| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is a per-memcg lruvec and a NUMA node lruvec. Which one is being
used is somewhat confusing right now, and it's easy to make mistakes -
especially when it comes to global reclaim.
How it works: when memory cgroups are enabled, we always use the
root_mem_cgroup's per-node lruvecs. When memory cgroups are not compiled
in or disabled at runtime, we use pgdat->lruvec.
Document that in a comment.
Due to the way the reclaim code is generalized, all lookups use the
mem_cgroup_lruvec() helper function, and nobody should have to find the
right lruvec manually right now. But to avoid future mistakes, rename the
pgdat->lruvec member to pgdat->__lruvec and delete the convenience wrapper
that suggests it's a commonly accessed member.
While in this area, swap the mem_cgroup_lruvec() argument order. The name
suggests a memcg operation, yet it takes a pgdat first and a memcg second.
I have to double take every time I call this. Fix that.
Link: http://lkml.kernel.org/r/20191022144803.302233-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Print nr_reserved_highatomic in show_free_areas, because when alloc_harder
is false, this value will be subtracted from the free_pages in
__zone_watermark_ok. Printing this value can help analyze memory
allocaction failure issues.
Link: http://lkml.kernel.org/r/19515f3de2fb6abe66b52e03e4b676a21e82beda.1573634806.git.lijiazi@xiaomi.com
Signed-off-by: lijiazi <lijiazi@xiaomi.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Both the percpu_pagelist_fraction sysctl handler and memory hotplug have
a common requirement of updating the pcpu page allocation batch and high
values. Split the relevant helper to share common code.
No functional change.
Link: http://lkml.kernel.org/r/20191021094808.28824-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
HugeTLB helper alloc_gigantic_page() implements fairly generic
allocation method where it scans over various zones looking for a large
contiguous pfn range before trying to allocate it with
alloc_contig_range().
Other than deriving the requested order from 'struct hstate', there is
nothing HugeTLB specific in there. This can be made available for
general use to allocate contiguous memory which could not have been
allocated through the buddy allocator.
alloc_gigantic_page() has been split carving out actual allocation
method which is then made available via new alloc_contig_pages() helper
wrapped under CONFIG_CONTIG_ALLOC. All references to 'gigantic' have
been replaced with more generic term 'contig'. Allocated pages here
should be freed with free_contig_range() or by calling __free_page() on
each allocated page.
Link: http://lkml.kernel.org/r/1571300646-32240-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We have two types of users of page isolation:
1. Memory offlining: Offline memory so it can be unplugged. Memory
won't be touched.
2. Memory allocation: Allocate memory (e.g., alloc_contig_range()) to
become the owner of the memory and make use of
it.
For example, in case we want to offline memory, we can ignore (skip
over) PageHWPoison() pages, as the memory won't get used. We can allow
to offline memory. In contrast, we don't want to allow to allocate such
memory.
Let's generalize the approach so we can special case other types of
pages we want to skip over in case we offline memory. While at it, also
pass the same flags to test_pages_isolated().
Link: http://lkml.kernel.org/r/20191021172353.3056-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "mm: Memory offlining + page isolation cleanups", v2.
This patch (of 2):
We call __offline_isolated_pages() from __offline_pages() after all
pages were isolated and are either free (PageBuddy()) or PageHWPoison.
Nothing can stop us from offlining memory at this point.
In __offline_isolated_pages() we first set all affected memory sections
offline (offline_mem_sections(pfn, end_pfn)), to mark the memmap as
invalid (pfn_to_online_page() will no longer succeed), and then walk
over all pages to pull the free pages from the free lists (to the
isolated free lists, to be precise).
Note that re-onlining a memory block will result in the whole memmap
getting reinitialized, overwriting any old state. We already poision
the memmap when offlining is complete to find any access to
stale/uninitialized memmaps.
So, setting the pages PageReserved() is not helpful. The memap is
marked offline and all pageblocks are isolated. As soon as offline, the
memmap is stale either way.
This looks like a leftover from ancient times where we initialized the
memmap when adding memory and not when onlining it (the pages were set
PageReserved so re-onling would work as expected).
Link: http://lkml.kernel.org/r/20191021172353.3056-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While investigating a bug related to higher atomic allocation failures,
we noticed the failure warnings positively drowning the console, and in
our case trigger lockup warnings because of a serial console too slow to
handle all that output.
But even if we had a faster console, it's unclear what additional
information the current level of repetition provides.
Allocation failures happen for three reasons: The machine is OOM, the VM
is failing to handle reasonable requests, or somebody is making
unreasonable requests (and didn't acknowledge their opportunism with
__GFP_NOWARN). Having the memory dump, a callstack, and the ratelimit
stats on skipped failure warnings should provide enough information to
let users/admins/developers know whether something is wrong and point
them in the right direction for debugging, bpftracing etc.
Limit allocation failure warnings to one spew every ten seconds.
Link: http://lkml.kernel.org/r/20191028194906.26899-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Deferred memory initialisation updates zone->managed_pages during the
initialisation phase but before that finishes, the per-cpu page
allocator (pcpu) calculates the number of pages allocated/freed in
batches as well as the maximum number of pages allowed on a per-cpu
list. As zone->managed_pages is not up to date yet, the pcpu
initialisation calculates inappropriately low batch and high values.
This increases zone lock contention quite severely in some cases with
the degree of severity depending on how many CPUs share a local zone and
the size of the zone. A private report indicated that kernel build
times were excessive with extremely high system CPU usage. A perf
profile indicated that a large chunk of time was lost on zone->lock
contention.
This patch recalculates the pcpu batch and high values after deferred
initialisation completes for every populated zone in the system. It was
tested on a 2-socket AMD EPYC 2 machine using a kernel compilation
workload -- allmodconfig and all available CPUs.
mmtests configuration: config-workload-kernbench-max Configuration was
modified to build on a fresh XFS partition.
kernbench
5.4.0-rc3 5.4.0-rc3
vanilla resetpcpu-v2
Amean user-256 13249.50 ( 0.00%) 16401.31 * -23.79%*
Amean syst-256 14760.30 ( 0.00%) 4448.39 * 69.86%*
Amean elsp-256 162.42 ( 0.00%) 119.13 * 26.65%*
Stddev user-256 42.97 ( 0.00%) 19.15 ( 55.43%)
Stddev syst-256 336.87 ( 0.00%) 6.71 ( 98.01%)
Stddev elsp-256 2.46 ( 0.00%) 0.39 ( 84.03%)
5.4.0-rc3 5.4.0-rc3
vanilla resetpcpu-v2
Duration User 39766.24 49221.79
Duration System 44298.10 13361.67
Duration Elapsed 519.11 388.87
The patch reduces system CPU usage by 69.86% and total build time by
26.65%. The variance of system CPU usage is also much reduced.
Before, this was the breakdown of batch and high values over all zones
was:
256 batch: 1
256 batch: 63
512 batch: 7
256 high: 0
256 high: 378
512 high: 42
512 pcpu pagesets had a batch limit of 7 and a high limit of 42. After
the patch:
256 batch: 1
768 batch: 63
256 high: 0
768 high: 378
[mgorman@techsingularity.net: fix merge/linkage snafu]
Link: http://lkml.kernel.org/r/20191023084705.GD3016@techsingularity.netLink: http://lkml.kernel.org/r/20191021094808.28824-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org> [4.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit b39d0ee2632d ("mm, page_alloc: avoid expensive reclaim when
compaction may not succeed") has chnaged the allocator to bail out from
the allocator early to prevent from a potentially excessive memory
reclaim. __GFP_RETRY_MAYFAIL is designed to retry the allocation,
reclaim and compaction loop as long as there is a reasonable chance to
make forward progress. Neither COMPACT_SKIPPED nor COMPACT_DEFERRED at
the INIT_COMPACT_PRIORITY compaction attempt gives this feedback.
The most obvious affected subsystem is hugetlbfs which allocates huge
pages based on an admin request (or via admin configured overcommit). I
have done a simple test which tries to allocate half of the memory for
hugetlb pages while the memory is full of a clean page cache. This is
not an unusual situation because we try to cache as much of the memory
as possible and sysctl/sysfs interface to allocate huge pages is there
for flexibility to allocate hugetlb pages at any time.
