summaryrefslogtreecommitdiffstats
path: root/mm/slab.h (follow)
Commit message (Collapse)AuthorAgeFilesLines
* mm, kasan: add GFP flags to KASAN APIAlexander Potapenko2016-03-261-1/+1
| | | | | | | | | | | | | | | | | | | | | Add GFP flags to KASAN hooks for future patches to use. This patch is based on the "mm: kasan: unified support for SLUB and SLAB allocators" patch originally prepared by Dmitry Chernenkov. Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: report slab usage in cgroup2 memory.statVladimir Davydov2016-03-171-2/+28
| | | | | | | | | | | Show how much memory is used for storing reclaimable and unreclaimable in-kernel data structures allocated from slab caches. Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slub: convert SLAB_DEBUG_FREE to SLAB_CONSISTENCY_CHECKSLaura Abbott2016-03-161-2/+3
| | | | | | | | | | | | | | | | | | | | SLAB_DEBUG_FREE allows expensive consistency checks at free to be turned on or off. Expand its use to be able to turn off all consistency checks. This gives a nice speed up if you only want features such as poisoning or tracing. Credit to Mathias Krause for the original work which inspired this series Signed-off-by: Laura Abbott <labbott@fedoraproject.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mathias Krause <minipli@googlemail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: fix some spellingJesper Dangaard Brouer2016-03-161-1/+1
| | | | | | | | | | | | | Fix up trivial spelling errors, noticed while reading the code. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: fault-inject take over bootstrap kmem_cache checkJesper Dangaard Brouer2016-03-161-1/+1
| | | | | | | | | | | | | | | | | | | | Remove the SLAB specific function slab_should_failslab(), by moving the check against fault-injection for the bootstrap slab, into the shared function should_failslab() (used by both SLAB and SLUB). This is a step towards sharing alloc_hook's between SLUB and SLAB. This bootstrap slab "kmem_cache" is used for allocating struct kmem_cache objects to the allocator itself. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/slab: move SLUB alloc hooks to common mm/slab.hJesper Dangaard Brouer2016-03-161-0/+62
| | | | | | | | | | | | | | | First step towards sharing alloc_hook's between SLUB and SLAB allocators. Move the SLUB allocators *_alloc_hook to the common mm/slab.h for internal slab definitions. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: slab: free kmem_cache_node after destroy sysfs fileDmitry Safonov2016-02-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When slub_debug alloc_calls_show is enabled we will try to track location and user of slab object on each online node, kmem_cache_node structure and cpu_cache/cpu_slub shouldn't be freed till there is the last reference to sysfs file. This fixes the following panic: BUG: unable to handle kernel NULL pointer dereference at 0000000000000020 IP: list_locations+0x169/0x4e0 PGD 257304067 PUD 438456067 PMD 0 Oops: 0000 [#1] SMP CPU: 3 PID: 973074 Comm: cat ve: 0 Not tainted 3.10.0-229.7.2.ovz.9.30-00007-japdoll-dirty #2 9.30 Hardware name: DEPO Computers To Be Filled By O.E.M./H67DE3, BIOS L1.60c 07/14/2011 task: ffff88042a5dc5b0 ti: ffff88037f8d8000 task.ti: ffff88037f8d8000 RIP: list_locations+0x169/0x4e0 Call Trace: alloc_calls_show+0x1d/0x30 slab_attr_show+0x1b/0x30 sysfs_read_file+0x9a/0x1a0 vfs_read+0x9c/0x170 SyS_read+0x58/0xb0 system_call_fastpath+0x16/0x1b Code: 5e 07 12 00 b9 00 04 00 00 3d 00 04 00 00 0f 4f c1 3d 00 04 00 00 89 45 b0 0f 84 c3 00 00 00 48 63 45 b0 49 8b 9c c4 f8 00 00 00 <48> 8b 43 20 48 85 c0 74 b6 48 89 df e8 46 37 44 00 48 8b 53 10 CR2: 0000000000000020 Separated __kmem_cache_release from __kmem_cache_shutdown which now called on slab_kmem_cache_release (after the last reference to sysfs file object has dropped). Reintroduced locking in free_partial as sysfs file might access cache's partial list after shutdowning - partial revert of the commit 69cb8e6b7c29 ("slub: free slabs without holding locks"). Zap __remove_partial and use remove_partial (w/o underscores) as free_partial now takes list_lock which s partial revert for commit 1e4dd9461fab ("slub: do not assert not having lock in removing freed partial") Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com> Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: move kmem accounting code to CONFIG_MEMCGJohannes Weiner2016-01-211-3/+3
| | | | | | | | | | | | The cgroup2 memory controller will account important in-kernel memory consumers per default. Move all necessary components to CONFIG_MEMCG. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: add SLAB_ACCOUNT flagVladimir Davydov2016-01-151-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, if we want to account all objects of a particular kmem cache, we have to pass __GFP_ACCOUNT to each kmem_cache_alloc call, which is inconvenient. This patch introduces SLAB_ACCOUNT flag which if passed to kmem_cache_create will force accounting for every allocation from this cache even if __GFP_ACCOUNT is not passed. This patch does not make any of the existing caches use this flag - it will be done later in the series. Note, a cache with SLAB_ACCOUNT cannot be merged with a cache w/o SLAB_ACCOUNT, because merged caches share the same kmem_cache struct and hence cannot have different sets of SLAB_* flags. Thus using this flag will probably reduce the number of merged slabs even if kmem accounting is not used (only compiled in). Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Suggested-by: Tejun Heo <tj@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Greg Thelen <gthelen@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab/slub: adjust kmem_cache_alloc_bulk APIJesper Dangaard Brouer2015-11-221-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Adjust kmem_cache_alloc_bulk API before we have any real users. Adjust API to return type 'int' instead of previously type 'bool'. This is done to allow future extension of the bulk alloc API. A future extension could be to allow SLUB to stop at a page boundary, when specified by a flag, and then return the number of objects. The advantage of this approach, would make it easier to make bulk alloc run without local IRQs disabled. With an approach of cmpxchg "stealing" the entire c->freelist or page->freelist. To avoid overshooting we would stop processing at a slab-page boundary. Else we always end up returning some objects at the cost of another cmpxchg. To keep compatible with future users of this API linking against an older kernel when using the new flag, we need to return the number of allocated objects with this API change. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg: unify slab and other kmem pages chargingVladimir Davydov2015-11-061-17/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We have memcg_kmem_charge and memcg_kmem_uncharge methods for charging and uncharging kmem pages to memcg, but currently they are not used for charging slab pages (i.e. they are only used for charging pages allocated with alloc_kmem_pages). The only reason why the slab subsystem uses special helpers, memcg_charge_slab and memcg_uncharge_slab, is that it needs to charge to the memcg of kmem cache while memcg_charge_kmem charges to the memcg that the current task belongs to. To remove this diversity, this patch adds an extra argument to __memcg_kmem_charge that can be a pointer to a memcg or NULL. If it is not NULL, the function tries to charge to the memcg it points to, otherwise it charge to the current context. Next, it makes the slab subsystem use this function to charge slab pages. Since memcg_charge_kmem and memcg_uncharge_kmem helpers are now used only in __memcg_kmem_charge and __memcg_kmem_uncharge, they are inlined. Since __memcg_kmem_charge stores a pointer to the memcg in the page struct, we don't need memcg_uncharge_slab anymore and can use free_kmem_pages. Besides, one can now detect which memcg a slab page belongs to by reading /proc/kpagecgroup. Note, this patch switches slab to charge-after-alloc design. Since this design is already used for all other memcg charges, it should not make any difference. [hannes@cmpxchg.org: better to have an outer function than a magic parameter for the memcg lookup] Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/slab_common.c: clear pointers to per memcg caches on destroyVladimir Davydov2015-11-061-6/+0
| | | | | | | | | | | | | | | | | | | | Currently, we do not clear pointers to per memcg caches in the memcg_params.memcg_caches array when a global cache is destroyed with kmem_cache_destroy. This is fine if the global cache does get destroyed. However, a cache can be left on the list if it still has active objects when kmem_cache_destroy is called (due to a memory leak). If this happens, the entries in the array will point to already freed areas, which is likely to result in data corruption when the cache is reused (via slab merging). Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/slab.h: fix argument order in cache_from_obj's error messageDaniel Borkmann2015-09-051-1/+1
| | | | | | | | | | | | | | | | | While debugging a networking issue, I hit a condition that triggered an object to be freed into the wrong kmem cache, and thus triggered the warning in cache_from_obj(). The arguments in the error message are in wrong order: the location of the object's kmem cache is in cachep, not s. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: infrastructure for bulk object allocation and freeingChristoph Lameter2015-09-051-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | Add the basic infrastructure for alloc/free operations on pointer arrays. It includes a generic function in the common slab code that is used in this infrastructure patch to create the unoptimized functionality for slab bulk operations. Allocators can then provide optimized allocation functions for situations in which large numbers of objects are needed. These optimization may avoid taking locks repeatedly and bypass metadata creation if all objects in slab pages can be used to provide the objects required. Allocators can extend the skeletons provided and add their own code to the bulk alloc and free functions. They can keep the generic allocation and freeing and just fall back to those if optimizations would not work (like for example when debugging is on). Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: correct size_index table before replacing the bootstrap kmem_cache_nodeDaniel Sanders2015-06-251-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch moves the initialization of the size_index table slightly earlier so that the first few kmem_cache_node's can be safely allocated when KMALLOC_MIN_SIZE is large. There are currently two ways to generate indices into kmalloc_caches (via kmalloc_index() and via the size_index table in slab_common.c) and on some arches (possibly only MIPS) they potentially disagree with each other until create_kmalloc_caches() has been called. It seems that the intention is that the size_index table is a fast equivalent to kmalloc_index() and that create_kmalloc_caches() patches the table to return the correct value for the cases where kmalloc_index()'s if-statements apply. The failing sequence was: * kmalloc_caches contains NULL elements * kmem_cache_init initialises the element that 'struct kmem_cache_node' will be allocated to. For 32-bit Mips, this is a 56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7). * init_list is called which calls kmalloc_node to allocate a 'struct kmem_cache_node'. * kmalloc_slab selects the kmem_caches element using size_index[size_index_elem(size)]. For MIPS, size is 56, and the expression returns 6. * This element of kmalloc_caches is NULL and allocation fails. * If it had not already failed, it would have called create_kmalloc_caches() at this point which would have changed size_index[size_index_elem(size)] to 7. I don't believe the bug to be LLVM specific but GCC doesn't normally encounter the problem. I haven't been able to identify exactly what GCC is doing better (probably inlining) but it seems that GCC is managing to optimize to the point that it eliminates the problematic allocations. This theory is supported by the fact that GCC can be made to fail in the same way by changing inline, __inline, __inline__, and __always_inline in include/linux/compiler-gcc.h such that they don't actually inline things. Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com> Acked-by: Pekka Enberg <penberg@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slub: make dead caches discard free slabs immediatelyVladimir Davydov2015-02-131-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | To speed up further allocations SLUB may store empty slabs in per cpu/node partial lists instead of freeing them immediately. This prevents per memcg caches destruction, because kmem caches created for a memory cgroup are only destroyed after the last page charged to the cgroup is freed. To fix this issue, this patch resurrects approach first proposed in [1]. It forbids SLUB to cache empty slabs after the memory cgroup that the cache belongs to was destroyed. It is achieved by setting kmem_cache's cpu_partial and min_partial constants to 0 and tuning put_cpu_partial() so that it would drop frozen empty slabs immediately if cpu_partial = 0. The runtime overhead is minimal. From all the hot functions, we only touch relatively cold put_cpu_partial(): we make it call unfreeze_partials() after freezing a slab that belongs to an offline memory cgroup. Since slab freezing exists to avoid moving slabs from/to a partial list on free/alloc, and there can't be allocations from dead caches, it shouldn't cause any overhead. We do have to disable preemption for put_cpu_partial() to achieve that though. The original patch was accepted well and even merged to the mm tree. However, I decided to withdraw it due to changes happening to the memcg core at that time. I had an idea of introducing per-memcg shrinkers for kmem caches, but now, as memcg has finally settled down, I do not see it as an option, because SLUB shrinker would be too costly to call since SLUB does not keep free slabs on a separate list. Besides, we currently do not even call per-memcg shrinkers for offline memcgs. Overall, it would introduce much more complexity to both SLUB and memcg than this small patch. Regarding to SLAB, there's no problem with it, because it shrinks per-cpu/node caches periodically. Thanks to list_lru reparenting, we no longer keep entries for offline cgroups in per-memcg arrays (such as memcg_cache_params->memcg_caches), so we do not have to bother if a per-memcg cache will be shrunk a bit later than it could be. [1] http://thread.gmane.org/gmane.linux.kernel.mm/118649/focus=118650 Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: link memcg caches of the same kind into a listVladimir Davydov2015-02-131-0/+17
| | | | | | | | | | | | | | | | | | | | | | | | Sometimes, we need to iterate over all memcg copies of a particular root kmem cache. Currently, we use memcg_cache_params->memcg_caches array for that, because it contains all existing memcg caches. However, it's a bad practice to keep all caches, including those that belong to offline cgroups, in this array, because it will be growing beyond any bounds then. I'm going to wipe away dead caches from it to save space. To still be able to perform iterations over all memcg caches of the same kind, let us link them into a list. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: embed memcg_cache_params to kmem_cacheVladimir Davydov2015-02-131-25/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, kmem_cache stores a pointer to struct memcg_cache_params instead of embedding it. The rationale is to save memory when kmem accounting is disabled. However, the memcg_cache_params has shrivelled drastically since it was first introduced: * Initially: struct memcg_cache_params { bool is_root_cache; union { struct kmem_cache *memcg_caches[0]; struct { struct mem_cgroup *memcg; struct list_head list; struct kmem_cache *root_cache; bool dead; atomic_t nr_pages; struct work_struct destroy; }; }; }; * Now: struct memcg_cache_params { bool is_root_cache; union { struct { struct rcu_head rcu_head; struct kmem_cache *memcg_caches[0]; }; struct { struct mem_cgroup *memcg; struct kmem_cache *root_cache; }; }; }; So the memory saving does not seem to be a clear win anymore. OTOH, keeping a pointer to memcg_cache_params struct instead of embedding it results in touching one more cache line on kmem alloc/free hot paths. Besides, it makes linking kmem caches in a list chained by a field of struct memcg_cache_params really painful due to a level of indirection, while I want to make them linked in the following patch. That said, let us embed it. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg: zap __memcg_{charge,uncharge}_slabVladimir Davydov2015-02-101-2/+2
