is wrong.
Fix it by remembering whether kasan_poison_pages() performed
initialization, and call kernel_init_free_pages() if it didn't.
Reordering kasan_poison_pages() and kernel_init_free_pages() is OK, since
kernel_init_free_pages() can handle poisoned memory.
Link: https://lkml.kernel.org/r/1d97df75955e52727a3dc1c4e33b3b50506fc3fd.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Simplify the code around calling kasan_poison_pages() in
free_pages_prepare().
This patch does no functional changes.
Link: https://lkml.kernel.org/r/ae4f9bcf071577258e786bcec4798c145d718c46.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, the code responsible for initializing and poisoning memory in
free_pages_prepare() is scattered across two locations: kasan_free_pages()
for HW_TAGS KASAN and free_pages_prepare() itself. This is confusing.
This and a few following patches combine the code from these two
locations. Along the way, these patches also simplify the performed
checks to make them easier to follow.
Replaces the only caller of kasan_free_pages() with its implementation.
As kasan_has_integrated_init() is only true when CONFIG_KASAN_HW_TAGS is
enabled, moving the code does no functional changes.
This patch is not useful by itself but makes the simplifications in the
following patches easier to follow.
Link: https://lkml.kernel.org/r/303498d15840bb71905852955c6e2390ecc87139.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, kernel_init_free_pages() serves two purposes: it either only
zeroes memory or zeroes both memory and memory tags via a different code
path. As this function has only two callers, each using only one code
path, this behaviour is confusing.
Pull the code that zeroes both memory and tags out of
kernel_init_free_pages().
As a result of this change, the code in free_pages_prepare() starts to
look complicated, but this is improved in the few following patches.
Those improvements are not integrated into this patch to make diffs easier
to read.
This patch does no functional changes.
Link: https://lkml.kernel.org/r/7719874e68b23902629c7cf19f966c4fd5f57979.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "kasan, vmalloc, arm64: add vmalloc tagging support for SW/HW_TAGS", v6.
This patchset adds vmalloc tagging support for SW_TAGS and HW_TAGS
KASAN modes.
About half of patches are cleanups I went for along the way. None of them
seem to be important enough to go through stable, so I decided not to
split them out into separate patches/series.
The patchset is partially based on an early version of the HW_TAGS
patchset by Vincenzo that had vmalloc support. Thus, I added a
Co-developed-by tag into a few patches.
SW_TAGS vmalloc tagging support is straightforward. It reuses all of the
generic KASAN machinery, but uses shadow memory to store tags instead of
magic values. Naturally, vmalloc tagging requires adding a few
kasan_reset_tag() annotations to the vmalloc code.
HW_TAGS vmalloc tagging support stands out. HW_TAGS KASAN is based on Arm
MTE, which can only assigns tags to physical memory. As a result, HW_TAGS
KASAN only tags vmalloc() allocations, which are backed by page_alloc
memory. It ignores vmap() and others.
This patch (of 39):
Currently, should_skip_kasan_poison() has two definitions: one for when
CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, one for when it's not.
Instead of duplicating the checks, add a deferred_pages_enabled() helper
and use it in a single should_skip_kasan_poison() definition.
Also move should_skip_kasan_poison() closer to its caller and clarify all
conditions in the comment.
Link: https://lkml.kernel.org/r/cover.1643047180.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/658b79f5fb305edaf7dc16bc52ea870d3220d4a8.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull folio updates from Matthew Wilcox:
- Rewrite how munlock works to massively reduce the contention on
i_mmap_rwsem (Hugh Dickins):
https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/
- Sort out the page refcount mess for ZONE_DEVICE pages (Christoph
Hellwig):
https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/
- Convert GUP to use folios and make pincount available for order-1
pages. (Matthew Wilcox)
- Convert a few more truncation functions to use folios (Matthew
Wilcox)
- Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew
Wilcox)
- Convert rmap_walk to use folios (Matthew Wilcox)
- Convert most of shrink_page_list() to use a folio (Matthew Wilcox)
- Add support for creating large folios in readahead (Matthew Wilcox)
* tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache: (114 commits)
mm/damon: minor cleanup for damon_pa_young
selftests/vm/transhuge-stress: Support file-backed PMD folios
mm/filemap: Support VM_HUGEPAGE for file mappings
mm/readahead: Switch to page_cache_ra_order
mm/readahead: Align file mappings for non-DAX
mm/readahead: Add large folio readahead
mm: Support arbitrary THP sizes
mm: Make large folios depend on THP
mm: Fix READ_ONLY_THP warning
mm/filemap: Allow large folios to be added to the page cache
mm: Turn can_split_huge_page() into can_split_folio()
mm/vmscan: Convert pageout() to take a folio
mm/vmscan: Turn page_check_references() into folio_check_references()
mm/vmscan: Account large folios correctly
mm/vmscan: Optimise shrink_page_list for non-PMD-sized folios
mm/vmscan: Free non-shmem folios without splitting them
mm/rmap: Constify the rmap_walk_control argument
mm/rmap: Convert rmap_walk() to take a folio
mm: Turn page_anon_vma() into folio_anon_vma()
mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read()
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Move compound_pincount from the third page to the second page, which
means it's available for all compound pages. That lets us delete
hpage_pincount_available().
On 32-bit systems, there isn't enough space for both compound_pincount
and compound_nr in the second page (it would collide with page->private,
which is in use for pages in the swap cache), so revert the optimisation
of storing both compound_order and compound_nr on 32-bit systems.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
free_area_init_node is also called from memory less node initialization
path (free_area_init_memoryless_node). It doesn't really make much sense
to display the physical memory range for those nodes: Initmem setup node
XX [mem 0x0000000000000000-0x0000000000000000]
Instead be explicit that the node is memoryless: Initmem setup node XX as
memoryless
Link: https://lkml.kernel.org/r/20220127085305.20890-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rafael Aquini <raquini@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Nico Pache <npache@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When a !node_online node is brought up it needs a hotplug specific
initialization because the node could be either uninitialized yet or it
could have been recycled after previous hotremove. hotadd_init_pgdat is
responsible for that.
Internal pgdat state is initialized at two places currently
- hotadd_init_pgdat
- free_area_init_core_hotplug
There is no real clear cut what should go where but this patch's chosen to
move the whole internal state initialization into
free_area_init_core_hotplug. hotadd_init_pgdat is still responsible to
pull all the parts together - most notably to initialize zonelists because
those depend on the overall topology.
This patch doesn't introduce any functional change.
Link: https://lkml.kernel.org/r/20220127085305.20890-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rafael Aquini <raquini@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nico Pache <npache@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We have had several reports [1][2][3] that page allocator blows up when an
allocation from a possible node is requested. The underlying reason is
that NODE_DATA for the specific node is not allocated.
NUMA specific initialization is arch specific and it can vary a lot. E.g.
x86 tries to initialize all nodes that have some cpu affinity (see
init_cpu_to_node) but this can be insufficient because the node might be
cpuless for example.
One way to address this problem would be to check for !node_online nodes
when trying to get a zonelist and silently fall back to another node.
That is unfortunately adding a branch into allocator hot path and it
doesn't handle any other potential NODE_DATA users.
