summaryrefslogtreecommitdiffstats
path: root/mm/swap.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* mm: introduce MADV_COLDMinchan Kim2019-09-261-0/+42
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "Introduce MADV_COLD and MADV_PAGEOUT", v7. - Background The Android terminology used for forking a new process and starting an app from scratch is a cold start, while resuming an existing app is a hot start. While we continually try to improve the performance of cold starts, hot starts will always be significantly less power hungry as well as faster so we are trying to make hot start more likely than cold start. To increase hot start, Android userspace manages the order that apps should be killed in a process called ActivityManagerService. ActivityManagerService tracks every Android app or service that the user could be interacting with at any time and translates that into a ranked list for lmkd(low memory killer daemon). They are likely to be killed by lmkd if the system has to reclaim memory. In that sense they are similar to entries in any other cache. Those apps are kept alive for opportunistic performance improvements but those performance improvements will vary based on the memory requirements of individual workloads. - Problem Naturally, cached apps were dominant consumers of memory on the system. However, they were not significant consumers of swap even though they are good candidate for swap. Under investigation, swapping out only begins once the low zone watermark is hit and kswapd wakes up, but the overall allocation rate in the system might trip lmkd thresholds and cause a cached process to be killed(we measured performance swapping out vs. zapping the memory by killing a process. Unsurprisingly, zapping is 10x times faster even though we use zram which is much faster than real storage) so kill from lmkd will often satisfy the high zone watermark, resulting in very few pages actually being moved to swap. - Approach The approach we chose was to use a new interface to allow userspace to proactively reclaim entire processes by leveraging platform information. This allowed us to bypass the inaccuracy of the kernel’s LRUs for pages that are known to be cold from userspace and to avoid races with lmkd by reclaiming apps as soon as they entered the cached state. Additionally, it could provide many chances for platform to use much information to optimize memory efficiency. To achieve the goal, the patchset introduce two new options for madvise. One is MADV_COLD which will deactivate activated pages and the other is MADV_PAGEOUT which will reclaim private pages instantly. These new options complement MADV_DONTNEED and MADV_FREE by adding non-destructive ways to gain some free memory space. MADV_PAGEOUT is similar to MADV_DONTNEED in a way that it hints the kernel that memory region is not currently needed and should be reclaimed immediately; MADV_COLD is similar to MADV_FREE in a way that it hints the kernel that memory region is not currently needed and should be reclaimed when memory pressure rises. This patch (of 5): When a process expects no accesses to a certain memory range, it could give a hint to kernel that the pages can be reclaimed when memory pressure happens but data should be preserved for future use. This could reduce workingset eviction so it ends up increasing performance. This patch introduces the new MADV_COLD hint to madvise(2) syscall. MADV_COLD can be used by a process to mark a memory range as not expected to be used in the near future. The hint can help kernel in deciding which pages to evict early during memory pressure. It works for every LRU pages like MADV_[DONTNEED|FREE]. IOW, It moves active file page -> inactive file LRU active anon page -> inacdtive anon LRU Unlike MADV_FREE, it doesn't move active anonymous pages to inactive file LRU's head because MADV_COLD is a little bit different symantic. MADV_FREE means it's okay to discard when the memory pressure because the content of the page is *garbage* so freeing such pages is almost zero overhead since we don't need to swap out and access afterward causes just minor fault. Thus, it would make sense to put those freeable pages in inactive file LRU to compete other used-once pages. It makes sense for implmentaion point of view, too because it's not swapbacked memory any longer until it would be re-dirtied. Even, it could give a bonus to make them be reclaimed on swapless system. However, MADV_COLD doesn't mean garbage so reclaiming them requires swap-out/in in the end so it's bigger cost. Since we have designed VM LRU aging based on cost-model, anonymous cold pages would be better to position inactive anon's LRU list, not file LRU. Furthermore, it would help to avoid unnecessary scanning if system doesn't have a swap device. Let's start simpler way without adding complexity at this moment. However, keep in mind, too that it's a caveat that workloads with a lot of pages cache are likely to ignore MADV_COLD on anonymous memory because we rarely age anonymous LRU lists. * man-page material MADV_COLD (since Linux x.x) Pages in the specified regions will be treated as less-recently-accessed compared to pages in the system with similar access frequencies. In contrast to MADV_FREE, the contents of the region are preserved regardless of subsequent writes to pages. MADV_COLD cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP pages. [akpm@linux-foundation.org: resolve conflicts with hmm.git] Link: http://lkml.kernel.org/r/20190726023435.214162-2-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: kbuild test robot <lkp@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Chris Zankel <chris@zankel.