| | | | | | | | | | | They are simple wrappers around memcg_{charge,uncharge}_kmem, so let's zap them and call these functions directly. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg: use generic slab iterators for showing slabinfoVladimir Davydov2014-12-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | Let's use generic slab_start/next/stop for showing memcg caches info. In contrast to the current implementation, this will work even if all memcg caches' info doesn't fit into a seq buffer (a page), plus it simply looks neater. Actually, the main reason I do this isn't mere cleanup. I'm going to zap the memcg_slab_caches list, because I find it useless provided we have the slab_caches list, and this patch is a step in this direction. It should be noted that before this patch an attempt to read memory.kmem.slabinfo of a cgroup that doesn't have kmem limit set resulted in -EIO, while after this patch it will silently show nothing except the header, but I don't think it will frustrate anyone. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: replace smp_read_barrier_depends() with lockless_dereference()Pranith Kumar2014-12-111-3/+3
| | | | | | | | | | | | | | | Recently lockless_dereference() was added which can be used in place of hard-coding smp_read_barrier_depends(). The following PATCH makes the change. Signed-off-by: Pranith Kumar <bobby.prani@gmail.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: print slabinfo header in seq showVladimir Davydov2014-12-111-0/+1
| | | | | | | | | | | | | | | | | | | | | Currently we print the slabinfo header in the seq start method, which makes it unusable for showing leaks, so we have leaks_show, which does practically the same as s_show except it doesn't show the header. However, we can print the header in the seq show method - we only need to check if the current element is the first on the list. This will allow us to use the same set of seq iterators for both leaks and slabinfo reporting, which is nice. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/slab: use percpu allocator for cpu cacheJoonsoo Kim2014-10-101-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Because of chicken and egg problem, initialization of SLAB is really complicated. We need to allocate cpu cache through SLAB to make the kmem_cache work, but before initialization of kmem_cache, allocation through SLAB is impossible. On the other hand, SLUB does initialization in a more simple way. It uses percpu allocator to allocate cpu cache so there is no chicken and egg problem. So, this patch try to use percpu allocator in SLAB. This simplifies the initialization step in SLAB so that we could maintain SLAB code more easily. In my testing there is no performance difference. This implementation relies on percpu allocator. Because percpu allocator uses vmalloc address space, vmalloc address space could be exhausted by this change on many cpu system with *32 bit* kernel. This implementation can cover 1024 cpus in worst case by following calculation. Worst: 1024 cpus * 4 bytes for pointer * 300 kmem_caches * 120 objects per cpu_cache = 140 MB Normal: 1024 cpus * 4 bytes for pointer * 150 kmem_caches(slab merge) * 80 objects per cpu_cache = 46 MB Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Jeremiah Mahler <jmmahler@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/slab: support slab mergeJoonsoo Kim2014-10-101-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Slab merge is good feature to reduce fragmentation. If new creating slab have similar size and property with exsitent slab, this feature reuse it rather than creating new one. As a result, objects are packed into fewer slabs so that fragmentation is reduced. Below is result of my testing. * After boot, sleep 20; cat /proc/meminfo | grep Slab <Before> Slab: 25136 kB <After> Slab: 24364 kB We can save 3% memory used by slab. For supporting this feature in SLAB, we need to implement SLAB specific kmem_cache_flag() and __kmem_cache_alias(), because SLUB implements some SLUB specific processing related to debug flag and object size change on these functions. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/slab_common: commonize slab merge logicJoonsoo Kim2014-10-101-0/+15
| | | | | | | | | | | | | | | Slab merge is good feature to reduce fragmentation. Now, it is only applied to SLUB, but, it would be good to apply it to SLAB. This patch is preparation step to apply slab merge to SLAB by commonizing slab merge logic. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: fix for_each_kmem_cache_node()Mikulas Patocka2014-10-101-2/+2