System has 1GB of RAM and we are requesting 515MB worth of hugetlb pages
after the memory is prefilled by a clean page cache:
root@test1:~# cat hugetlb_test.sh
set -x
echo 0 > /proc/sys/vm/nr_hugepages
echo 3 > /proc/sys/vm/drop_caches
echo 1 > /proc/sys/vm/compact_memory
dd if=/mnt/data/file-1G of=/dev/null bs=$((4<<10))
TS=$(date +%s)
echo 256 > /proc/sys/vm/nr_hugepages
cat /proc/sys/vm/nr_hugepages
The results for 2 consecutive runs on clean 5.3
root@test1:~# sh hugetlb_test.sh
+ echo 0
+ echo 3
+ echo 1
+ dd if=/mnt/data/file-1G of=/dev/null bs=4096
262144+0 records in
262144+0 records out
1073741824 bytes (1.1 GB) copied, 21.0694 s, 51.0 MB/s
+ date +%s
+ TS=1569905284
+ echo 256
+ cat /proc/sys/vm/nr_hugepages
256
root@test1:~# sh hugetlb_test.sh
+ echo 0
+ echo 3
+ echo 1
+ dd if=/mnt/data/file-1G of=/dev/null bs=4096
262144+0 records in
262144+0 records out
1073741824 bytes (1.1 GB) copied, 21.7548 s, 49.4 MB/s
+ date +%s
+ TS=1569905311
+ echo 256
+ cat /proc/sys/vm/nr_hugepages
256
Now with b39d0ee2632d applied
root@test1:~# sh hugetlb_test.sh
+ echo 0
+ echo 3
+ echo 1
+ dd if=/mnt/data/file-1G of=/dev/null bs=4096
262144+0 records in
262144+0 records out
1073741824 bytes (1.1 GB) copied, 20.1815 s, 53.2 MB/s
+ date +%s
+ TS=1569905516
+ echo 256
+ cat /proc/sys/vm/nr_hugepages
11
root@test1:~# sh hugetlb_test.sh
+ echo 0
+ echo 3
+ echo 1
+ dd if=/mnt/data/file-1G of=/dev/null bs=4096
262144+0 records in
262144+0 records out
1073741824 bytes (1.1 GB) copied, 21.9485 s, 48.9 MB/s
+ date +%s
+ TS=1569905541
+ echo 256
+ cat /proc/sys/vm/nr_hugepages
12
The success rate went down by factor of 20!
Although hugetlb allocation requests might fail and it is reasonable to
expect them to under extremely fragmented memory or when the memory is
under a heavy pressure but the above situation is not that case.
Fix the regression by reverting back to the previous behavior for
__GFP_RETRY_MAYFAIL requests and disable the beail out heuristic for
those requests.
Mike said:
: hugetlbfs allocations are commonly done via sysctl/sysfs shortly after
: boot where this may not be as much of an issue. However, I am aware of at
: least three use cases where allocations are made after the system has been
: up and running for quite some time:
:
: - DB reconfiguration. If sysctl/sysfs fails to get required number of
: huge pages, system is rebooted to perform allocation after boot.
:
: - VM provisioning. If unable get required number of huge pages, fall
: back to base pages.
:
: - An application that does not preallocate pool, but rather allocates
: pages at fault time for optimal NUMA locality.
:
: In all cases, I would expect b39d0ee2632d to cause regressions and
: noticable behavior changes.
:
: My quick/limited testing in
: https://lkml.kernel.org/r/3468b605-a3a9-6978-9699-57c52a90bd7e@oracle.com
: was insufficient. It was also mentioned that if something like
: b39d0ee2632d went forward, I would like exemptions for __GFP_RETRY_MAYFAIL
: requests as in this patch.
[mhocko@suse.com: reworded changelog]
Link: http://lkml.kernel.org/r/20191007075548.12456-1-mhocko@kernel.org
Fixes: b39d0ee2632d ("mm, page_alloc: avoid expensive reclaim when compaction may not succeed")
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On architectures like s390, arch_free_page() could mark the page unused
(set_page_unused()) and any access later would trigger a kernel panic.
Fix it by moving arch_free_page() after all possible accessing calls.
Hardware name: IBM 2964 N96 400 (z/VM 6.4.0)
Krnl PSW : 0404e00180000000 0000000026c2b96e (__free_pages_ok+0x34e/0x5d8)
R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
Krnl GPRS: 0000000088d43af7 0000000000484000 000000000000007c 000000000000000f
000003d080012100 000003d080013fc0 0000000000000000 0000000000100000
00000000275cca48 0000000000000100 0000000000000008 000003d080010000
00000000000001d0 000003d000000000 0000000026c2b78a 000000002717fdb0
Krnl Code: 0000000026c2b95c: ec1100b30659 risbgn %r1,%r1,0,179,6
0000000026c2b962: e32014000036 pfd 2,1024(%r1)
#0000000026c2b968: d7ff10001000 xc 0(256,%r1),0(%r1)
>0000000026c2b96e: 41101100 la %r1,256(%r1)
0000000026c2b972: a737fff8 brctg %r3,26c2b962
0000000026c2b976: d7ff10001000 xc 0(256,%r1),0(%r1)
0000000026c2b97c: e31003400004 lg %r1,832
0000000026c2b982: ebff1430016a asi 5168(%r1),-1
Call Trace:
__free_pages_ok+0x16a/0x5d8)
memblock_free_all+0x206/0x290
mem_init+0x58/0x120
start_kernel+0x2b0/0x570
startup_continue+0x6a/0xc0
INFO: lockdep is turned off.
Last Breaking-Event-Address:
__free_pages_ok+0x372/0x5d8
Kernel panic - not syncing: Fatal exception: panic_on_oops
00: HCPGIR450W CP entered; disabled wait PSW 00020001 80000000 00000000 26A2379C
In the past, only kernel_poison_pages() would trigger this but it needs
"page_poison=on" kernel cmdline, and I suspect nobody tested that on
s390. Recently, kernel_init_free_pages() (commit 6471384af2a6 ("mm:
security: introduce init_on_alloc=1 and init_on_free=1 boot options"))
was added and could trigger this as well.
[akpm@linux-foundation.org: add comment]
Link: http://lkml.kernel.org/r/1569613623-16820-1-git-send-email-cai@lca.pw
Fixes: 8823b1dbc05f ("mm/page_poison.c: enable PAGE_POISONING as a separate option")
Fixes: 6471384af2a6 ("mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: <stable@vger.kernel.org> [5.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Merge hugepage allocation updates from David Rientjes:
"We (mostly Linus, Andrea, and myself) have been discussing offlist how
to implement a sane default allocation strategy for hugepages on NUMA
platforms.
With these reverts in place, the page allocator will happily allocate
a remote hugepage immediately rather than try to make a local hugepage
available. This incurs a substantial performance degradation when
memory compaction would have otherwise made a local hugepage
available.
This series reverts those reverts and attempts to propose a more sane
default allocation strategy specifically for hugepages. Andrea
acknowledges this is likely to fix the swap storms that he originally
reported that resulted in the patches that removed __GFP_THISNODE from
hugepage allocations.
The immediate goal is to return 5.3 to the behavior the kernel has
implemented over the past several years so that remote hugepages are
not immediately allocated when local hugepages could have been made
available because the increased access latency is untenable.
The next goal is to introduce a sane default allocation strategy for
hugepages allocations in general regardless of the configuration of
the system so that we prevent thrashing of local memory when
compaction is unlikely to succeed and can prefer remote hugepages over
remote native pages when the local node is low on memory."
Note on timing: this reverts the hugepage VM behavior changes that got
introduced fairly late in the 5.3 cycle, and that fixed a huge
performance regression for certain loads that had been around since
4.18.
Andrea had this note:
"The regression of 4.18 was that it was taking hours to start a VM
where 3.10 was only taking a few seconds, I reported all the details
on lkml when it was finally tracked down in August 2018.
https://lore.kernel.org/linux-mm/20180820032640.9896-2-aarcange@redhat.com/
__GFP_THISNODE in MADV_HUGEPAGE made the above enterprise vfio
workload degrade like in the "current upstream" above. And it still
would have been that bad as above until 5.3-rc5"
where the bad behavior ends up happening as you fill up a local node,
and without that change, you'd get into the nasty swap storm behavior
due to compaction working overtime to make room for more memory on the
nodes.
As a result 5.3 got the two performance fix reverts in rc5.
However, David Rientjes then noted that those performance fixes in turn
regressed performance for other loads - although not quite to the same
degree. He suggested reverting the reverts and instead replacing them
with two small changes to how hugepage allocations are done (patch
descriptions rephrased by me):
- "avoid expensive reclaim when compaction may not succeed": just admit
that the allocation failed when you're trying to allocate a huge-page
and compaction wasn't successful.
- "allow hugepage fallback to remote nodes when madvised": when that
node-local huge-page allocation failed, retry without forcing the
local node.
but by then I judged it too late to replace the fixes for a 5.3 release.
So 5.3 was released with behavior that harked back to the pre-4.18 logic.
But now we're in the merge window for 5.4, and we can see if this
alternate model fixes not just the horrendous swap storm behavior, but
also restores the performance regression that the late reverts caused.