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: move mem_cgroup_uncharge out of __page_cache_release()Yang Shi2019-09-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | A later patch makes THP deferred split shrinker memcg aware, but it needs page->mem_cgroup information in THP destructor, which is called after mem_cgroup_uncharge() now. So move mem_cgroup_uncharge() from __page_cache_release() to compound page destructor, which is called by both THP and other compound pages except HugeTLB. And call it in __put_single_page() for single order page. Link: http://lkml.kernel.org/r/1565144277-36240-3-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: replace list_move_tail() with add_page_to_lru_list_tail()Yu Zhao2019-09-251-8/+6
| | | | | | | | | | | | | | | | This is a cleanup patch that replaces two historical uses of list_move_tail() with relatively recent add_page_to_lru_list_tail(). Link: http://lkml.kernel.org/r/20190716212436.7137-1-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* docs: admin-guide: move sysctl directory to itMauro Carvalho Chehab2019-07-151-1/+1
| | | | | | | | The stuff under sysctl describes /sys interface from userspace point of view. So, add it to the admin-guide and remove the :orphan: from its index file. Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
* docs: sysctl: convert to ReSTMauro Carvalho Chehab2019-07-151-1/+1
| | | | | | | | | | | | | | | | | Rename the /proc/sys/ documentation files to ReST, using the README file as a template for an index.rst, adding the other files there via TOC markup. Despite being written on different times with different styles, try to make them somewhat coherent with a similar look and feel, ensuring that they'll look nice as both raw text file and as via the html output produced by the Sphinx build system. At its new index.rst, let's add a :orphan: while this is not linked to the main index.rst file, in order to avoid build warnings. Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
* mm/swap: fix release_pages() when releasing devmap pagesIra Weiny2019-07-021-4/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | release_pages() is an optimized version of a loop around put_page(). Unfortunately for devmap pages the logic is not entirely correct in release_pages(). This is because device pages can be more than type MEMORY_DEVICE_PUBLIC. There are in fact 4 types, private, public, FS DAX, and PCI P2PDMA. Some of these have specific needs to "put" the page while others do not. This logic to handle any special needs is contained in put_devmap_managed_page(). Therefore all devmap pages should be processed by this function where we can contain the correct logic for a page put. Handle all device type pages within release_pages() by calling put_devmap_managed_page() on all devmap pages. If put_devmap_managed_page() returns true the page has been put and we continue with the next page. A false return of put_devmap_managed_page() means the page did not require special processing and should fall to "normal" processing. This was found via code inspection while determining if release_pages() and the new put_user_pages() could be interchangeable.[1] [1] https://lkml.kernel.org/r/20190523172852.GA27175@iweiny-DESK2.sc.intel.com Link: https://lkml.kernel.org/r/20190605214922.17684-1-ira.weiny@intel.com Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
* treewide: Add SPDX license identifier for missed filesThomas Gleixner2019-05-211-0/+1
| | | | | | | | | | | | | | | | | Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* mm/swap.c: __pagevec_lru_add_fn: typo fixPeng Fan2019-05-141-1/+1
| | | | | | | | | | | | | There is no function named munlock_vma_pages(). Correct it to munlock_vma_page(). Link: http://lkml.kernel.org/r/20190402095609.27181-1-peng.fan@nxp.com Signed-off-by: Peng Fan <peng.fan@nxp.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mukesh Ojha <mojha@codeaurora.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove zone_lru_lock() function, access ->lru_lock directlyAndrey Ryabinin2019-03-061-8/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | We have common pattern to access lru_lock from a page pointer: zone_lru_lock(page_zone(page)) Which is silly, because it unfolds to this: &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock while we can simply do &NODE_DATA(page_to_nid(page))->lru_lock Remove zone_lru_lock() function, since it's only complicate things. Use 'page_pgdat(page)->lru_lock' pattern instead. [aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()] Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: handle lru_add_drain_all for UP properlyMichal Hocko2019-02-211-7/+10