| | | | | | | | | | | | | | Fix a bug (discovered with kmemcheck) in for_each_kmem_cache_node(). The for loop reads the array "node" before verifying that the index is within the range. This results in kmemcheck warning. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Reviewed-by: Pekka Enberg <penberg@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/slab_common: move kmem_cache definition to internal headerJoonsoo Kim2014-10-101-0/+35
| | | | | | | | | | | | | | | | | | | | | | | | We don't need to keep kmem_cache definition in include/linux/slab.h if we don't need to inline kmem_cache_size(). According to my code inspection, this function is only called at lc_create() in lib/lru_cache.c which may be called at initialization phase of something, so we don't need to inline it. Therfore, move it to slab_common.c and move kmem_cache definition to internal header. After this change, we can change kmem_cache definition easily without full kernel build. For instance, we can turn on/off CONFIG_SLUB_STATS without full kernel build. [akpm@linux-foundation.org: export kmem_cache_size() to modules] [rdunlap@infradead.org: add header files to fix kmemcheck.c build errors] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: convert last use of __FUNCTION__ to __func__Joe Perches2014-08-071-1/+1
| | | | | | | | | Just about all of these have been converted to __func__, so convert the last use. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: introduce alien_cacheJoonsoo Kim2014-08-071-1/+1
| | | | | | | | | | | | | | | | | Currently, we use array_cache for alien_cache. Although they are mostly similar, there is one difference, that is, need for spinlock. We don't need spinlock for array_cache itself, but to use array_cache for alien_cache, array_cache structure should have spinlock. This is needless overhead, so removing it would be better. This patch prepare it by introducing alien_cache and using it. In the following patch, we remove spinlock in array_cache. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: slab.h: wrap the whole file with guarding macroAndrey Ryabinin2014-08-071-1/+2
| | | | | | | | | | | | | | | | | | | | | | Guarding section: #ifndef MM_SLAB_H #define MM_SLAB_H ... #endif currently doesn't cover the whole mm/slab.h. It seems like it was done unintentionally. Wrap the whole file by moving closing #endif to the end of it. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab common: add functions for kmem_cache_node accessChristoph Lameter2014-08-071-1/+16
| | | | | | | | | | | | | | | | | | | | The patchset provides two new functions in mm/slab.h and modifies SLAB and SLUB to use these. The kmem_cache_node structure is shared between both allocators and the use of common accessors will allow us to move more code into slab_common.c in the future. This patch (of 3): These functions allow to eliminate repeatedly used code in both SLAB and SLUB and also allow for the insertion of debugging code that may be needed in the development process. Signed-off-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg, slab: merge memcg_{bind,release}_pages to memcg_{un}charge_slabVladimir Davydov2014-06-051-23/+2
| | | | | | | | | | | | | | | | Currently we have two pairs of kmemcg-related functions that are called on slab alloc/free. The first is memcg_{bind,release}_pages that count the total number of pages allocated on a kmem cache. The second is memcg_{un}charge_slab that {un}charge slab pages to kmemcg resource counter. Let's just merge them to keep the code clean. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg, slab: do not schedule cache destruction when last page goes awayVladimir Davydov2014-06-051-5/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patchset is a part of preparations for kmemcg re-parenting. It targets at simplifying kmemcg work-flows and synchronization. First, it removes async per memcg cache destruction (see patches 1, 2). Now caches are only destroyed on memcg offline. That means the caches that are not empty on memcg offline will be leaked. However, they are already leaked, because memcg_cache_params::nr_pages normally never drops to 0 so the destruction work is never scheduled except kmem_cache_shrink is called explicitly. In the future I'm planning reaping such dead caches on vmpressure or periodically. Second, it substitutes per memcg slab_caches_mutex's with the global memcg_slab_mutex, which should be taken during the whole per memcg cache creation/destruction path before the slab_mutex (see patch 3). This greatly simplifies synchronization among various per memcg cache creation/destruction paths. I'm still not quite sure about the end picture, in particular I don't know whether we should reap dead memcgs' kmem caches periodically or try to merge them with their parents (see https://lkml.org/lkml/2014/4/20/38 for more details), but whichever way we choose, this set looks like a reasonable change to me, because it greatly simplifies kmemcg work-flows and eases further development. This patch (of 3): After a memcg is offlined, we mark its kmem caches that cannot be deleted right now due to pending objects as dead by setting the memcg_cache_params::dead flag, so that memcg_release_pages will schedule cache destruction (memcg_cache_params::destroy) as soon as the last slab of the cache is freed (memcg_cache_params::nr_pages drops to zero). I guess the idea was to destroy the caches as