Fingers crossed.
* emailed patches from David Rientjes <rientjes@google.com>:
mm, page_alloc: allow hugepage fallback to remote nodes when madvised
mm, page_alloc: avoid expensive reclaim when compaction may not succeed
Revert "Revert "Revert "mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask""
Revert "Revert "mm, thp: restore node-local hugepage allocations""
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Memory compaction has a couple significant drawbacks as the allocation
order increases, specifically:
- isolate_freepages() is responsible for finding free pages to use as
migration targets and is implemented as a linear scan of memory
starting at the end of a zone,
- failing order-0 watermark checks in memory compaction does not account
for how far below the watermarks the zone actually is: to enable
migration, there must be *some* free memory available. Per the above,
watermarks are not always suffficient if isolate_freepages() cannot
find the free memory but it could require hundreds of MBs of reclaim to
even reach this threshold (read: potentially very expensive reclaim with
no indication compaction can be successful), and
- if compaction at this order has failed recently so that it does not even
run as a result of deferred compaction, looping through reclaim can often
be pointless.
For hugepage allocations, these are quite substantial drawbacks because
these are very high order allocations (order-9 on x86) and falling back to
doing reclaim can potentially be *very* expensive without any indication
that compaction would even be successful.
Reclaim itself is unlikely to free entire pageblocks and certainly no
reliance should be put on it to do so in isolation (recall lumpy reclaim).
This means we should avoid reclaim and simply fail hugepage allocation if
compaction is deferred.
It is also not helpful to thrash a zone by doing excessive reclaim if
compaction may not be able to access that memory. If order-0 watermarks
fail and the allocation order is sufficiently large, it is likely better
to fail the allocation rather than thrashing the zone.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
A later patch makes THP deferred split shrinker memcg aware, but it needs
page->mem_cgroup information in THP destructor, which is called after
mem_cgroup_uncharge() now.
So move mem_cgroup_uncharge() from __page_cache_release() to compound page
destructor, which is called by both THP and other compound pages except
HugeTLB. And call it in __put_single_page() for single order page.
Link: http://lkml.kernel.org/r/1565144277-36240-3-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch series "Make deferred split shrinker memcg aware", v6.
Currently THP deferred split shrinker is not memcg aware, this may cause
premature OOM with some configuration. For example the below test would
run into premature OOM easily:
$ cgcreate -g memory:thp
$ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes
$ cgexec -g memory:thp transhuge-stress 4000
transhuge-stress comes from kernel selftest.
It is easy to hit OOM, but there are still a lot THP on the deferred split
queue, memcg direct reclaim can't touch them since the deferred split
shrinker is not memcg aware.
Convert deferred split shrinker memcg aware by introducing per memcg
deferred split queue. The THP should be on either per node or per memcg
deferred split queue if it belongs to a memcg. When the page is
immigrated to the other memcg, it will be immigrated to the target memcg's
deferred split queue too.
Reuse the second tail page's deferred_list for per memcg list since the
same THP can't be on multiple deferred split queues.
Make deferred split shrinker not depend on memcg kmem since it is not
slab. It doesn't make sense to not shrink THP even though memcg kmem is
disabled.
With the above change the test demonstrated above doesn't trigger OOM even
though with cgroup.memory=nokmem.
This patch (of 4):
Put split_queue, split_queue_lock and split_queue_len into a struct in
order to reduce code duplication when we convert deferred_split to memcg
aware in the later patches.
Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Mike Kravetz reports that "hugetlb allocations could stall for minutes or
hours when should_compact_retry() would return true more often then it
should. Specifically, this was in the case where compact_result was
COMPACT_DEFERRED and COMPACT_PARTIAL_SKIPPED and no progress was being
made."
The problem is that the compaction_withdrawn() test in
should_compact_retry() includes compaction outcomes that are only possible
on low compaction priority, and results in a retry without increasing the
priority. This may result in furter reclaim, and more incomplete
compaction attempts.
With this patch, compaction priority is raised when possible, or
should_compact_retry() returns false.
The COMPACT_SKIPPED result doesn't really fit together with the other
outcomes in compaction_withdrawn(), as that's a result caused by
insufficient order-0 pages, not due to low compaction priority. With this
patch, it is moved to a new compaction_needs_reclaim() function, and for
that outcome we keep the current logic of retrying if it looks like
reclaim will be able to help.
Link: http://lkml.kernel.org/r/20190806014744.15446-4-mike.kravetz@oracle.com
Reported-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Replace 1 << compound_order(page) with compound_nr(page). Minor
improvements in readability.
Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull hmm updates from Jason Gunthorpe:
"This is more cleanup and consolidation of the hmm APIs and the very
strongly related mmu_notifier interfaces. Many places across the tree
using these interfaces are touched in the process. Beyond that a
cleanup to the page walker API and a few memremap related changes
round out the series:
- General improvement of hmm_range_fault() and related APIs, more
documentation, bug fixes from testing, API simplification &
consolidation, and unused API removal
- Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE,
and make them internal kconfig selects
- Hoist a lot of code related to mmu notifier attachment out of
drivers by using a refcount get/put attachment idiom and remove the
convoluted mmu_notifier_unregister_no_release() and related APIs.
- General API improvement for the migrate_vma API and revision of its
only user in nouveau
- Annotate mmu_notifiers with lockdep and sleeping region debugging
Two series unrelated to HMM or mmu_notifiers came along due to
dependencies:
- Allow pagemap's memremap_pages family of APIs to work without
providing a struct device
- Make walk_page_range() and related use a constant structure for
function pointers"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (75 commits)
libnvdimm: Enable unit test infrastructure compile checks
mm, notifier: Catch sleeping/blocking for !blockable
kernel.h: Add non_block_start/end()
drm/radeon: guard against calling an unpaired radeon_mn_unregister()
csky: add missing brackets in a macro for tlb.h
pagewalk: use lockdep_assert_held for locking validation
pagewalk: separate function pointers from iterator data
mm: split out a new pagewalk.h header from mm.h
mm/mmu_notifiers: annotate with might_sleep()
mm/mmu_notifiers: prime lockdep
mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end
mm/mmu_notifiers: remove the __mmu_notifier_invalidate_range_start/end exports
mm/hmm: hmm_range_fault() infinite loop
mm/hmm: hmm_range_fault() NULL pointer bug
mm/hmm: fix hmm_range_fault()'s handling of swapped out pages
mm/mmu_notifiers: remove unregister_no_release
RDMA/odp: remove ib_ucontext from ib_umem
RDMA/odp: use mmu_notifier_get/put for 'struct ib_ucontext_per_mm'
RDMA/mlx5: Use odp instead of mr->umem in pagefault_mr
RDMA/mlx5: Use ib_umem_start instead of umem.address
...
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The dev field in struct dev_pagemap is only used to print dev_name in two
places, which are at best nice to have. Just remove the field and thus
the name in those two messages.
Link: https://lore.kernel.org/r/20190818090557.17853-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Bharata B Rao <bharata@linux.ibm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
|
|\ \ \
| |_|/
|/| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- MAINTAINERS: Add Mark Rutland as perf submaintainer, Juri Lelli and
Vincent Guittot as scheduler submaintainers. Add Dietmar Eggemann,
Steven Rostedt, Ben Segall and Mel Gorman as scheduler reviewers.
As perf and the scheduler is getting bigger and more complex,
document the status quo of current responsibilities and interests,
and spread the review pain^H^H^H^H fun via an increase in the Cc:
linecount generated by scripts/get_maintainer.pl. :-)
- Add another series of patches that brings the -rt (PREEMPT_RT) tree
closer to mainline: split the monolithic CONFIG_PREEMPT dependencies
into a new CONFIG_PREEMPTION category that will allow the eventual
introduction of CONFIG_PREEMPT_RT. Still a few more hundred patches
to go though.
- Extend the CPU cgroup controller with uclamp.min and uclamp.max to
allow the finer shaping of CPU bandwidth usage.
- Micro-optimize energy-aware wake-ups from O(CPUS^2) to O(CPUS).
- Improve the behavior of high CPU count, high thread count
applications running under cpu.cfs_quota_us constraints.
- Improve balancing with SCHED_IDLE (SCHED_BATCH) tasks present.
- Improve CPU isolation housekeeping CPU allocation NUMA locality.
- Fix deadline scheduler bandwidth calculations and logic when cpusets
rebuilds the topology, or when it gets deadline-throttled while it's
being offlined.
- Convert the cpuset_mutex to percpu_rwsem, to allow it to be used from
setscheduler() system calls without creating global serialization.
Add new synchronization between cpuset topology-changing events and
the deadline acceptance tests in setscheduler(), which were broken
before.
- Rework the active_mm state machine to be less confusing and more
optimal.