| | | | | | | | | | | | | | | | | | | | | | | | | Since for_each_cpu(cpu, mask) added by commit 2d3854a37e8b767a ("cpumask: introduce new API, without changing anything") did not evaluate the mask argument if NR_CPUS == 1 due to CONFIG_SMP=n, lru_add_drain_all() is hitting WARN_ON() at __flush_work() added by commit 4d43d395fed12463 ("workqueue: Try to catch flush_work() without INIT_WORK().") by unconditionally calling flush_work() [1]. Workaround this issue by using CONFIG_SMP=n specific lru_add_drain_all implementation. There is no real need to defer the implementation to the workqueue as the draining is going to happen on the local cpu. So alias lru_add_drain_all to lru_add_drain which does all the necessary work. [akpm@linux-foundation.org: fix various build warnings] [1] https://lkml.kernel.org/r/18a30387-6aa5-6123-e67c-57579ecc3f38@roeck-us.net Link: http://lkml.kernel.org/r/20190213124334.GH4525@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Guenter Roeck <linux@roeck-us.net> Debugged-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* fs: don't open code lru_to_page()Nikolay Borisov2019-01-041-1/+1
| | | | | | | | | | | | | | | | | | | Multiple filesystems open code lru_to_page(). Rectify this by moving the macro from mm_inline (which is specific to lru stuff) to the more generic mm.h header and start using the macro where appropriate. No functional changes. Link: http://lkml.kernel.org/r/20181129104810.23361-1-nborisov@suse.com Link: https://lkml.kernel.org/r/20181129075301.29087-1-nborisov@suse.com Signed-off-by: Nikolay Borisov <nborisov@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Pankaj gupta <pagupta@redhat.com> Acked-by: "Yan, Zheng" <zyan@redhat.com> [ceph] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: convert totalram_pages and totalhigh_pages variables to atomicArun KS2018-12-281-1/+1
| | | | | | | | | | | | | | | | | | | | | | | totalram_pages and totalhigh_pages are made static inline function. Main motivation was that managed_page_count_lock handling was complicating things. It was discussed in length here, https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes better to remove the lock and convert variables to atomic, with preventing poteintial store-to-read tearing as a bonus. [akpm@linux-foundation.org: coding style fixes] Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.org Signed-off-by: Arun KS <arunks@codeaurora.org> Suggested-by: Michal Hocko <mhocko@suse.com> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: Replace spin_is_locked() with lockdepLance Roy2018-11-121-2/+1
| | | | | | | | | | | | | | | | | | | lockdep_assert_held() is better suited to checking locking requirements, since it only checks if the current thread holds the lock regardless of whether someone else does. This is also a step towards possibly removing spin_is_locked(). Signed-off-by: Lance Roy <ldr709@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Shakeel Butt <shakeelb@google.com> Cc: <linux-mm@kvack.org> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
* Merge branch 'xarray' of git://git.infradead.org/users/willy/linux-daxLinus Torvalds2018-10-281-3/+3
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull XArray conversion from Matthew Wilcox: "The XArray provides an improved interface to the radix tree data structure, providing locking as part of the API, specifying GFP flags at allocation time, eliminating preloading, less re-walking the tree, more efficient iterations and not exposing RCU-protected pointers to its users. This patch set 1. Introduces the XArray implementation 2. Converts the pagecache to use it 3. Converts memremap to use it The page cache is the most complex and important user of the radix tree, so converting it was most important. Converting the memremap code removes the only other user of the multiorder code, which allows us to remove the radix tree code that supported it. I have 40+ followup patches to convert many other users of the radix tree over to the XArray, but I'd like to get this part in first. The other conversions haven't been in linux-next and aren't suitable for applying yet, but you can see them in the xarray-conv branch if you're interested" * 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits) radix tree: Remove multiorder support radix tree test: Convert multiorder tests to XArray radix tree tests: Convert item_delete_rcu to XArray radix tree tests: Convert item_kill_tree to XArray radix tree tests: Move item_insert_order radix tree test suite: Remove multiorder benchmarking radix tree test suite: Remove __item_insert memremap: Convert to XArray xarray: Add range store functionality xarray: Move multiorder_check to in-kernel tests xarray: Move multiorder_shrink to kernel tests xarray: Move multiorder account test in-kernel radix tree test suite: Convert iteration test to XArray radix tree test suite: Convert tag_tagged_items to XArray radix tree: Remove radix_tree_clear_tags radix tree: Remove radix_tree_maybe_preload_order radix tree: Remove split/join code radix tree: Remove radix_tree_update_node_t page cache: Finish XArray conversion dax: Convert page fault handlers to XArray ...