This patch takes a different approach (following a lead of [3]) and it pre
allocates pgdat for all possible nodes in an arch indipendent code -
free_area_init. All uninitialized nodes are treated as memoryless nodes.
node_state of the node is not changed because that would lead to other
side effects - e.g. sysfs representation of such a node and from past
discussions [4] it is known that some tools might have problems digesting
that.
Newly allocated pgdat only gets a minimal initialization and the rest of
the work is expected to be done by the memory hotplug - hotadd_new_pgdat
(renamed to hotadd_init_pgdat).
generic_alloc_nodedata is changed to use the memblock allocator because
neither page nor slab allocators are available at the stage when all
pgdats are allocated. Hotplug doesn't allocate pgdat anymore so we can
use the early boot allocator. The only arch specific implementation is
ia64 and that is changed to use the early allocator as well.
[1] http://lkml.kernel.org/r/20211101201312.11589-1-amakhalov@vmware.com
[2] http://lkml.kernel.org/r/20211207224013.880775-1-npache@redhat.com
[3] http://lkml.kernel.org/r/20190114082416.30939-1-mhocko@kernel.org
[4] http://lkml.kernel.org/r/20200428093836.27190-1-srikar@linux.vnet.ibm.com
[akpm@linux-foundation.org: replace comment, per Mike]
Link: https://lkml.kernel.org/r/Yfe7RBeLCijnWBON@dhcp22.suse.cz
Reported-by: Alexey Makhalov <amakhalov@vmware.com>
Tested-by: Alexey Makhalov <amakhalov@vmware.com>
Reported-by: Nico Pache <npache@redhat.com>
Acked-by: Rafael Aquini <raquini@redhat.com>
Tested-by: Rafael Aquini <raquini@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
With the advent of various new memory types, some machines will have
multiple types of memory, e.g. DRAM and PMEM (persistent memory). The
memory subsystem of these machines can be called memory tiering system,
because the performance of the different types of memory are usually
different.
In such system, because of the memory accessing pattern changing etc,
some pages in the slow memory may become hot globally. So in this
patch, the NUMA balancing mechanism is enhanced to optimize the page
placement among the different memory types according to hot/cold
dynamically.
In a typical memory tiering system, there are CPUs, fast memory and slow
memory in each physical NUMA node. The CPUs and the fast memory will be
put in one logical node (called fast memory node), while the slow memory
will be put in another (faked) logical node (called slow memory node).
That is, the fast memory is regarded as local while the slow memory is
regarded as remote. So it's possible for the recently accessed pages in
the slow memory node to be promoted to the fast memory node via the
existing NUMA balancing mechanism.
The original NUMA balancing mechanism will stop to migrate pages if the
free memory of the target node becomes below the high watermark. This
is a reasonable policy if there's only one memory type. But this makes
the original NUMA balancing mechanism almost do not work to optimize
page placement among different memory types. Details are as follows.
It's the common cases that the working-set size of the workload is
larger than the size of the fast memory nodes. Otherwise, it's
unnecessary to use the slow memory at all. So, there are almost always
no enough free pages in the fast memory nodes, so that the globally hot
pages in the slow memory node cannot be promoted to the fast memory
node. To solve the issue, we have 2 choices as follows,
a. Ignore the free pages watermark checking when promoting hot pages
from the slow memory node to the fast memory node. This will
create some memory pressure in the fast memory node, thus trigger
the memory reclaiming. So that, the cold pages in the fast memory
node will be demoted to the slow memory node.
b. Define a new watermark called wmark_promo which is higher than
wmark_high, and have kswapd reclaiming pages until free pages reach
such watermark. The scenario is as follows: when we want to promote
hot-pages from a slow memory to a fast memory, but fast memory's free
pages would go lower than high watermark with such promotion, we wake
up kswapd with wmark_promo watermark in order to demote cold pages and
free us up some space. So, next time we want to promote hot-pages we
might have a chance of doing so.
The choice "a" may create high memory pressure in the fast memory node.
If the memory pressure of the workload is high, the memory pressure
may become so high that the memory allocation latency of the workload
is influenced, e.g. the direct reclaiming may be triggered.
The choice "b" works much better at this aspect. If the memory
pressure of the workload is high, the hot pages promotion will stop
earlier because its allocation watermark is higher than that of the
normal memory allocation. So in this patch, choice "b" is implemented.
A new zone watermark (WMARK_PROMO) is added. Which is larger than the
high watermark and can be controlled via watermark_scale_factor.
In addition to the original page placement optimization among sockets,
the NUMA balancing mechanism is extended to be used to optimize page
placement according to hot/cold among different memory types. So the
sysctl user space interface (numa_balancing) is extended in a backward
compatible way as follow, so that the users can enable/disable these
functionality individually.
The sysctl is converted from a Boolean value to a bits field. The
definition of the flags is,
- 0: NUMA_BALANCING_DISABLED
- 1: NUMA_BALANCING_NORMAL
- 2: NUMA_BALANCING_MEMORY_TIERING
We have tested the patch with the pmbench memory accessing benchmark
with the 80:20 read/write ratio and the Gauss access address
distribution on a 2 socket Intel server with Optane DC Persistent
Memory Model. The test results shows that the pmbench score can
improve up to 95.9%.
Thanks Andrew Morton to help fix the document format error.
Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
memory_failure() can handle free buddy page. Support injecting hwpoison
to free page by adding is_free_buddy_page check when hwpoison filter is
disabled.
[akpm@linux-foundation.org: export is_free_buddy_page() to modules]
Link: https://lkml.kernel.org/r/20220218092052.3853-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Eric Dumazet pointed out that commit 44042b449872 ("mm/page_alloc: allow
high-order pages to be stored on the per-cpu lists") only checks the
head page during PCP refill and allocation operations. This was an
oversight and all pages should be checked. This will incur a small
performance penalty but it's necessary for correctness.
Link: https://lkml.kernel.org/r/20220310092456.GJ15701@techsingularity.net
Fixes: 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Eric Dumazet <edumazet@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
For high order pages not using pcp, rmqueue() is currently calling the
costly check_new_pages() while zone spinlock is held, and hard irqs
masked.
This is not needed, we can release the spinlock sooner to reduce zone
spinlock contention.
Note that after this patch, we call __mod_zone_freepage_state() before
deciding to leak the page because it is in bad state.
Link: https://lkml.kernel.org/r/20220304170215.1868106-1-eric.dumazet@gmail.com
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When page allocation in direct reclaim path fails, the system will make
one attempt to shrink per-cpu page lists and free pages from high alloc
reserves. Draining per-cpu pages into buddy allocator can be a very
slow operation because it's done using workqueues and the task in direct
reclaim waits for all of them to finish before proceeding. Currently
this time is not accounted as psi memory stall.
While testing mobile devices under extreme memory pressure, when
allocations are failing during direct reclaim, we notices that psi
events which would be expected in such conditions were not triggered.
After profiling these cases it was determined that the reason for
missing psi events was that a big chunk of time spent in direct reclaim
is not accounted as memory stall, therefore psi would not reach the
levels at which an event is generated. Further investigation revealed
that the bulk of that unaccounted time was spent inside drain_all_pages
call.