- Rework (simplify) the pick_next_task() slowpath.
- Improve load-balancing on AMD EPYC systems.
- ... and misc cleanups, smaller fixes and improvements - please see
the Git log for more details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
sched/psi: Correct overly pessimistic size calculation
sched/fair: Speed-up energy-aware wake-ups
sched/uclamp: Always use 'enum uclamp_id' for clamp_id values
sched/uclamp: Update CPU's refcount on TG's clamp changes
sched/uclamp: Use TG's clamps to restrict TASK's clamps
sched/uclamp: Propagate system defaults to the root group
sched/uclamp: Propagate parent clamps
sched/uclamp: Extend CPU's cgroup controller
sched/topology: Improve load balancing on AMD EPYC systems
arch, ia64: Make NUMA select SMP
sched, perf: MAINTAINERS update, add submaintainers and reviewers
sched/fair: Use rq_lock/unlock in online_fair_sched_group
cpufreq: schedutil: fix equation in comment
sched: Rework pick_next_task() slow-path
sched: Allow put_prev_task() to drop rq->lock
sched/fair: Expose newidle_balance()
sched: Add task_struct pointer to sched_class::set_curr_task
sched: Rework CPU hotplug task selection
sched/{rt,deadline}: Fix set_next_task vs pick_next_task
sched: Fix kerneldoc comment for ia64_set_curr_task
...
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
SD_BALANCE_{FORK,EXEC} and SD_WAKE_AFFINE are stripped in sd_init()
for any sched domains with a NUMA distance greater than 2 hops
(RECLAIM_DISTANCE). The idea being that it's expensive to balance
across domains that far apart.
However, as is rather unfortunately explained in:
commit 32e45ff43eaf ("mm: increase RECLAIM_DISTANCE to 30")
the value for RECLAIM_DISTANCE is based on node distance tables from
2011-era hardware.
Current AMD EPYC machines have the following NUMA node distances:
node distances:
node 0 1 2 3 4 5 6 7
0: 10 16 16 16 32 32 32 32
1: 16 10 16 16 32 32 32 32
2: 16 16 10 16 32 32 32 32
3: 16 16 16 10 32 32 32 32
4: 32 32 32 32 10 16 16 16
5: 32 32 32 32 16 10 16 16
6: 32 32 32 32 16 16 10 16
7: 32 32 32 32 16 16 16 10
where 2 hops is 32.
The result is that the scheduler fails to load balance properly across
NUMA nodes on different sockets -- 2 hops apart.
For example, pinning 16 busy threads to NUMA nodes 0 (CPUs 0-7) and 4
(CPUs 32-39) like so,
$ numactl -C 0-7,32-39 ./spinner 16
causes all threads to fork and remain on node 0 until the active
balancer kicks in after a few seconds and forcibly moves some threads
to node 4.
Override node_reclaim_distance for AMD Zen.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Suravee.Suthikulpanit@amd.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas.Lendacky@amd.com
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20190808195301.13222-3-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After commit 907ec5fca3dc ("mm: zero remaining unavailable struct
pages"), struct page of reserved memory is zeroed. This causes
page->flags to be 0 and fixes issues related to reading
/proc/kpageflags, for example, of reserved memory.
The VM_BUG_ON() in move_freepages_block(), however, assumes that
page_zone() is meaningful even for reserved memory. That assumption is
no longer true after the aforementioned commit.
There's no reason why move_freepages_block() should be testing the
legitimacy of page_zone() for reserved memory; its scope is limited only
to pages on the zone's freelist.
Note that pfn_valid() can be true for reserved memory: there is a
backing struct page. The check for page_to_nid(page) is also buggy but
reserved memory normally only appears on node 0 so the zeroing doesn't
affect this.
Move the debug checks to after verifying PageBuddy is true. This
isolates the scope of the checks to only be for buddy pages which are on
the zone's freelist which move_freepages_block() is operating on. In
this case, an incorrect node or zone is a bug worthy of being warned
about (and the examination of struct page is acceptable bcause this
memory is not reserved).
Why does move_freepages_block() gets called on reserved memory? It's
simply math after finding a valid free page from the per-zone free area
to use as fallback. We find the beginning and end of the pageblock of
the valid page and that can bring us into memory that was reserved per
the e820. pfn_valid() is still true (it's backed by a struct page), but
since it's zero'd we shouldn't make any inferences here about comparing
its node or zone. The current node check just happens to succeed most
of the time by luck because reserved memory typically appears on node 0.
The fix here is to validate that we actually have buddy pages before
testing if there's any type of zone or node strangeness going on.
We noticed it almost immediately after bringing 907ec5fca3dc in on
CONFIG_DEBUG_VM builds. It depends on finding specific free pages in
the per-zone free area where the math in move_freepages() will bring the
start or end pfn into reserved memory and wanting to claim that entire
pageblock as a new migratetype. So the path will be rare, require
CONFIG_DEBUG_VM, and require fallback to a different migratetype.
Some struct pages were already zeroed from reserve pages before
907ec5fca3c so it theoretically could trigger before this commit. I
think it's rare enough under a config option that most people don't run
that others may not have noticed. I wouldn't argue against a stable tag
and the backport should be easy enough, but probably wouldn't single out
a commit that this is fixing.
Mel said:
: The overhead of the debugging check is higher with this patch although
: it'll only affect debug builds and the path is not particularly hot.
: If this was a concern, I think it would be reasonable to simply remove
: the debugging check as the zone boundaries are checked in
: move_freepages_block and we never expect a zone/node to be smaller than
: a pageblock and stuck in the middle of another zone.
Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1908122036560.10779@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The libnvdimm sub-system has suffered a series of hacks and broken
workarounds for the memory-hotplug implementation's awkward
section-aligned (128MB) granularity.
For example the following backtrace is emitted when attempting
arch_add_memory() with physical address ranges that intersect 'System
RAM' (RAM) with 'Persistent Memory' (PMEM) within a given section:
# cat /proc/iomem | grep -A1 -B1 Persistent\ Memory
100000000-1ffffffff : System RAM
200000000-303ffffff : Persistent Memory (legacy)
304000000-43fffffff : System RAM
440000000-23ffffffff : Persistent Memory
2400000000-43bfffffff : Persistent Memory
2400000000-43bfffffff : namespace2.0
WARNING: CPU: 38 PID: 928 at arch/x86/mm/init_64.c:850 add_pages+0x5c/0x60
[..]
RIP: 0010:add_pages+0x5c/0x60
[..]
Call Trace:
devm_memremap_pages+0x460/0x6e0
pmem_attach_disk+0x29e/0x680 [nd_pmem]
? nd_dax_probe+0xfc/0x120 [libnvdimm]
nvdimm_bus_probe+0x66/0x160 [libnvdimm]
It was discovered that the problem goes beyond RAM vs PMEM collisions as
some platform produce PMEM vs PMEM collisions within a given section.
The libnvdimm workaround for that case revealed that the libnvdimm
section-alignment-padding implementation has been broken for a long
while.
A fix for that long-standing breakage introduces as many problems as it
solves as it would require a backward-incompatible change to the
namespace metadata interpretation. Instead of that dubious route [1],
address the root problem in the memory-hotplug implementation.
Note that EEXIST is no longer treated as success as that is how
sparse_add_section() reports subsection collisions, it was also obviated
by recent changes to perform the request_region() for 'System RAM'
before arch_add_memory() in the add_memory() sequence.
[1] https://lore.kernel.org/r/155000671719.348031.2347363160141119237.stgit@dwillia2-desk3.amr.corp.intel.com
[osalvador@suse.de: fix deactivate_section for early sections]
Link: http://lkml.kernel.org/r/20190715081549.32577-2-osalvador@suse.de
Link: http://lkml.kernel.org/r/156092354368.979959.6232443923440952359.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> [ppc64]
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Given there are no more usages of is_dev_zone() outside of 'ifdef
CONFIG_ZONE_DEVICE' protection, kill off the compilation helper.
Link: http://lkml.kernel.org/r/156092353211.979959.1489004866360828964.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> [ppc64]
Cc: Michal Hocko <mhocko@suse.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Prepare for hot{plug,remove} of sub-ranges of a section by tracking a
sub-section active bitmask, each bit representing a PMD_SIZE span of the
architecture's memory hotplug section size.
The implications of a partially populated section is that pfn_valid()
needs to go beyond a valid_section() check and either determine that the
section is an "early section", or read the sub-section active ranges
from the bitmask. The expectation is that the bitmask (subsection_map)
fits in the same cacheline as the valid_section() / early_section()
data, so the incremental performance overhead to pfn_valid() should be
negligible.