soon as possible, i.e. immediately after freeing the last object. However, it just doesn't work that way, because kmem caches always preserve some pages for the sake of performance, so that nr_pages never gets to zero unless the cache is shrunk explicitly using kmem_cache_shrink. Of course, we could account the total number of objects on the cache or check if all the slabs allocated for the cache are empty on kmem_cache_free and schedule destruction if so, but that would be too costly. Thus we have a piece of code that works only when we explicitly call kmem_cache_shrink, but complicates the whole picture a lot. Moreover, it's racy in fact. For instance, kmem_cache_shrink may free the last slab and thus schedule cache destruction before it finishes checking that the cache is empty, which can lead to use-after-free. So I propose to remove this async cache destruction from memcg_release_pages, and check if the cache is empty explicitly after calling kmem_cache_shrink instead. This will simplify things a lot w/o introducing any functional changes. And regarding dead memcg caches (i.e. those that are left hanging around after memcg offline for they have objects), I suppose we should reap them either periodically or on vmpressure as Glauber suggested initially. I'm going to implement this later. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: get_online_mems for kmem_cache_{create,destroy,shrink}Vladimir Davydov2014-06-051-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When we create a sl[au]b cache, we allocate kmem_cache_node structures for each online NUMA node. To handle nodes taken online/offline, we register memory hotplug notifier and allocate/free kmem_cache_node corresponding to the node that changes its state for each kmem cache. To synchronize between the two paths we hold the slab_mutex during both the cache creationg/destruction path and while tuning per-node parts of kmem caches in memory hotplug handler, but that's not quite right, because it does not guarantee that a newly created cache will have all kmem_cache_nodes initialized in case it races with memory hotplug. For instance, in case of slub: CPU0 CPU1 ---- ---- kmem_cache_create: online_pages: __kmem_cache_create: slab_memory_callback: slab_mem_going_online_callback: lock slab_mutex for each slab_caches list entry allocate kmem_cache node unlock slab_mutex lock slab_mutex init_kmem_cache_nodes: for_each_node_state(node, N_NORMAL_MEMORY) allocate kmem_cache node add kmem_cache to slab_caches list unlock slab_mutex online_pages (continued): node_states_set_node As a result we'll get a kmem cache with not all kmem_cache_nodes allocated. To avoid issues like that we should hold get/put_online_mems() during the whole kmem cache creation/destruction/shrink paths, just like we deal with cpu hotplug. This patch does the trick. Note, that after it's applied, there is no need in taking the slab_mutex for kmem_cache_shrink any more, so it is removed from there. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* sl[au]b: charge slabs to kmemcg explicitlyVladimir Davydov2014-06-051-0/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | We have only a few places where we actually want to charge kmem so instead of intruding into the general page allocation path with __GFP_KMEMCG it's better to explictly charge kmem there. All kmem charges will be easier to follow that way. This is a step towards removing __GFP_KMEMCG. It removes __GFP_KMEMCG from memcg caches' allocflags. Instead it makes slab allocation path call memcg_charge_kmem directly getting memcg to charge from the cache's memcg params. This also eliminates any possibility of misaccounting an allocation going from one memcg's cache to another memcg, because now we always charge slabs against the memcg the cache belongs to. That's why this patch removes the big comment to memcg_kmem_get_cache. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slub: use sysfs'es release mechanism for kmem_cacheChristoph Lameter2014-05-061-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | debugobjects warning during netfilter exit: ------------[ cut here ]------------ WARNING: CPU: 6 PID: 4178 at lib/debugobjects.c:260 debug_print_object+0x8d/0xb0() ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x20 Modules linked in: CPU: 6 PID: 4178 Comm: kworker/u16:2 Tainted: G W 3.11.0-next-20130906-sasha #3984 Workqueue: netns cleanup_net Call Trace: dump_stack+0x52/0x87 warn_slowpath_common+0x8c/0xc0 warn_slowpath_fmt+0x46/0x50 debug_print_object+0x8d/0xb0 __debug_check_no_obj_freed+0xa5/0x220 debug_check_no_obj_freed+0x15/0x20 kmem_cache_free+0x197/0x340 kmem_cache_destroy+0x86/0xe0 nf_conntrack_cleanup_net_list+0x131/0x170 nf_conntrack_pernet_exit+0x5d/0x70 ops_exit_list+0x5e/0x70 cleanup_net+0xfb/0x1c0 process_one_work+0x338/0x550 worker_thread+0x215/0x350 kthread+0xe7/0xf0 ret_from_fork+0x7c/0xb0 Also during dcookie cleanup: WARNING: CPU: 12 PID: 9725 at lib/debugobjects.c:260 debug_print_object+0x8c/0xb0() ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x20 Modules linked in: CPU: 12 PID: 9725 Comm: trinity-c141 Not tainted 3.15.0-rc2-next-20140423-sasha-00018-gc4ff6c4 #408 Call Trace: dump_stack (lib/dump_stack.c:52) warn_slowpath_common (kernel/panic.c:430) warn_slowpath_fmt (kernel/panic.c:445) debug_print_object (lib/debugobjects.c:262) __debug_check_no_obj_freed (lib/debugobjects.c:697) debug_check_no_obj_freed (lib/debugobjects.c:726) kmem_cache_free (mm/slub.c:2689 mm/slub.c:2717) kmem_cache_destroy (mm/slab_common.c:363) dcookie_unregister (fs/dcookies.c:302 fs/dcookies.c:343) event_buffer_release (arch/x86/oprofile/../../../drivers/oprofile/event_buffer.c:153) __fput (fs/file_table.c:217) ____fput (fs/file_table.c:253) task_work_run (kernel/task_work.c:125 (discriminator 1)) do_notify_resume (include/linux/tracehook.h:196 arch/x86/kernel/signal.c:751) int_signal (arch/x86/kernel/entry_64.S:807) Sysfs has a release mechanism. Use that to release the kmem_cache structure if CONFIG_SYSFS is enabled. Only slub is changed - slab currently only supports /proc/slabinfo and not /sys/kernel/slab/*. We talked about adding that and someone was working on it. [akpm@linux-foundation.org: fix CONFIG_SYSFS=n build] [akpm@linux-foundation.org: fix CONFIG_SYSFS=n build even more] Signed-off-by: Christoph Lameter <cl@linux.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Greg KH <greg@kroah.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Pekka Enberg <penberg@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Bart Van Assche <bvanassche@acm.org> Cc: Al Viro <viro@ZenIV.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg, slab: never try to merge memcg cachesVladimir Davydov2014-04-081-17/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a kmem cache is created (kmem_cache_create_memcg()), we first try to find a compatible cache that already exists and can handle requests from the new cache, i.e. has the same object size, alignment, ctor, etc. If there is such a cache, we do not create any new caches, instead we simply increment the refcount of the cache found and return it. Currently we do this procedure not only when creating root caches, but also for memcg caches. However, there is no point in that, because, as every memcg cache has exactly the same parameters as its parent and cache merging cannot be turned off in runtime (only on boot by passing "slub_nomerge"), the root caches of any two potentially mergeable memcg caches should be merged already, i.e. it must be the same root cache, and therefore we couldn't even get to the memcg cache creation, because it already exists. The only exception is boot caches - they are explicitly forbidden to be merged by setting their refcount to -1. There are currently only two of them - kmem_cache and kmem_cache_node, which are used in slab internals (I do not count kmalloc caches as their refcount is set to 1 immediately after creation). Since they are prevented from merging preliminary I guess we should avoid to merge their children too. So let's remove the useless code responsible for merging memcg caches. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg, slab: RCU protect memcg_params for root cachesVladimir Davydov2014-01-241-1/+15
| | | | | | | | | | | | | | | | | | | | We relocate root cache's memcg_params whenever we need to grow the memcg_caches array to accommodate all kmem-active memory cgroups. Currently on relocation we free the old version immediately, which can lead to use-after-free, because the memcg_caches array is accessed lock-free (see cache_from_memcg_idx()). This patch fixes this by making memcg_params RCU-protected for root caches. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg, slab: fix barrier usage when accessing memcg_cachesVladimir Davydov2014-01-241-1/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Each root kmem_cache has pointers to per-memcg caches stored in its memcg_params::memcg_caches array. Whenever we want to allocate a slab for a memcg, we access this array to get per-memcg cache to allocate from (see memcg_kmem_get_cache()). The access must be lock-free for performance reasons, so we should use barriers to assert the kmem_cache is up-to-date. First, we should place a write barrier immediately before setting the pointer to it in the memcg_caches array in order to make sure nobody will see a partially initialized object. Second, we should issue a read barrier before dereferencing the pointer to conform to the write barrier. However, currently the barrier usage looks rather strange. We have a write barrier *after* setting the pointer and a read barrier *before* reading the pointer, which is incorrect. This patch fixes this. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg, kmem: rename cache_from_memcg to cache_from_memcg_idxQiang Huang2013-11-131-2/+4
| | | | | | | | | | | | | | We can't see the relationship with memcg from the parameters, so the name with memcg_idx would be more reasonable. Signed-off-by: Qiang Huang <h.huangqiang@huawei.com> Reviewed-by: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg: check that kmem_cache has memcg_params before accessing itAndrey Vagin2013-08-291-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If the system had a few memory groups and all of them were destroyed, memcg_limited_groups_array_size has non-zero value, but all new caches are created without memcg_params, because memcg_kmem_enabled() returns false. We try to enumirate child caches in a few places and all of them are potentially dangerous. For example my kernel is compiled with CONFIG_SLAB and it crashed when I tryed to mount a NFS share after a few experiments with kmemcg. BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 IP: [<ffffffff8118166a>] do_tune_cpucache+0x8a/0xd0 