A typical captured case when drain_all_pages path gets activated:
__alloc_pages_slowpath took 44.644.613ns
__perform_reclaim took 751.668ns (1.7%)
drain_all_pages took 43.887.167ns (98.3%)
PSI in this case records the time spent in __perform_reclaim but ignores
drain_all_pages, IOW it misses 98.3% of the time spent in
__alloc_pages_slowpath.
Annotate __alloc_pages_direct_reclaim in its entirety so that delays
from handling page allocation failure in the direct reclaim path are
accounted as memory stall.
Link: https://lkml.kernel.org/r/20220223194812.1299646-1-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: Tim Murray <timmurray@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
On x86, prior to ("mm: handle uninitialized numa nodes gracecully"), NUMA
nodes could be allocated at three different places.
- numa_register_memblks
- init_cpu_to_node
- init_gi_nodes
All these calls happen at setup_arch, and have the following order:
setup_arch
...
x86_numa_init
numa_init
numa_register_memblks
...
init_cpu_to_node
init_memory_less_node
alloc_node_data
free_area_init_memoryless_node
init_gi_nodes
init_memory_less_node
alloc_node_data
free_area_init_memoryless_node
numa_register_memblks() is only interested in those nodes which have
memory, so it skips over any memoryless node it founds. Later on, when
we have read ACPI's SRAT table, we call init_cpu_to_node() and
init_gi_nodes(), which initialize any memoryless node we might have that
have either CPU or Initiator affinity, meaning we allocate pg_data_t
struct for them and we mark them as ONLINE.
So far so good, but the thing is that after ("mm: handle uninitialized
numa nodes gracefully"), we allocate all possible NUMA nodes in
free_area_init(), meaning we have a picture like the following:
setup_arch
x86_numa_init
numa_init
numa_register_memblks <-- allocate non-memoryless node
x86_init.paging.pagetable_init
...
free_area_init
free_area_init_memoryless <-- allocate memoryless node
init_cpu_to_node
alloc_node_data <-- allocate memoryless node with CPU
free_area_init_memoryless_node
init_gi_nodes
alloc_node_data <-- allocate memoryless node with Initiator
free_area_init_memoryless_node
free_area_init() already allocates all possible NUMA nodes, but
init_cpu_to_node() and init_gi_nodes() are clueless about that, so they
go ahead and allocate a new pg_data_t struct without checking anything,
meaning we end up allocating twice.
It should be mad clear that this only happens in the case where
memoryless NUMA node happens to have a CPU/Initiator affinity.
So get rid of init_memory_less_node() and just set the node online.
Note that setting the node online is needed, otherwise we choke down the
chain when bringup_nonboot_cpus() ends up calling
__try_online_node()->register_one_node()->... and we blow up in
bus_add_device(). As can be seen here:
BUG: kernel NULL pointer dereference, address: 0000000000000060
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.17.0-rc4-1-default+ #45
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/4
RIP: 0010:bus_add_device+0x5a/0x140
Code: 8b 74 24 20 48 89 df e8 84 96 ff ff 85 c0 89 c5 75 38 48 8b 53 50 48 85 d2 0f 84 bb 00 004
RSP: 0000:ffffc9000022bd10 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff888100987400 RCX: ffff8881003e4e19
RDX: ffff8881009a5e00 RSI: ffff888100987400 RDI: ffff888100987400
RBP: 0000000000000000 R08: ffff8881003e4e18 R09: ffff8881003e4c98
R10: 0000000000000000 R11: ffff888100402bc0 R12: ffffffff822ceba0
R13: 0000000000000000 R14: ffff888100987400 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88853fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000060 CR3: 000000000200a001 CR4: 00000000001706b0
Call Trace:
device_add+0x4c0/0x910
__register_one_node+0x97/0x2d0
__try_online_node+0x85/0xc0
try_online_node+0x25/0x40
cpu_up+0x4f/0x100
bringup_nonboot_cpus+0x4f/0x60
smp_init+0x26/0x79
kernel_init_freeable+0x130/0x2f1
kernel_init+0x17/0x150
ret_from_fork+0x22/0x30
The reason is simple, by the time bringup_nonboot_cpus() gets called, we
did not register the node_subsys bus yet, so we crash when
bus_add_device() tries to dereference bus()->p.
The following shows the order of the calls:
kernel_init_freeable
smp_init
bringup_nonboot_cpus
...
bus_add_device() <- we did not register node_subsys yet
do_basic_setup
do_initcalls
postcore_initcall(register_node_type);
register_node_type
subsys_system_register
subsys_register
bus_register <- register node_subsys bus
Why setting the node online saves us then? Well, simply because
__try_online_node() backs off when the node is online, meaning we do not
end up calling register_one_node() in the first place.
This is subtle, broken and deserves a deep analysis and thought about
how to put this into shape, but for now let us have this easy fix for
the leaking memory issue.
[osalvador@suse.de: add comments]
Link: https://lkml.kernel.org/r/20220221142649.3457-1-osalvador@suse.de
Link: https://lkml.kernel.org/r/20220218224302.5282-2-osalvador@suse.de
Fixes: da4490c958ad ("mm: handle uninitialized numa nodes gracefully")
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Rafael Aquini <raquini@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
free_pcppages_bulk() has taken two passes through the pcp lists since
commit 0a5f4e5b4562 ("mm/free_pcppages_bulk: do not hold lock when
picking pages to free") due to deferring the cost of selecting PCP lists
until the zone lock is held.
As the list processing now takes place under the zone lock, it's less
clear that this will always benefit for two reasons.
1. There is a guaranteed cost to calculating the buddy which definitely
has to be calculated again. However, as the zone lock is held and
there is no deferring of buddy merging, there is no guarantee that the
prefetch will have completed when the second buddy calculation takes
place and buddies are being merged. With or without the prefetch, there
may be further stalls depending on how many pages get merged. In other
words, a stall due to merging is inevitable and at best only one stall
might be avoided at the cost of calculating the buddy location twice.
2. As the zone lock is held, prefetch_nr makes less sense as once
prefetch_nr expires, the cache lines of interest have already been
merged.
The main concern is that there is a definite cost to calculating the
buddy location early for the prefetch and it is a "maybe win" depending
on whether the CPU prefetch logic and memory is fast enough. Remove the
prefetch logic on the basis that reduced instructions in a path is
always a saving where as the prefetch might save one memory stall
depending on the CPU and memory.
In most cases, this has marginal benefit as the calculations are a small
part of the overall freeing of pages. However, it was detectable on at
least one machine.
5.17.0-rc3 5.17.0-rc3
mm-highpcplimit-v2r1 mm-noprefetch-v1r1
Min elapsed 630.00 ( 0.00%) 610.00 ( 3.17%)
Amean elapsed 639.00 ( 0.00%) 623.00 * 2.50%*
Max elapsed 660.00 ( 0.00%) 660.00 ( 0.00%)
Link: https://lkml.kernel.org/r/20220221094119.15282-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Aaron Lu <aaron.lu@intel.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When a PCP is mostly used for frees then high-order pages can exist on
PCP lists for some time. This is problematic when the allocation
pattern is all allocations from one CPU and all frees from another
resulting in colder pages being used. When bulk freeing pages, limit
the number of high-order pages that are stored on the PCP lists.
Netperf running on localhost exhibits this pattern and while it does not
matter for some machines, it does matter for others with smaller caches
where cache misses cause problems due to reduced page reuse. Pages
freed directly to the buddy list may be reused quickly while still cache
hot where as storing on the PCP lists may be cold by the time
free_pcppages_bulk() is called.