The rationale for using early_section() to short-ciruit the
subsection_map check is that there are legacy code paths that use
pfn_valid() at section granularity before validating the pfn against
pgdat data. So, the early_section() check allows those traditional
assumptions to persist while also permitting subsection_map to tell the
truth for purposes of populating the unused portions of early sections
with PMEM and other ZONE_DEVICE mappings.
Link: http://lkml.kernel.org/r/156092350874.979959.18185938451405518285.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Qian Cai <cai@lca.pw>
Tested-by: Jane Chu <jane.chu@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> [ppc64]
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "mm: Sub-section memory hotplug support", v10.
The memory hotplug section is an arbitrary / convenient unit for memory
hotplug. 'Section-size' units have bled into the user interface
('memblock' sysfs) and can not be changed without breaking existing
userspace. The section-size constraint, while mostly benign for typical
memory hotplug, has and continues to wreak havoc with 'device-memory'
use cases, persistent memory (pmem) in particular. Recall that pmem
uses devm_memremap_pages(), and subsequently arch_add_memory(), to
allocate a 'struct page' memmap for pmem. However, it does not use the
'bottom half' of memory hotplug, i.e. never marks pmem pages online and
never exposes the userspace memblock interface for pmem. This leaves an
opening to redress the section-size constraint.
To date, the libnvdimm subsystem has attempted to inject padding to
satisfy the internal constraints of arch_add_memory(). Beyond
complicating the code, leading to bugs [2], wasting memory, and limiting
configuration flexibility, the padding hack is broken when the platform
changes this physical memory alignment of pmem from one boot to the
next. Device failure (intermittent or permanent) and physical
reconfiguration are events that can cause the platform firmware to
change the physical placement of pmem on a subsequent boot, and device
failure is an everyday event in a data-center.
It turns out that sections are only a hard requirement of the
user-facing interface for memory hotplug and with a bit more
infrastructure sub-section arch_add_memory() support can be added for
kernel internal usages like devm_memremap_pages(). Here is an analysis
of the current design assumptions in the current code and how they are
addressed in the new implementation:
Current design assumptions:
- Sections that describe boot memory (early sections) are never
unplugged / removed.
- pfn_valid(), in the CONFIG_SPARSEMEM_VMEMMAP=y, case devolves to a
valid_section() check
- __add_pages() and helper routines assume all operations occur in
PAGES_PER_SECTION units.
- The memblock sysfs interface only comprehends full sections
New design assumptions:
- Sections are instrumented with a sub-section bitmask to track (on
x86) individual 2MB sub-divisions of a 128MB section.
- Partially populated early sections can be extended with additional
sub-sections, and those sub-sections can be removed with
arch_remove_memory(). With this in place we no longer lose usable
memory capacity to padding.
- pfn_valid() is updated to look deeper than valid_section() to also
check the active-sub-section mask. This indication is in the same
cacheline as the valid_section() so the performance impact is
expected to be negligible. So far the lkp robot has not reported any
regressions.
- Outside of the core vmemmap population routines which are replaced,
other helper routines like shrink_{zone,pgdat}_span() are updated to
handle the smaller granularity. Core memory hotplug routines that
deal with online memory are not touched.
- The existing memblock sysfs user api guarantees / assumptions are not
touched since this capability is limited to !online
!memblock-sysfs-accessible sections.
Meanwhile the issue reports continue to roll in from users that do not
understand when and how the 128MB constraint will bite them. The current
implementation relied on being able to support at least one misaligned
namespace, but that immediately falls over on any moderately complex
namespace creation attempt. Beyond the initial problem of 'System RAM'
colliding with pmem, and the unsolvable problem of physical alignment
changes, Linux is now being exposed to platforms that collide pmem ranges
with other pmem ranges by default [3]. In short, devm_memremap_pages()
has pushed the venerable section-size constraint past the breaking point,
and the simplicity of section-aligned arch_add_memory() is no longer
tenable.
These patches are exposed to the kbuild robot on a subsection-v10 branch
[4], and a preview of the unit test for this functionality is available
on the 'subsection-pending' branch of ndctl [5].
[2]: https://lore.kernel.org/r/155000671719.348031.2347363160141119237.stgit@dwillia2-desk3.amr.corp.intel.com
[3]: https://github.com/pmem/ndctl/issues/76
[4]: https://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm.git/log/?h=subsection-v10
[5]: https://github.com/pmem/ndctl/commit/7c59b4867e1c
This patch (of 13):
Towards enabling memory hotplug to track partial population of a section,
introduce 'struct mem_section_usage'.
A pointer to a 'struct mem_section_usage' instance replaces the existing
pointer to a 'pageblock_flags' bitmap. Effectively it adds one more
'unsigned long' beyond the 'pageblock_flags' (usemap) allocation to house
a new 'subsection_map' bitmap. The new bitmap enables the memory
hot{plug,remove} implementation to act on incremental sub-divisions of a
section.
SUBSECTION_SHIFT is defined as global constant instead of per-architecture
value like SECTION_SIZE_BITS in order to allow cross-arch compatibility of
subsection users. Specifically a common subsection size allows for the
possibility that persistent memory namespace configurations be made
compatible across architectures.
The primary motivation for this functionality is to support platforms that
mix "System RAM" and "Persistent Memory" within a single section, or
multiple PMEM ranges with different mapping lifetimes within a single
section. The section restriction for hotplug has caused an ongoing saga
of hacks and bugs for devm_memremap_pages() users.
Beyond the fixups to teach existing paths how to retrieve the 'usemap'
from a section, and updates to usemap allocation path, there are no
expected behavior changes.
Link: http://lkml.kernel.org/r/156092349845.979959.73333291612799019.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> [ppc64]
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Qian Cai <cai@lca.pw>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "mm/vmscan: calculate reclaimed slab in all reclaim paths".
This patchset is to fix the issues in doing shrink slab.
There're six different reclaim paths by now,
- kswapd reclaim path
- node reclaim path
- hibernate preallocate memory reclaim path
- direct reclaim path
- memcg reclaim path
- memcg softlimit reclaim path
The slab caches reclaimed in these paths are only calculated in the
above three paths. The issues are detailed explained in patch #2. We
should calculate the reclaimed slab caches in every reclaim path. In
order to do it, the struct reclaim_state is placed into the struct
shrink_control.
In node reclaim path, there'is another issue about shrinking slab, which
is adressed in "mm/vmscan: shrink slab in node reclaim"
(https://lore.kernel.org/linux-mm/1559874946-22960-1-git-send-email-laoar.shao@gmail.com/).
This patch (of 2):
The struct reclaim_state is used to record how many slab caches are
reclaimed in one reclaim path. The struct shrink_control is used to
control one reclaim path. So we'd better put reclaim_state into
shrink_control.
[laoar.shao@gmail.com: remove reclaim_state assignment from __perform_reclaim()]
Link: http://lkml.kernel.org/r/1561381582-13697-1-git-send-email-laoar.shao@gmail.com
Link: http://lkml.kernel.org/r/1561112086-6169-2-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull HMM updates from Jason Gunthorpe:
"Improvements and bug fixes for the hmm interface in the kernel:
- Improve clarity, locking and APIs related to the 'hmm mirror'
feature merged last cycle. In linux-next we now see AMDGPU and
nouveau to be using this API.
- Remove old or transitional hmm APIs. These are hold overs from the
past with no users, or APIs that existed only to manage cross tree
conflicts. There are still a few more of these cleanups that didn't
make the merge window cut off.
- Improve some core mm APIs:
- export alloc_pages_vma() for driver use
- refactor into devm_request_free_mem_region() to manage
DEVICE_PRIVATE resource reservations
- refactor duplicative driver code into the core dev_pagemap
struct
- Remove hmm wrappers of improved core mm APIs, instead have drivers
use the simplified API directly
- Remove DEVICE_PUBLIC
- Simplify the kconfig flow for the hmm users and core code"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (42 commits)
mm: don't select MIGRATE_VMA_HELPER from HMM_MIRROR
mm: remove the HMM config option
mm: sort out the DEVICE_PRIVATE Kconfig mess
mm: simplify ZONE_DEVICE page private data
mm: remove hmm_devmem_add
mm: remove hmm_vma_alloc_locked_page
nouveau: use devm_memremap_pages directly
nouveau: use alloc_page_vma directly
PCI/P2PDMA: use the dev_pagemap internal refcount
device-dax: use the dev_pagemap internal refcount
memremap: provide an optional internal refcount in struct dev_pagemap
memremap: replace the altmap_valid field with a PGMAP_ALTMAP_VALID flag
memremap: remove the data field in struct dev_pagemap
memremap: add a migrate_to_ram method to struct dev_pagemap_ops
memremap: lift the devmap_enable manipulation into devm_memremap_pages
memremap: pass a struct dev_pagemap to ->kill and ->cleanup
memremap: move dev_pagemap callbacks into a separate structure
memremap: validate the pagemap type passed to devm_memremap_pages
mm: factor out a devm_request_free_mem_region helper
mm: export alloc_pages_vma
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Remove the clumsy hmm_devmem_page_{get,set}_drvdata helpers, and
instead just access the page directly. Also make the page data
a void pointer, and thus much easier to use.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Add a flags field to struct dev_pagemap to replace the altmap_valid
boolean to be a little more extensible. Also add a pgmap_altmap() helper
to find the optional altmap and clean up the code using the altmap using
it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch series "add init_on_alloc/init_on_free boot options", v10.