PGD b942a067 PUD b999f067 PMD 0 Oops: 0000 [#1] SMP Modules linked in: fscache(+) ip6table_filter ip6_tables iptable_filter ip_tables i2c_piix4 pcspkr virtio_net virtio_balloon i2c_core floppy CPU: 0 PID: 357 Comm: modprobe Not tainted 3.11.0-rc7+ #59 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff8800b9f98240 ti: ffff8800ba32e000 task.ti: ffff8800ba32e000 RIP: 0010:[<ffffffff8118166a>] [<ffffffff8118166a>] do_tune_cpucache+0x8a/0xd0 RSP: 0018:ffff8800ba32fb70 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000006 RDX: 0000000000000000 RSI: ffff8800b9f98910 RDI: 0000000000000246 RBP: ffff8800ba32fba0 R08: 0000000000000002 R09: 0000000000000004 R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000010 R13: 0000000000000008 R14: 00000000000000d0 R15: ffff8800375d0200 FS: 00007f55f1378740(0000) GS:ffff8800bfa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007f24feba57a0 CR3: 0000000037b51000 CR4: 00000000000006f0 Call Trace: enable_cpucache+0x49/0x100 setup_cpu_cache+0x215/0x280 __kmem_cache_create+0x2fa/0x450 kmem_cache_create_memcg+0x214/0x350 kmem_cache_create+0x2b/0x30 fscache_init+0x19b/0x230 [fscache] do_one_initcall+0xfa/0x1b0 load_module+0x1c41/0x26d0 SyS_finit_module+0x86/0xb0 system_call_fastpath+0x16/0x1b Signed-off-by: Andrey Vagin <avagin@openvz.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/slab: Give s_next and s_stop slab-specific namesWanpeng Li2013-07-081-2/+2
| | | | | | | | Give s_next and s_stop slab-specific names instead of exporting "s_next" and "s_stop". Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
* mm/slab: Sharing s_next and s_stop between slab and slubWanpeng Li2013-07-071-0/+3
| | | | | | | | This patch shares s_next and s_stop between slab and slub. Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
* slab: Common definition for kmem_cache_nodeChristoph Lameter2013-02-011-0/+32
| | | | | | | | | Put the definitions for the kmem_cache_node structures together so that we have one structure. That will allow us to create more common fields in the future which could yield more opportunities to share code. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
* slab: Rename list3/l3 to nodeChristoph Lameter2013-02-011-1/+1
| | | | | | | | The list3 or l3 pointers are pointing to per node structures. Reflect that in the names of variables used. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
* slab: Common Kmalloc cache determinationChristoph Lameter2013-02-011-0/+3
| | | | | | | | | | | | | Extract the optimized lookup functions from slub and put them into slab_common.c. Then make slab use these functions as well. Joonsoo notes that this fixes some issues with constant folding which also reduces the code size for slub. https://lkml.org/lkml/2012/10/20/82 Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
* slab: Common function to create the kmalloc arrayChristoph Lameter2013-02-011-0/+6
| | | | | | | | | | | | | The kmalloc array is created in similar ways in both SLAB and SLUB. Create a common function and have both allocators call that function. V1->V2: Whitespace cleanup Reviewed-by: Glauber Costa <glommer@parallels.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
* slab: propagate tunable valuesGlauber Costa2012-12-191-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SLAB allows us to tune a particular cache behavior with tunables. When creating a new memcg cache copy, we'd like to preserve any tunables the parent cache already had. This could be done by an explicit call to do_tune_cpucache() after the cache is created. But this is not very convenient now that the caches are created from common code, since this function is SLAB-specific. Another method of doing that is taking advantage of the fact that do_tune_cpucache() is always called from enable_cpucache(), which is called at cache initialization. We can just preset the values, and then things work as expected. It can also happen that a root cache has its tunables updated during normal system operation. In this case, we will propagate the change to all caches that are already active. This change will require us to move the assignment of root_cache in memcg_params a bit earlier. We need this to be already set - which memcg_kmem_register_cache will do - when we reach __kmem_cache_create() Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg: aggregate memcg cache values in slabinfoGlauber Costa2012-12-191-0/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | When we create caches in memcgs, we need to display their usage information somewhere. We'll adopt a scheme similar to /proc/meminfo, with aggregate totals shown in the global file, and per-group information stored in the group itself. For the time being, only reads are allowed in the per-group cache. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg: destroy memcg cachesGlauber Costa2012-12-191-0/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Implement destruction of memcg caches. Right now, only caches where our reference counter is the last remaining are deleted. If there are any other reference counters around, we just leave the caches lying around until they go away. When that happens, a destruction function is called from the cache code. Caches are only destroyed in process context, so we queue them up for later processing in the general case. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>