Using perf kmem:mm_page_alloc, the 5 most used page frames were
5.17-rc3
13041 pfn=0x111a30
13081 pfn=0x5814d0
13097 pfn=0x108258
13121 pfn=0x689598
13128 pfn=0x5814d8
5.17-revert-highpcp
192009 pfn=0x54c140
195426 pfn=0x1081d0
200908 pfn=0x61c808
243515 pfn=0xa9dc20
402523 pfn=0x222bb8
5.17-full-series
142693 pfn=0x346208
162227 pfn=0x13bf08
166413 pfn=0x2711e0
166950 pfn=0x2702f8
The spread is wider as there is still time before pages freed to one PCP
get released with a tradeoff between fast reuse and reduced zone lock
acquisition.
On the machine used to gather the traces, the headline performance was
equivalent.
netperf-tcp
5.17.0-rc3 5.17.0-rc3 5.17.0-rc3
vanilla mm-reverthighpcp-v1r1 mm-highpcplimit-v2
Hmean 64 839.93 ( 0.00%) 840.77 ( 0.10%) 841.02 ( 0.13%)
Hmean 128 1614.22 ( 0.00%) 1622.07 * 0.49%* 1636.41 * 1.37%*
Hmean 256 2952.00 ( 0.00%) 2953.19 ( 0.04%) 2977.76 * 0.87%*
Hmean 1024 10291.67 ( 0.00%) 10239.17 ( -0.51%) 10434.41 * 1.39%*
Hmean 2048 17335.08 ( 0.00%) 17399.97 ( 0.37%) 17134.81 * -1.16%*
Hmean 3312 22628.15 ( 0.00%) 22471.97 ( -0.69%) 22422.78 ( -0.91%)
Hmean 4096 25009.50 ( 0.00%) 24752.83 * -1.03%* 24740.41 ( -1.08%)
Hmean 8192 32745.01 ( 0.00%) 31682.63 * -3.24%* 32153.50 * -1.81%*
Hmean 16384 39759.59 ( 0.00%) 36805.78 * -7.43%* 38948.13 * -2.04%*
On a 1-socket skylake machine with a small CPU cache that suffers more if
cache misses are too high
netperf-tcp
5.17.0-rc3 5.17.0-rc3 5.17.0-rc3
vanilla mm-reverthighpcp-v1 mm-highpcplimit-v2
Hmean 64 938.95 ( 0.00%) 941.50 * 0.27%* 943.61 * 0.50%*
Hmean 128 1843.10 ( 0.00%) 1857.58 * 0.79%* 1861.09 * 0.98%*
Hmean 256 3573.07 ( 0.00%) 3667.45 * 2.64%* 3674.91 * 2.85%*
Hmean 1024 13206.52 ( 0.00%) 13487.80 * 2.13%* 13393.21 * 1.41%*
Hmean 2048 22870.23 ( 0.00%) 23337.96 * 2.05%* 23188.41 * 1.39%*
Hmean 3312 31001.99 ( 0.00%) 32206.50 * 3.89%* 31863.62 * 2.78%*
Hmean 4096 35364.59 ( 0.00%) 36490.96 * 3.19%* 36112.54 * 2.11%*
Hmean 8192 48497.71 ( 0.00%) 49954.05 * 3.00%* 49588.26 * 2.25%*
Hmean 16384 58410.86 ( 0.00%) 60839.80 * 4.16%* 62282.96 * 6.63%*
Note that this was a machine that did not benefit from caching high-order
pages and performance is almost restored with the series applied. It's
not fully restored as cache misses are still higher. This is a trade-off
between optimising for a workload that does all allocs on one CPU and
frees on another or more general workloads that need high-order pages for
SLUB and benefit from avoiding zone->lock for every SLUB refill/drain.
Link: https://lkml.kernel.org/r/20220217002227.5739-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
free_pcppages_bulk() has taken two passes through the pcp lists since
commit 0a5f4e5b4562 ("mm/free_pcppages_bulk: do not hold lock when
picking pages to free") due to deferring the cost of selecting PCP lists
until the zone lock is held. Now that list selection is simplier, the
main cost during selection is bulkfree_pcp_prepare() which in the normal
case is a simple check and prefetching. As the list manipulations have
cost in itself, go back to freeing pages in a single pass.
The series up to this point was evaulated using a trunc microbenchmark
that is truncating sparse files stored in page cache (mmtests config
config-io-trunc). Sparse files were used to limit filesystem
interaction. The results versus a revert of storing high-order pages in
the PCP lists is
1-socket Skylake
5.17.0-rc3 5.17.0-rc3 5.17.0-rc3
vanilla mm-reverthighpcp-v1 mm-highpcpopt-v2
Min elapsed 540.00 ( 0.00%) 530.00 ( 1.85%) 530.00 ( 1.85%)
Amean elapsed 543.00 ( 0.00%) 530.00 * 2.39%* 530.00 * 2.39%*
Stddev elapsed 4.83 ( 0.00%) 0.00 ( 100.00%) 0.00 ( 100.00%)
CoeffVar elapsed 0.89 ( 0.00%) 0.00 ( 100.00%) 0.00 ( 100.00%)
Max elapsed 550.00 ( 0.00%) 530.00 ( 3.64%) 530.00 ( 3.64%)
BAmean-50 elapsed 540.00 ( 0.00%) 530.00 ( 1.85%) 530.00 ( 1.85%)
BAmean-95 elapsed 542.22 ( 0.00%) 530.00 ( 2.25%) 530.00 ( 2.25%)
BAmean-99 elapsed 542.22 ( 0.00%) 530.00 ( 2.25%) 530.00 ( 2.25%)
2-socket CascadeLake
5.17.0-rc3 5.17.0-rc3 5.17.0-rc3
vanilla mm-reverthighpcp-v1 mm-highpcpopt-v2
Min elapsed 510.00 ( 0.00%) 500.00 ( 1.96%) 500.00 ( 1.96%)
Amean elapsed 529.00 ( 0.00%) 521.00 ( 1.51%) 510.00 * 3.59%*
Stddev elapsed 16.63 ( 0.00%) 12.87 ( 22.64%) 11.55 ( 30.58%)
CoeffVar elapsed 3.14 ( 0.00%) 2.47 ( 21.46%) 2.26 ( 27.99%)
Max elapsed 550.00 ( 0.00%) 540.00 ( 1.82%) 530.00 ( 3.64%)
BAmean-50 elapsed 516.00 ( 0.00%) 512.00 ( 0.78%) 500.00 ( 3.10%)
BAmean-95 elapsed 526.67 ( 0.00%) 518.89 ( 1.48%) 507.78 ( 3.59%)
BAmean-99 elapsed 526.67 ( 0.00%) 518.89 ( 1.48%) 507.78 ( 3.59%)
The original motivation for multi-passes was will-it-scale page_fault1
using $nr_cpu processes.