Provide init_on_alloc and init_on_free boot options.
These are aimed at preventing possible information leaks and making the
control-flow bugs that depend on uninitialized values more deterministic.
Enabling either of the options guarantees that the memory returned by the
page allocator and SL[AU]B is initialized with zeroes. SLOB allocator
isn't supported at the moment, as its emulation of kmem caches complicates
handling of SLAB_TYPESAFE_BY_RCU caches correctly.
Enabling init_on_free also guarantees that pages and heap objects are
initialized right after they're freed, so it won't be possible to access
stale data by using a dangling pointer.
As suggested by Michal Hocko, right now we don't let the heap users to
disable initialization for certain allocations. There's not enough
evidence that doing so can speed up real-life cases, and introducing ways
to opt-out may result in things going out of control.
This patch (of 2):
The new options are needed to prevent possible information leaks and make
control-flow bugs that depend on uninitialized values more deterministic.
This is expected to be on-by-default on Android and Chrome OS. And it
gives the opportunity for anyone else to use it under distros too via the
boot args. (The init_on_free feature is regularly requested by folks
where memory forensics is included in their threat models.)
init_on_alloc=1 makes the kernel initialize newly allocated pages and heap
objects with zeroes. Initialization is done at allocation time at the
places where checks for __GFP_ZERO are performed.
init_on_free=1 makes the kernel initialize freed pages and heap objects
with zeroes upon their deletion. This helps to ensure sensitive data
doesn't leak via use-after-free accesses.
Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator
returns zeroed memory. The two exceptions are slab caches with
constructors and SLAB_TYPESAFE_BY_RCU flag. Those are never
zero-initialized to preserve their semantics.
Both init_on_alloc and init_on_free default to zero, but those defaults
can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and
CONFIG_INIT_ON_FREE_DEFAULT_ON.
If either SLUB poisoning or page poisoning is enabled, those options take
precedence over init_on_alloc and init_on_free: initialization is only
applied to unpoisoned allocations.
Slowdown for the new features compared to init_on_free=0, init_on_alloc=0:
hackbench, init_on_free=1: +7.62% sys time (st.err 0.74%)
hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%)
Linux build with -j12, init_on_free=1: +8.38% wall time (st.err 0.39%)
Linux build with -j12, init_on_free=1: +24.42% sys time (st.err 0.52%)
Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%)
Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%)
The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline
is within the standard error.
The new features are also going to pave the way for hardware memory
tagging (e.g. arm64's MTE), which will require both on_alloc and on_free
hooks to set the tags for heap objects. With MTE, tagging will have the
same cost as memory initialization.
Although init_on_free is rather costly, there are paranoid use-cases where
in-memory data lifetime is desired to be minimized. There are various
arguments for/against the realism of the associated threat models, but
given that we'll need the infrastructure for MTE anyway, and there are
people who want wipe-on-free behavior no matter what the performance cost,
it seems reasonable to include it in this series.
[glider@google.com: v8]
Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com
[glider@google.com: v9]
Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com
[glider@google.com: v10]
Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com
Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.cz> [page and dmapool parts
Acked-by: James Morris <jamorris@linux.microsoft.com>]
Cc: Christoph Lameter <cl@linux.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Sandeep Patil <sspatil@android.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
CONFIG_NUMA on 64-bit CPUs currently enables hashdist unconditionally even
when booting on single node machines. This causes the large system hashes
to be allocated with vmalloc, and mapped with small pages.
This change clears hashdist if only one node has come up with memory.
This results in the important large inode and dentry hashes using memblock
allocations. All others are within 4MB size up to about 128GB of RAM,
which allows them to be allocated from the linear map on most non-NUMA
images.
Other big hashes like futex and TCP should eventually be moved over to the
same style of allocation as those vfs caches that use HASH_EARLY if
!hashdist, so they don't exceed MAX_ORDER on very large non-NUMA images.
This brings dTLB misses for linux kernel tree `git diff` from ~45,000 to
~8,000 on a Kaby Lake KVM guest with 8MB dentry hash and mitigations=off
(performance is in the noise, under 1% difference, page tables are likely
to be well cached for this workload).
Link: http://lkml.kernel.org/r/20190605144814.29319-2-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The kernel currently clamps large system hashes to MAX_ORDER when hashdist
is not set, which is rather arbitrary.
vmalloc space is limited on 32-bit machines, but this shouldn't result in
much more used because of small physical memory limiting system hash
sizes.
Include "vmalloc" or "linear" in the kernel log message.
Link: http://lkml.kernel.org/r/20190605144814.29319-1-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When debug_pagealloc is enabled, we currently allocate the page_ext
array to mark guard pages with the PAGE_EXT_DEBUG_GUARD flag. Now that
we have the page_type field in struct page, we can use that instead, as
guard pages are neither PageSlab nor mapped to userspace. This reduces
memory overhead when debug_pagealloc is enabled and there are no other
features requiring the page_ext array.
Link: http://lkml.kernel.org/r/20190603143451.27353-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The page allocator checks struct pages for expected state (mapcount,
flags etc) as pages are being allocated (check_new_page()) and freed
(free_pages_check()) to provide some defense against errors in page
allocator users.
Prior commits 479f854a207c ("mm, page_alloc: defer debugging checks of
pages allocated from the PCP") and 4db7548ccbd9 ("mm, page_alloc: defer
debugging checks of freed pages until a PCP drain") this has happened
for order-0 pages as they were allocated from or freed to the per-cpu
caches (pcplists). Since those are fast paths, the checks are now
performed only when pages are moved between pcplists and global free
lists. This however lowers the chances of catching errors soon enough.
In order to increase the chances of the checks to catch errors, the
kernel has to be rebuilt with CONFIG_DEBUG_VM, which also enables
multiple other internal debug checks (VM_BUG_ON() etc), which is
suboptimal when the goal is to catch errors in mm users, not in mm code
itself.
To catch some wrong users of the page allocator we have
CONFIG_DEBUG_PAGEALLOC, which is designed to have virtually no overhead
unless enabled at boot time. Memory corruptions when writing to freed
pages have often the same underlying errors (use-after-free, double free)
as corrupting the corresponding struct pages, so this existing debugging
functionality is a good fit to extend by also perform struct page checks
at least as often as if CONFIG_DEBUG_VM was enabled.
Specifically, after this patch, when debug_pagealloc is enabled on boot,
and CONFIG_DEBUG_VM disabled, pages are checked when allocated from or
freed to the pcplists *in addition* to being moved between pcplists and
free lists. When both debug_pagealloc and CONFIG_DEBUG_VM are enabled,
pages are checked when being moved between pcplists and free lists *in
addition* to when allocated from or freed to the pcplists.
When debug_pagealloc is not enabled on boot, the overhead in fast paths
should be virtually none thanks to the use of static key.
Link: http://lkml.kernel.org/r/20190603143451.27353-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch series "debug_pagealloc improvements".
I have been recently debugging some pcplist corruptions, where it would be
useful to perform struct page checks immediately as pages are allocated
from and freed to pcplists, which is now only possible by rebuilding the
kernel with CONFIG_DEBUG_VM (details in Patch 2 changelog).
To make this kind of debugging simpler in future on a distro kernel, I
have improved CONFIG_DEBUG_PAGEALLOC so that it has even smaller overhead
when not enabled at boot time (Patch 1) and also when enabled (Patch 3),
and extended it to perform the struct page checks more often when enabled
(Patch 2). Now it can be configured in when building a distro kernel
without extra overhead, and debugging page use after free or double free
can be enabled simply by rebooting with debug_pagealloc=on.
This patch (of 3):
CONFIG_DEBUG_PAGEALLOC has been redesigned by 031bc5743f15
("mm/debug-pagealloc: make debug-pagealloc boottime configurable") to
allow being always enabled in a distro kernel, but only perform its
expensive functionality when booted with debug_pagelloc=on. We can
further reduce the overhead when not boot-enabled (including page
allocator fast paths) using static keys. This patch introduces one for
debug_pagealloc core functionality, and another for the optional guard
page functionality (enabled by booting with debug_guardpage_minorder=X).