2-socket CascadeLake (40 cores, 80 CPUs HT enabled)
5.17.0-rc3 5.17.0-rc3
vanilla mm-highpcpopt-v2
Hmean page_fault1-processes-2 2694662.26 ( 0.00%) 2695780.35 ( 0.04%)
Hmean page_fault1-processes-5 6425819.34 ( 0.00%) 6435544.57 * 0.15%*
Hmean page_fault1-processes-8 9642169.10 ( 0.00%) 9658962.39 ( 0.17%)
Hmean page_fault1-processes-12 12167502.10 ( 0.00%) 12190163.79 ( 0.19%)
Hmean page_fault1-processes-21 15636859.03 ( 0.00%) 15612447.26 ( -0.16%)
Hmean page_fault1-processes-30 25157348.61 ( 0.00%) 25169456.65 ( 0.05%)
Hmean page_fault1-processes-48 27694013.85 ( 0.00%) 27671111.46 ( -0.08%)
Hmean page_fault1-processes-79 25928742.64 ( 0.00%) 25934202.02 ( 0.02%) <--
Hmean page_fault1-processes-110 25730869.75 ( 0.00%) 25671880.65 * -0.23%*
Hmean page_fault1-processes-141 25626992.42 ( 0.00%) 25629551.61 ( 0.01%)
Hmean page_fault1-processes-172 25611651.35 ( 0.00%) 25614927.99 ( 0.01%)
Hmean page_fault1-processes-203 25577298.75 ( 0.00%) 25583445.59 ( 0.02%)
Hmean page_fault1-processes-234 25580686.07 ( 0.00%) 25608240.71 ( 0.11%)
Hmean page_fault1-processes-265 25570215.47 ( 0.00%) 25568647.58 ( -0.01%)
Hmean page_fault1-processes-296 25549488.62 ( 0.00%) 25543935.00 ( -0.02%)
Hmean page_fault1-processes-320 25555149.05 ( 0.00%) 25575696.74 ( 0.08%)
The differences are mostly within the noise and the difference close to
$nr_cpus is negligible.
Link: https://lkml.kernel.org/r/20220217002227.5739-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Prior to the series, pindex 0 (order-0 MIGRATE_UNMOVABLE) was always
skipped first and the precise reason is forgotten. A potential reason
may have been to artificially preserve MIGRATE_UNMOVABLE but there is no
reason why that would be optimal as it depends on the workload. The
more likely reason is that it was less complicated to do a pre-increment
instead of a post-increment in terms of overall code flow. As
free_pcppages_bulk() now typically receives the pindex of the PCP list
that exceeded high, always start draining that list.
Link: https://lkml.kernel.org/r/20220217002227.5739-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
free
free_pcppages_bulk() selects pages to free by round-robining between
lists. Originally this was to evenly shrink pages by migratetype but
uneven freeing is inevitable due to high pages. Simplify list selection
by starting with a list that definitely has pages on it in
free_unref_page_commit() and for drain, it does not matter where
draining starts as all pages are removed.
Link: https://lkml.kernel.org/r/20220217002227.5739-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
free_pcppages_bulk() frees pages in a round-robin fashion. Originally,
this was dealing only with migratetypes but storing high-order pages
means that there can be many more empty lists that are uselessly
checked. Track the minimum and maximum active pindex to reduce the
search space.
Link: https://lkml.kernel.org/r/20220217002227.5739-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch series "Follow-up on high-order PCP caching", v2.
Commit 44042b449872 ("mm/page_alloc: allow high-order pages to be stored
on the per-cpu lists") was primarily aimed at reducing the cost of SLUB
cache refills of high-order pages in two ways. Firstly, zone lock
acquisitions was reduced and secondly, there were fewer buddy list
modifications. This is a follow-up series fixing some issues that
became apparant after merging.
Patch 1 is a functional fix. It's harmless but inefficient.
Patches 2-5 reduce the overhead of bulk freeing of PCP pages. While the
overhead is small, it's cumulative and noticable when truncating large
files. The changelog for patch 4 includes results of a microbench that
deletes large sparse files with data in page cache. Sparse files were
used to eliminate filesystem overhead.
Patch 6 addresses issues with high-order PCP pages being stored on PCP
lists for too long. Pages freed on a CPU potentially may not be quickly
reused and in some cases this can increase cache miss rates. Details
are included in the changelog.
This patch (of 6):
free_pcppages_bulk() prefetches buddies about to be freed but the order
must also be passed in as PCP lists store multiple orders.
Link: https://lkml.kernel.org/r/20220217002227.5739-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20220217002227.5739-2-mgorman@techsingularity.net
Fixes: 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
ZONE_MOVABLE uses the remaining memory in each node. Its starting pfn
is also aligned to MAX_ORDER_NR_PAGES. It is possible for the remaining
memory in a node to be less than MAX_ORDER_NR_PAGES, meaning there is
not enough room for ZONE_MOVABLE on that node.
Unfortunately this condition is not checked for. This leads to
zone_movable_pfn[] getting set to a pfn greater than the last pfn in a
node.
calculate_node_totalpages() then sets zone->present_pages to be greater
than zone->spanned_pages which is invalid, as spanned_pages represents
the maximum number of pages in a zone assuming no holes.
Subsequently it is possible free_area_init_core() will observe a zone of
size zero with present pages. In this case it will skip setting up the
zone, including the initialisation of free_lists[].
However populated_zone() checks zone->present_pages to see if a zone has
memory available. This is used by iterators such as
walk_zones_in_node(). pagetypeinfo_showfree() uses this to walk the
free_list of each zone in each node, which are assumed to be initialised
due to the zone not being empty.
As free_area_init_core() never initialised the free_lists[] this results
in the following kernel crash when trying to read /proc/pagetypeinfo:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC NOPTI
CPU: 0 PID: 456 Comm: cat Not tainted 5.16.0 #461
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
RIP: 0010:pagetypeinfo_show+0x163/0x460
Code: 9e 82 e8 80 57 0e 00 49 8b 06 b9 01 00 00 00 4c 39 f0 75 16 e9 65 02 00 00 48 83 c1 01 48 81 f9 a0 86 01 00 0f 84 48 02 00 00 <48> 8b 00 4c 39 f0 75 e7 48 c7 c2 80 a2 e2 82 48 c7 c6 79 ef e3 82
RSP: 0018:ffffc90001c4bd10 EFLAGS: 00010003
RAX: 0000000000000000 RBX: ffff88801105f638 RCX: 0000000000000001
RDX: 0000000000000001 RSI: 000000000000068b RDI: ffff8880163dc68b
RBP: ffffc90001c4bd90 R08: 0000000000000001 R09: ffff8880163dc67e
R10: 656c6261766f6d6e R11: 6c6261766f6d6e55 R12: ffff88807ffb4a00
R13: ffff88807ffb49f8 R14: ffff88807ffb4580 R15: ffff88807ffb3000
FS: 00007f9c83eff5c0(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000013c8e000 CR4: 0000000000350ef0
Call Trace:
seq_read_iter+0x128/0x460
proc_reg_read_iter+0x51/0x80
new_sync_read+0x113/0x1a0
vfs_read+0x136/0x1d0
ksys_read+0x70/0xf0
__x64_sys_read+0x1a/0x20
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix this by checking that the aligned zone_movable_pfn[] does not exceed
the end of the node, and if it does skip creating a movable zone on this
node.
Link: https://lkml.kernel.org/r/20220215025831.2113067-1-apopple@nvidia.com
Fixes: 2a1e274acf0b ("Create the ZONE_MOVABLE zone")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit 9983a9d577db ("locking/local_lock: Make the empty local_lock_*()
function a macro.") in the -tip tree converted the local_lock_*()
functions into macros, which causes a warning with clang with
CONFIG_PREEMPT_RT=n + CONFIG_DEBUG_LOCK_ALLOC=n:
mm/page_alloc.c:131:40: error: variable 'pagesets' is not needed and will not be emitted [-Werror,-Wunneeded-internal-declaration]
static DEFINE_PER_CPU(struct pagesets, pagesets) = {
^
1 error generated.
Prior to that change, clang was not able to tell that pagesets was
unused in this configuration because it does not perform cross function
analysis in the frontend. After that change, it sees that the macros
just do a typecheck on the lock member of pagesets, which is evaluated
at compile time (so the variable is technically "used"), meaning the
variable is not needed in the final assembly, as the warning states.
Mark the variable as __maybe_unused to make it clear to clang that this
is expected in this configuration so there is no more warning.
Link: https://github.com/ClangBuiltLinux/linux/issues/1593
Link: https://lkml.kernel.org/r/20220215184322.440969-1-nathan@kernel.org
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Some places in the kernel don't really expect pageblock_order >=
MAX_ORDER, and it looks like this is only possible in corner cases:
1) CONFIG_DEFERRED_STRUCT_PAGE_INIT we'll end up freeing pageblock_order
pages via __free_pages_core(), which cannot possibly work.
2) find_zone_movable_pfns_for_nodes() will roundup the ZONE_MOVABLE
start PFN to MAX_ORDER_NR_PAGES. Consequently with a bigger
pageblock_order, we could have a single pageblock partially managed by
two zones.
3) compaction code runs into __fragmentation_index() with order
>= MAX_ORDER, when checking WARN_ON_ONCE(order >= MAX_ORDER). [1]
4) mm/page_reporting.c won't be reporting any pages with default
page_reporting_order == pageblock_order, as we'll be skipping the
reporting loop inside page_reporting_process_zone().
5) __rmqueue_fallback() will never be able to steal with
ALLOC_NOFRAGMENT.
pageblock_order >= MAX_ORDER is weird either way: it's a pure
optimization for making alloc_contig_range(), as used for allcoation of
gigantic pages, a little more reliable to succeed. However, if there is
demand for somewhat reliable allocation of gigantic pages, affected
setups should be using CMA or boottime allocations instead.
So let's make sure that pageblock_order < MAX_ORDER and simplify.
[1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com
Link: https://lkml.kernel.org/r/20220214174132.219303-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: John Garry via iommu <iommu@lists.linux-foundation.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
free_unref_page_commit() doesn't make use of its pfn argument, so get
rid of it.
Link: https://lkml.kernel.org/r/20220202140451.415928-1-nsaenzju@redhat.com
Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is done in addition to MIGRATE_ISOLATE pageblock merge avoidance.
It prepares for the upcoming removal of the MAX_ORDER-1 alignment
requirement for CMA and alloc_contig_range().
MIGRATE_HIGHATOMIC should not merge with other migratetypes like
MIGRATE_ISOLATE and MIGRARTE_CMA[1], so this commit prevents that too.
Remove MIGRATE_CMA and MIGRATE_ISOLATE from fallbacks list, since they
are never used.
[1] https://lore.kernel.org/linux-mm/20211130100853.GP3366@techsingularity.net/
Link: https://lkml.kernel.org/r/20220124175957.1261961-1-zi.yan@sent.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Merge more updates from Andrew Morton:
"55 patches.
Subsystems affected by this patch series: percpu, procfs, sysctl,
misc, core-kernel, get_maintainer, lib, checkpatch, binfmt, nilfs2,
hfs, fat, adfs, panic, delayacct, kconfig, kcov, and ubsan"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (55 commits)
lib: remove redundant assignment to variable ret
ubsan: remove CONFIG_UBSAN_OBJECT_SIZE
kcov: fix generic Kconfig dependencies if ARCH_WANTS_NO_INSTR
lib/Kconfig.debug: make TEST_KMOD depend on PAGE_SIZE_LESS_THAN_256KB
btrfs: use generic Kconfig option for 256kB page size limit
arch/Kconfig: split PAGE_SIZE_LESS_THAN_256KB from PAGE_SIZE_LESS_THAN_64KB
configs: introduce debug.config for CI-like setup
delayacct: track delays from memory compact
Documentation/accounting/delay-accounting.rst: add thrashing page cache and direct compact
delayacct: cleanup flags in struct task_delay_info and functions use it
delayacct: fix incomplete disable operation when switch enable to disable
delayacct: support swapin delay accounting for swapping without blkio
panic: remove oops_id
panic: use error_report_end tracepoint on warnings
fs/adfs: remove unneeded variable make code cleaner
FAT: use io_schedule_timeout() instead of congestion_wait()
hfsplus: use struct_group_attr() for memcpy() region
nilfs2: remove redundant pointer sbufs
fs/binfmt_elf: use PT_LOAD p_align values for static PIE
const_structs.checkpatch: add frequently used ops structs
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Delay accounting does not track the delay of memory compact. When there
is not enough free memory, tasks can spend a amount of their time
waiting for compact.
To get the impact of tasks in direct memory compact, measure the delay
when allocating memory through memory compact.
Also update tools/accounting/getdelays.c:
/ # ./getdelays_next -di -p 304
print delayacct stats ON
printing IO accounting
PID 304
CPU count real total virtual total delay total delay average
277 780000000 849039485 18877296 0.068ms
IO count delay total delay average
0 0 0ms
SWAP count delay total delay average
0 0 0ms
RECLAIM count delay total delay average
5 11088812685 2217ms
THRASHING count delay total delay average
0 0 0ms
COMPACT count delay total delay average
3 72758 0ms
watch: read=0, write=0, cancelled_write=0
Link: https://lkml.kernel.org/r/1638619795-71451-1-git-send-email-wang.yong12@zte.com.cn
Signed-off-by: wangyong <wang.yong12@zte.com.cn>
Reviewed-by: Jiang Xuexin <jiang.xuexin@zte.com.cn>
Reviewed-by: Zhang Wenya <zhang.wenya1@zte.com.cn>
Reviewed-by: Yang Yang <yang.yang29@zte.com.cn>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
After recent soft-offline rework, error pages can be taken off from
buddy allocator, but the existing unpoison_memory() does not properly
undo the operation. Moreover, due to the recent change on
__get_hwpoison_page(), get_page_unless_zero() is hardly called for
hwpoisoned pages. So __get_hwpoison_page() highly likely returns -EBUSY
(meaning to fail to grab page refcount) and unpoison just clears
PG_hwpoison without releasing a refcount. That does not lead to a
critical issue like kernel panic, but unpoisoned pages never get back to
buddy (leaked permanently), which is not good.
To (partially) fix this, we need to identify "taken off" pages from
other types of hwpoisoned pages. We can't use refcount or page flags
for this purpose, so a pseudo flag is defined by hacking ->private
field. Someone might think that put_page() is enough to cancel
taken-off pages, but the normal free path contains some operations not
suitable for the current purpose, and can fire VM_BUG_ON().
Note that unpoison_memory() is now supposed to be cancel hwpoison events
injected only by madvise() or
/sys/devices/system/memory/{hard,soft}_offline_page, not by MCE
injection, so please don't try to use unpoison when testing with MCE
injection.