Link: http://lkml.kernel.org/r/20190603143451.27353-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Previously totalram_pages was the global variable. Currently,
totalram_pages is the static inline function from the include/linux/mm.h
However, the function is also marked as EXPORT_SYMBOL, which is at best an
odd combination. Because there is no point for the static inline function
from a public header to be exported, this commit removes the
EXPORT_SYMBOL() marking. It will be still possible to use the function in
modules because all the symbols it depends on are exported.
Link: http://lkml.kernel.org/r/20190710141031.15642-1-efremov@linux.com
Fixes: ca79b0c211af6 ("mm: convert totalram_pages and totalhigh_pages variables to atomic")
Signed-off-by: Denis Efremov <efremov@linux.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 0e56acae4b4d ("mm: initialize MAX_ORDER_NR_PAGES at a time
instead of doing larger sections") is causing a regression on some
systems when the kernel is booted as Xen dom0.
The system will just hang in early boot.
Reason is an endless loop in get_page_from_freelist() in case the first
zone looked at has no free memory. deferred_grow_zone() is always
returning true due to the following code snipplet:
/* If the zone is empty somebody else may have cleared out the zone */
if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
first_deferred_pfn)) {
pgdat->first_deferred_pfn = ULONG_MAX;
pgdat_resize_unlock(pgdat, &flags);
return true;
}
This in turn results in the loop as get_page_from_freelist() is assuming
forward progress can be made by doing some more struct page
initialization.
Link: http://lkml.kernel.org/r/20190620160821.4210-1-jgross@suse.com
Fixes: 0e56acae4b4d ("mm: initialize MAX_ORDER_NR_PAGES at a time instead of doing larger sections")
Signed-off-by: Juergen Gross <jgross@suse.com>
Suggested-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Acked-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When freeing a page with an order >= shuffle_page_order randomly select
the front or back of the list for insertion.
While the mm tries to defragment physical pages into huge pages this can
tend to make the page allocator more predictable over time. Inject the
front-back randomness to preserve the initial randomness established by
shuffle_free_memory() when the kernel was booted.
The overhead of this manipulation is constrained by only being applied
for MAX_ORDER sized pages by default.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/154899812788.3165233.9066631950746578517.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Robert Elliott <elliott@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation for runtime randomization of the zone lists, take all
(well, most of) the list_*() functions in the buddy allocator and put
them in helper functions. Provide a common control point for injecting
additional behavior when freeing pages.
[dan.j.williams@intel.com: fix buddy list helpers]
Link: http://lkml.kernel.org/r/155033679702.1773410.13041474192173212653.stgit@dwillia2-desk3.amr.corp.intel.com
[vbabka@suse.cz: remove del_page_from_free_area() migratetype parameter]
Link: http://lkml.kernel.org/r/4672701b-6775-6efd-0797-b6242591419e@suse.cz
Link: http://lkml.kernel.org/r/154899812264.3165233.5219320056406926223.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Robert Elliott <elliott@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "mm: Randomize free memory", v10.
This patch (of 3):
Randomization of the page allocator improves the average utilization of
a direct-mapped memory-side-cache. Memory side caching is a platform
capability that Linux has been previously exposed to in HPC
(high-performance computing) environments on specialty platforms. In
that instance it was a smaller pool of high-bandwidth-memory relative to
higher-capacity / lower-bandwidth DRAM. Now, this capability is going
to be found on general purpose server platforms where DRAM is a cache in
front of higher latency persistent memory [1].
Robert offered an explanation of the state of the art of Linux
interactions with memory-side-caches [2], and I copy it here:
It's been a problem in the HPC space:
http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/
A kernel module called zonesort is available to try to help:
https://software.intel.com/en-us/articles/xeon-phi-software
and this abandoned patch series proposed that for the kernel:
https://lkml.kernel.org/r/20170823100205.17311-1-lukasz.daniluk@intel.com
Dan's patch series doesn't attempt to ensure buffers won't conflict, but
also reduces the chance that the buffers will. This will make performance
more consistent, albeit slower than "optimal" (which is near impossible
to attain in a general-purpose kernel). That's better than forcing
users to deploy remedies like:
"To eliminate this gradual degradation, we have added a Stream
measurement to the Node Health Check that follows each job;
nodes are rebooted whenever their measured memory bandwidth
falls below 300 GB/s."
A replacement for zonesort was merged upstream in commit cc9aec03e58f
("x86/numa_emulation: Introduce uniform split capability"). With this
numa_emulation capability, memory can be split into cache sized
("near-memory" sized) numa nodes. A bind operation to such a node, and
disabling workloads on other nodes, enables full cache performance.
However, once the workload exceeds the cache size then cache conflicts
are unavoidable. While HPC environments might be able to tolerate
time-scheduling of cache sized workloads, for general purpose server
platforms, the oversubscribed cache case will be the common case.
The worst case scenario is that a server system owner benchmarks a
workload at boot with an un-contended cache only to see that performance
degrade over time, even below the average cache performance due to
excessive conflicts. Randomization clips the peaks and fills in the
valleys of cache utilization to yield steady average performance.
Here are some performance impact details of the patches:
1/ An Intel internal synthetic memory bandwidth measurement tool, saw a
3X speedup in a contrived case that tries to force cache conflicts.
The contrived cased used the numa_emulation capability to force an
instance of the benchmark to be run in two of the near-memory sized
numa nodes. If both instances were placed on the same emulated they
would fit and cause zero conflicts. While on separate emulated nodes
without randomization they underutilized the cache and conflicted
unnecessarily due to the in-order allocation per node.
2/ A well known Java server application benchmark was run with a heap
size that exceeded cache size by 3X. The cache conflict rate was 8%
for the first run and degraded to 21% after page allocator aging. With
randomization enabled the rate levelled out at 11%.
3/ A MongoDB workload did not observe measurable difference in
cache-conflict rates, but the overall throughput dropped by 7% with
randomization in one case.
4/ Mel Gorman ran his suite of performance workloads with randomization
enabled on platforms without a memory-side-cache and saw a mix of some
improvements and some losses [3].
While there is potentially significant improvement for applications that
depend on low latency access across a wide working-set, the performance
may be negligible to negative for other workloads. For this reason the
shuffle capability defaults to off unless a direct-mapped
memory-side-cache is detected. Even then, the page_alloc.shuffle=0
parameter can be specified to disable the randomization on those systems.
Outside of memory-side-cache utilization concerns there is potentially
security benefit from randomization. Some data exfiltration and
return-oriented-programming attacks rely on the ability to infer the
location of sensitive data objects. The kernel page allocator, especially
early in system boot, has predictable first-in-first out behavior for
physical pages. Pages are freed in physical address order when first
onlined.
Quoting Kees:
"While we already have a base-address randomization
(CONFIG_RANDOMIZE_MEMORY), attacks against the same hardware and
memory layouts would certainly be using the predictability of
allocation ordering (i.e. for attacks where the base address isn't
important: only the relative positions between allocated memory).
This is common in lots of heap-style attacks. They try to gain
control over ordering by spraying allocations, etc.
I'd really like to see this because it gives us something similar
to CONFIG_SLAB_FREELIST_RANDOM but for the page allocator."
While SLAB_FREELIST_RANDOM reduces the predictability of some local slab
caches it leaves vast bulk of memory to be predictably in order allocated.
However, it should be noted, the concrete security benefits are hard to
quantify, and no known CVE is mitigated by this randomization.
Introduce shuffle_free_memory(), and its helper shuffle_zone(), to perform
a Fisher-Yates shuffle of the page allocator 'free_area' lists when they
are initially populated with free memory at boot and at hotplug time. Do
this based on either the presence of a page_alloc.shuffle=Y command line
parameter, or autodetection of a memory-side-cache (to be added in a
follow-on patch).
The shuffling is done in terms of CONFIG_SHUFFLE_PAGE_ORDER sized free
pages where the default CONFIG_SHUFFLE_PAGE_ORDER is MAX_ORDER-1 i.e. 10,
4MB this trades off randomization granularity for time spent shuffling.
MAX_ORDER-1 was chosen to be minimally invasive to the page allocator
while still showing memory-side cache behavior improvements, and the
expectation that the security implications of finer granularity
randomization is mitigated by CONFIG_SLAB_FREELIST_RANDOM. The
performance impact of the shuffling appears to be in the noise compared to
other memory initialization work.
This initial randomization can be undone over time so a follow-on patch is
introduced to inject entropy on page free decisions. It is reasonable to
ask if the page free entropy is sufficient, but it is not enough due to
the in-order initial freeing of pages. At the start of that process
putting page1 in front or behind page0 still keeps them close together,
page2 is still near page1 and has a high chance of being adjacent. As
more pages are added ordering diversity improves, but there is still high
page locality for the low address pages and this leads to no significant
impact to the cache conflict rate.