[lkp@intel.com: report build failure for ARCH=i386]
Link: https://lkml.kernel.org/r/20211115084006.3728254-4-naoya.horiguchi@linux.dev
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ding Hui <dinghui@sangfor.com.cn>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In kdump kernel of x86_64, page allocation failure is observed:
kworker/u2:2: page allocation failure: order:0, mode:0xcc1(GFP_KERNEL|GFP_DMA), nodemask=(null),cpuset=/,mems_allowed=0
CPU: 0 PID: 55 Comm: kworker/u2:2 Not tainted 5.16.0-rc4+ #5
Hardware name: AMD Dinar/Dinar, BIOS RDN1505B 06/05/2013
Workqueue: events_unbound async_run_entry_fn
Call Trace:
<TASK>
dump_stack_lvl+0x48/0x5e
warn_alloc.cold+0x72/0xd6
__alloc_pages_slowpath.constprop.0+0xc69/0xcd0
__alloc_pages+0x1df/0x210
new_slab+0x389/0x4d0
___slab_alloc+0x58f/0x770
__slab_alloc.constprop.0+0x4a/0x80
kmem_cache_alloc_trace+0x24b/0x2c0
sr_probe+0x1db/0x620
......
device_add+0x405/0x920
......
__scsi_add_device+0xe5/0x100
ata_scsi_scan_host+0x97/0x1d0
async_run_entry_fn+0x30/0x130
process_one_work+0x1e8/0x3c0
worker_thread+0x50/0x3b0
? rescuer_thread+0x350/0x350
kthread+0x16b/0x190
? set_kthread_struct+0x40/0x40
ret_from_fork+0x22/0x30
</TASK>
Mem-Info:
......
The above failure happened when calling kmalloc() to allocate buffer with
GFP_DMA. It requests to allocate slab page from DMA zone while no managed
pages at all in there.
sr_probe()
--> get_capabilities()
--> buffer = kmalloc(512, GFP_KERNEL | GFP_DMA);
Because in the current kernel, dma-kmalloc will be created as long as
CONFIG_ZONE_DMA is enabled. However, kdump kernel of x86_64 doesn't have
managed pages on DMA zone since commit 6f599d84231f ("x86/kdump: Always
reserve the low 1M when the crashkernel option is specified"). The
failure can be always reproduced.
For now, let's mute the warning of allocation failure if requesting pages
from DMA zone while no managed pages.
[akpm@linux-foundation.org: fix warning]
Link: https://lkml.kernel.org/r/20211223094435.248523-4-bhe@redhat.com
Fixes: 6f599d84231f ("x86/kdump: Always reserve the low 1M when the crashkernel option is specified")
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: John Donnelly <john.p.donnelly@oracle.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch series "Handle warning of allocation failure on DMA zone w/o
managed pages", v4.
**Problem observed:
On x86_64, when crash is triggered and entering into kdump kernel, page
allocation failure can always be seen.
---------------------------------
DMA: preallocated 128 KiB GFP_KERNEL pool for atomic allocations
swapper/0: page allocation failure: order:5, mode:0xcc1(GFP_KERNEL|GFP_DMA), nodemask=(null),cpuset=/,mems_allowed=0
CPU: 0 PID: 1 Comm: swapper/0
Call Trace:
dump_stack+0x7f/0xa1
warn_alloc.cold+0x72/0xd6
......
__alloc_pages+0x24d/0x2c0
......
dma_atomic_pool_init+0xdb/0x176
do_one_initcall+0x67/0x320
? rcu_read_lock_sched_held+0x3f/0x80
kernel_init_freeable+0x290/0x2dc
? rest_init+0x24f/0x24f
kernel_init+0xa/0x111
ret_from_fork+0x22/0x30
Mem-Info:
------------------------------------
***Root cause:
In the current kernel, it assumes that DMA zone must have managed pages
and try to request pages if CONFIG_ZONE_DMA is enabled. While this is not
always true. E.g in kdump kernel of x86_64, only low 1M is presented and
locked down at very early stage of boot, so that this low 1M won't be
added into buddy allocator to become managed pages of DMA zone. This
exception will always cause page allocation failure if page is requested
from DMA zone.
***Investigation:
This failure happens since below commit merged into linus's tree.
1a6a9044b967 x86/setup: Remove CONFIG_X86_RESERVE_LOW and reservelow= options
23721c8e92f7 x86/crash: Remove crash_reserve_low_1M()
f1d4d47c5851 x86/setup: Always reserve the first 1M of RAM
7c321eb2b843 x86/kdump: Remove the backup region handling
6f599d84231f x86/kdump: Always reserve the low 1M when the crashkernel option is specified
Before them, on x86_64, the low 640K area will be reused by kdump kernel.
So in kdump kernel, the content of low 640K area is copied into a backup
region for dumping before jumping into kdump. Then except of those firmware
reserved region in [0, 640K], the left area will be added into buddy
allocator to become available managed pages of DMA zone.
However, after above commits applied, in kdump kernel of x86_64, the low
1M is reserved by memblock, but not released to buddy allocator. So any
later page allocation requested from DMA zone will fail.
At the beginning, if crashkernel is reserved, the low 1M need be locked
down because AMD SME encrypts memory making the old backup region
mechanims impossible when switching into kdump kernel.
Later, it was also observed that there are BIOSes corrupting memory
under 1M. To solve this, in commit f1d4d47c5851, the entire region of
low 1M is always reserved after the real mode trampoline is allocated.
Besides, recently, Intel engineer mentioned their TDX (Trusted domain
extensions) which is under development in kernel also needs to lock down
the low 1M. So we can't simply revert above commits to fix the page allocation
failure from DMA zone as someone suggested.
***Solution:
Currently, only DMA atomic pool and dma-kmalloc will initialize and
request page allocation with GFP_DMA during bootup.
So only initializ DMA atomic pool when DMA zone has available managed
pages, otherwise just skip the initialization.
For dma-kmalloc(), for the time being, let's mute the warning of
allocation failure if requesting pages from DMA zone while no manged
pages. Meanwhile, change code to use dma_alloc_xx/dma_map_xx API to
replace kmalloc(GFP_DMA), or do not use GFP_DMA when calling kmalloc() if
not necessary. Christoph is posting patches to fix those under
drivers/scsi/. Finally, we can remove the need of dma-kmalloc() as people
suggested.
This patch (of 3):
In some places of the current kernel, it assumes that dma zone must have
managed pages if CONFIG_ZONE_DMA is enabled. While this is not always
true. E.g in kdump kernel of x86_64, only low 1M is presented and locked
down at very early stage of boot, so that there's no managed pages at all
in DMA zone. This exception will always cause page allocation failure if
page is requested from DMA zone.
Here add function has_managed_dma() and the relevant helper functions to
check if there's DMA zone with managed pages. It will be used in later
patches.
Link: https://lkml.kernel.org/r/20211223094435.248523-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20211223094435.248523-2-bhe@redhat.com
Fixes: 6f599d84231f ("x86/kdump: Always reserve the low 1M when the crashkernel option is specified")
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: John Donnelly <john.p.donnelly@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Clarify that the alloc_contig_pages() allocated range will always be
aligned to the requested nr_pages.
Link: https://lkml.kernel.org/r/1639545478-12160-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Arthur Marsh reported we would hit the error below when building kernel
with gcc-12:
CC mm/page_alloc.o
mm/page_alloc.c: In function `mem_init_print_info':
mm/page_alloc.c:8173:27: error: comparison between two arrays [-Werror=array-compare]
8173 | if (start <= pos && pos < end && size > adj) \
|
In C++20, the comparision between arrays should be warned.
Link: https://lkml.kernel.org/r/20211125130928.32465-1-sxwjean@me.com
Signed-off-by: Xiongwei Song <sxwjean@gmail.com>
Reported-by: Arthur Marsh <arthur.marsh@internode.on.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Check user page table entries at the time they are added and removed.
Allows to synchronously catch memory corruption issues related to double
mapping.
When a pte for an anonymous page is added into page table, we verify
that this pte does not already point to a file backed page, and vice
versa if this is a file backed page that is being added we verify that
this page does not have an anonymous mapping
We also enforce that read-only sharing for anonymous pages is allowed
(i.e. cow after fork). All other sharing must be for file pages.
Page table check allows to protect and debug cases where "struct page"
metadata became corrupted for some reason. For example, when refcnt or
mapcount become invalid.
Link: https://lkml.kernel.org/r/20211221154650.1047963-4-pasha.tatashin@soleen.com
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kees Cook <keescook@chromium.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Xu <weixugc@google.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Add a new @vmemmap_shift property for struct dev_pagemap which specifies
that a devmap is composed of a set of compound pages of order
@vmemmap_shift, instead of base pages. When a compound page devmap is
requested, all but the first page are initialised as tail pages instead
of order-0 pages.
For certain ZONE_DEVICE users like device-dax which have a fixed page
size, this creates an opportunity to optimize GUP and GUP-fast walkers,
treating it the same way as THP or hugetlb pages.
Additionally, commit 7118fc2906e2 ("hugetlb: address ref count racing in
prep_compound_gigantic_page") removed set_page_count() because the
setting of page ref count to zero was redundant. devmap pages don't
come from page allocator though and only head page refcount is used for
compound pages, hence initialize tail page count to zero.
Link: https://lkml.kernel.org/r/20211202204422.26777-5-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Move struct page init to an helper function __init_zone_device_page().
This is in preparation for sharing the storage for compound page
metadata.
Link: https://lkml.kernel.org/r/20211202204422.26777-4-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "mm, device-dax: Introduce compound pages in devmap", v7.
This series converts device-dax to use compound pages, and moves away
from the 'struct page per basepage on PMD/PUD' that is done today.
Doing so
1) unlocks a few noticeable improvements on unpin_user_pages() and
makes device-dax+altmap case 4x times faster in pinning (numbers
below and in last patch)
2) as mentioned in various other threads it's one important step
towards cleaning up ZONE_DEVICE refcounting.
I've split the compound pages on devmap part from the rest based on
recent discussions on devmap pending and future work planned[5][6].
There is consensus that device-dax should be using compound pages to
represent its PMD/PUDs just like HugeTLB and THP, and that leads to less
specialization of the dax parts. I will pursue the rest of the work in
parallel once this part is merged, particular the GUP-{slow,fast}
improvements [7] and the tail struct page deduplication memory savings
part[8].
To summarize what the series does:
Patch 1: Prepare hwpoisoning to work with dax compound pages.
Patches 2-3: Split the current utility function of prep_compound_page()
into head and tail and use those two helpers where appropriate to take
advantage of caches being warm after __init_single_page(). This is used
when initializing zone device when we bring up device-dax namespaces.
Patches 4-10: Add devmap support for compound pages in device-dax.
memmap_init_zone_device() initialize its metadata as compound pages, and
it introduces a new devmap property known as vmemmap_shift which
outlines how the vmemmap is structured (defaults to base pages as done
today). The property describe the page order of the metadata
essentially. While at it do a few cleanups in device-dax in patches
5-9. Finally enable device-dax usage of devmap @vmemmap_shift to a
value based on its own @align property. @vmemmap_shift returns 0 by
default (which is today's case of base pages in devmap, like fsdax or
the others) and the usage of compound devmap is optional. Starting with
device-dax (*not* fsdax) we enable it by default. There are a few
pinning improvements particular on the unpinning case and altmap, as
well as unpin_user_page_range_dirty_lock() being just as effective as
THP/hugetlb[0] pages.
$ gup_test -f /dev/dax1.0 -m 16384 -r 10 -S -a -n 512 -w
(pin_user_pages_fast 2M pages) put:~71 ms -> put:~22 ms
[altmap]
(pin_user_pages_fast 2M pages) get:~524ms put:~525 ms -> get: ~127ms put:~71ms
$ gup_test -f /dev/dax1.0 -m 129022 -r 10 -S -a -n 512 -w
(pin_user_pages_fast 2M pages) put:~513 ms -> put:~188 ms
[altmap with -m 127004]
(pin_user_pages_fast 2M pages) get:~4.1 secs put:~4.12 secs -> get:~1sec put:~563ms
Tested on x86 with 1Tb+ of pmem (alongside registering it with RDMA with
and without altmap), alongside gup_test selftests with dynamic dax
regions and static dax regions. Coupled with ndctl unit tests for
dynamic dax devices that exercise all of this. Note, for dynamic dax
regions I had to revert commit 8aa83e6395 ("x86/setup: Call
early_reserve_memory() earlier"), it is a known issue that this commit
broke efi_fake_mem=.
This patch (of 11):
Split the utility function prep_compound_page() into head and tail
counterparts, and use them accordingly.
This is in preparation for sharing the storage for compound page
metadata.
Link: https://lkml.kernel.org/r/20211202204422.26777-1-joao.m.martins@oracle.com
Link: https://lkml.kernel.org/r/20211202204422.26777-3-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Merge misc updates from Andrew Morton:
"257 patches.
Subsystems affected by this patch series: scripts, ocfs2, vfs, and
mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache,
gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc,
pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools,
memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm,
vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram,
cleanups, kfence, and damon)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits)
mm/damon: remove return value from before_terminate callback
mm/damon: fix a few spelling mistakes in comments and a pr_debug message
mm/damon: simplify stop mechanism
Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions
Docs/admin-guide/mm/damon/start: simplify the content
Docs/admin-guide/mm/damon/start: fix a wrong link
Docs/admin-guide/mm/damon/start: fix wrong example commands
mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on
mm/damon: remove unnecessary variable initialization
Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM
mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM)
selftests/damon: support watermarks
mm/damon/dbgfs: support watermarks
mm/damon/schemes: activate schemes based on a watermarks mechanism
tools/selftests/damon: update for regions prioritization of schemes
mm/damon/dbgfs: support prioritization weights
mm/damon/vaddr,paddr: support pageout prioritization
mm/damon/schemes: prioritize regions within the quotas
mm/damon/selftests: support schemes quotas
mm/damon/dbgfs: support quotas of schemes
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The page allocator stalls based on the number of pages that are waiting
for writeback to start but this should now be redundant.
shrink_inactive_list() will wake flusher threads if the LRU tail are
unqueued dirty pages so the flusher should be active. If it fails to
make progress due to pages under writeback not being completed quickly
then it should stall on VMSCAN_THROTTLE_WRITEBACK.
Link: https://lkml.kernel.org/r/20211022144651.19914-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: "Darrick J . Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|