[1]: https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
[2]: https://lkml.kernel.org/r/AT5PR8401MB1169D656C8B5E121752FC0F8AB120@AT5PR8401MB1169.NAMPRD84.PROD.OUTLOOK.COM
[3]: https://lkml.org/lkml/2018/10/12/309
[dan.j.williams@intel.com: fix shuffle enable]
Link: http://lkml.kernel.org/r/154943713038.3858443.4125180191382062871.stgit@dwillia2-desk3.amr.corp.intel.com
[cai@lca.pw: fix SHUFFLE_PAGE_ALLOCATOR help texts]
Link: http://lkml.kernel.org/r/20190425201300.75650-1-cai@lca.pw
Link: http://lkml.kernel.org/r/154899811738.3165233.12325692939590944259.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Robert Elliott <elliott@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 0139aa7b7fa ("mm: rename _count, field of the struct page, to
_refcount") left out a couple of references to the old field name. Fix
that.
Link: http://lkml.kernel.org/r/cedf87b02eb8a6b3eac57e8e91da53fb15c3c44c.1556537475.git.baruch@tkos.co.il
Fixes: 0139aa7b7fa ("mm: rename _count, field of the struct page, to _refcount")
Signed-off-by: Baruch Siach <baruch@tkos.co.il>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Most architectures do not need the memblock memory after the page
allocator is initialized, but only few enable ARCH_DISCARD_MEMBLOCK in the
arch Kconfig.
Replacing ARCH_DISCARD_MEMBLOCK with ARCH_KEEP_MEMBLOCK and inverting the
logic makes it clear which architectures actually use memblock after
system initialization and skips the necessity to add ARCH_DISCARD_MEMBLOCK
to the architectures that are still missing that option.
Link: http://lkml.kernel.org/r/1556102150-32517-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Because rmqueue_pcplist() is only called when order is 0, we don't need to
use order as a parameter.
Link: http://lkml.kernel.org/r/1555591709-11744-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
check_pages_isolated_cb currently accounts the whole pfn range as being
offlined if test_pages_isolated suceeds on the range. This is based on
the assumption that all pages in the range are freed which is currently
the case in most cases but it won't be with later changes, as pages marked
as vmemmap won't be isolated.
Move the offlined pages counting to offline_isolated_pages_cb and rely on
__offline_isolated_pages to return the correct value.
check_pages_isolated_cb will still do it's primary job and check the pfn
range.
While we are at it remove check_pages_isolated and offline_isolated_pages
and use directly walk_system_ram_range as do in online_pages.
Link: http://lkml.kernel.org/r/20190408082633.2864-2-osalvador@suse.de
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add yet another iterator, for_each_free_mem_range_in_zone_from, and then
use it to support initializing and freeing pages in groups no larger than
MAX_ORDER_NR_PAGES. By doing this we can greatly improve the cache
locality of the pages while we do several loops over them in the init and
freeing process.
We are able to tighten the loops further as a result of the "from"
iterator as we can perform the initial checks for first_init_pfn in our
first call to the iterator, and continue without the need for those checks
via the "from" iterator. I have added this functionality in the function
called deferred_init_mem_pfn_range_in_zone that primes the iterator and
causes us to exit if we encounter any failure.
On my x86_64 test system with 384GB of memory per node I saw a reduction
in initialization time from 1.85s to 1.38s as a result of this patch.
Link: http://lkml.kernel.org/r/20190405221231.12227.85836.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <yi.z.zhang@linux.intel.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce a new iterator for_each_free_mem_pfn_range_in_zone.
This iterator will take care of making sure a given memory range provided
is in fact contained within a zone. It takes are of all the bounds
checking we were doing in deferred_grow_zone, and deferred_init_memmap.
In addition it should help to speed up the search a bit by iterating until
the end of a range is greater than the start of the zone pfn range, and
will exit completely if the start is beyond the end of the zone.
Link: http://lkml.kernel.org/r/20190405221225.12227.22573.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <yi.z.zhang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As best as I can tell the meminit_pfn_in_nid call is completely redundant.
The deferred memory initialization is already making use of
for_each_free_mem_range which in turn will call into __next_mem_range
which will only return a memory range if it matches the node ID provided
assuming it is not NUMA_NO_NODE.
I am operating on the assumption that there are no zones or pgdata_t
structures that have a NUMA node of NUMA_NO_NODE associated with them. If
that is the case then __next_mem_range will never return a memory range
that doesn't match the zone's node ID and as such the check is redundant.
So one piece I would like to verify on this is if this works for ia64.
Technically it was using a different approach to get the node ID, but it
seems to have the node ID also encoded into the memblock. So I am
assuming this is okay, but would like to get confirmation on that.
On my x86_64 test system with 384GB of memory per node I saw a reduction
in initialization time from 2.80s to 1.85s as a result of this patch.
Link: http://lkml.kernel.org/r/20190405221219.12227.93957.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <yi.z.zhang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
342332e6a925 ("mm/page_alloc.c: introduce kernelcore=mirror option") and
later patches rewrote the calculation of node spanned pages.
e506b99696a2 ("mem-hotplug: fix node spanned pages when we have a movable
node"), but the current code still has problems,
When we have a node with only zone_movable and the node id is not zero,
the size of node spanned pages is double added.
That's because we have an empty normal zone, and zone_start_pfn or
zone_end_pfn is not between arch_zone_lowest_possible_pfn and
arch_zone_highest_possible_pfn, so we need to use clamp to constrain the
range just like the commit <96e907d13602> (bootmem: Reimplement
__absent_pages_in_range() using for_each_mem_pfn_range()).
e.g.
Zone ranges:
DMA [mem 0x0000000000001000-0x0000000000ffffff]
DMA32 [mem 0x0000000001000000-0x00000000ffffffff]
Normal [mem 0x0000000100000000-0x000000023fffffff]
Movable zone start for each node
Node 0: 0x0000000100000000
Node 1: 0x0000000140000000
Early memory node ranges
node 0: [mem 0x0000000000001000-0x000000000009efff]
node 0: [mem 0x0000000000100000-0x00000000bffdffff]
node 0: [mem 0x0000000100000000-0x000000013fffffff]
node 1: [mem 0x0000000140000000-0x000000023fffffff]
node 0 DMA spanned:0xfff present:0xf9e absent:0x61
node 0 DMA32 spanned:0xff000 present:0xbefe0 absent:0x40020
node 0 Normal spanned:0 present:0 absent:0
node 0 Movable spanned:0x40000 present:0x40000 absent:0
On node 0 totalpages(node_present_pages): 1048446
node_spanned_pages:1310719
node 1 DMA spanned:0 present:0 absent:0
node 1 DMA32 spanned:0 present:0 absent:0
node 1 Normal spanned:0x100000 present:0x100000 absent:0
node 1 Movable spanned:0x100000 present:0x100000 absent:0
On node 1 totalpages(node_present_pages): 2097152
node_spanned_pages:2097152
Memory: 6967796K/12582392K available (16388K kernel code, 3686K rwdata,
4468K rodata, 2160K init, 10444K bss, 5614596K reserved, 0K
cma-reserved)
It shows that the current memory of node 1 is double added.
After this patch, the problem is fixed.
node 0 DMA spanned:0xfff present:0xf9e absent:0x61
node 0 DMA32 spanned:0xff000 present:0xbefe0 absent:0x40020
node 0 Normal spanned:0 present:0 absent:0
node 0 Movable spanned:0x40000 present:0x40000 absent:0
On node 0 totalpages(node_present_pages): 1048446
node_spanned_pages:1310719
node 1 DMA spanned:0 present:0 absent:0
node 1 DMA32 spanned:0 present:0 absent:0
node 1 Normal spanned:0 present:0 absent:0
node 1 Movable spanned:0x100000 present:0x100000 absent:0
On node 1 totalpages(node_present_pages): 1048576
node_spanned_pages:1048576
memory: 6967796K/8388088K available (16388K kernel code, 3686K rwdata,
4468K rodata, 2160K init, 10444K bss, 1420292K reserved, 0K
cma-reserved)
Link: http://lkml.kernel.org/r/1554178276-10372-1-git-send-email-fanglinxu@huawei.com
Signed-off-by: Linxu Fang <fanglinxu@huawei.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On systems without CONTIG_ALLOC activated but that support gigantic pages,
boottime reserved gigantic pages can not be freed at all. This patch
simply enables the possibility to hand back those pages to memory
allocator.
Link: http://lkml.kernel.org/r/20190327063626.18421-5-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Acked-by: David S. Miller <davem@davemloft.net> [sparc]
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|