| * pagevec: Use xa_mark_tMatthew Wilcox2018-10-211-2/+2
| | | | | | | | | | | | Removes sparse warnings. Signed-off-by: Matthew Wilcox <willy@infradead.org>
| * xarray: Replace exceptional entriesMatthew Wilcox2018-09-301-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | Introduce xarray value entries and tagged pointers to replace radix tree exceptional entries. This is a slight change in encoding to allow the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a value entry). It is also a change in emphasis; exceptional entries are intimidating and different. As the comment explains, you can choose to store values or pointers in the xarray and they are both first-class citizens. Signed-off-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Josef Bacik <jbacik@fb.com>
* | mm/swap.c: remove duplicated includeYueHaibing2018-10-271-1/+0
|/ | | | | | | | | | Remove duplicated include linux/memremap.h Link: http://lkml.kernel.org/r/20180917131308.16420-1-yuehaibing@huawei.com Signed-off-by: YueHaibing <yuehaibing@huawei.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: introduce MEMORY_DEVICE_FS_DAX and CONFIG_DEV_PAGEMAP_OPSDan Williams2018-05-221-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In preparation for fixing dax-dma-vs-unmap issues, filesystems need to be able to rely on the fact that they will get wakeups on dev_pagemap page-idle events. Introduce MEMORY_DEVICE_FS_DAX and generic_dax_page_free() as common indicator / infrastructure for dax filesytems to require. With this change there are no users of the MEMORY_DEVICE_HOST designation, so remove it. The HMM sub-system extended dev_pagemap to arrange a callback when a dev_pagemap managed page is freed. Since a dev_pagemap page is free / idle when its reference count is 1 it requires an additional branch to check the page-type at put_page() time. Given put_page() is a hot-path we do not want to incur that check if HMM is not in use, so a static branch is used to avoid that overhead when not necessary. Now, the FS_DAX implementation wants to reuse this mechanism for receiving dev_pagemap ->page_free() callbacks. Rework the HMM-specific static-key into a generic mechanism that either HMM or FS_DAX code paths can enable. For ARCH=um builds, and any other arch that lacks ZONE_DEVICE support, care must be taken to compile out the DEV_PAGEMAP_OPS infrastructure. However, we still need to support FS_DAX in the FS_DAX_LIMITED case implemented by the s390/dcssblk driver. Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Thomas Meyer <thomas@m3y3r.de> Reported-by: Dave Jiang <dave.jiang@intel.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* mm/swap.c: remove @cold parameter description for release_pages()Mike Rapoport2018-04-061-1/+0
| | | | | | | | | | | | | The 'cold' parameter was removed from release_pages function by commit c6f92f9fbe7d ("mm: remove cold parameter for release_pages"). Update the description to match the code. Link: http://lkml.kernel.org/r/1519585191-10180-3-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/swap.c: make functions and their kernel-doc agree (again)Mike Rapoport2018-02-221-1/+1
| | | | | | | | | | | | | | | | | | There was a conflict between the commit e02a9f048ef7 ("mm/swap.c: make functions and their kernel-doc agree") and the commit f144c390f905 ("mm: docs: fix parameter names mismatch") that both tried to fix mismatch betweeen pagevec_lookup_entries() parameter names and their description. Since nr_entries is a better name for the parameter, fix the description again. Link: http://lkml.kernel.org/r/1518116946-20947-1-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Acked-by: Randy Dunlap <rdunlap@infradead.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, mlock, vmscan: no more skipping pagevecsShakeel Butt2018-02-221-35/+47
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a thread mlocks an address space backed either by file pages which are currently not present in memory or swapped out anon pages (not in swapcache), a new page is allocated and added to the local pagevec (lru_add_pvec), I/O is triggered and the thread then sleeps on the page. On I/O completion, the thread can wake on a different CPU, the mlock syscall will then sets the PageMlocked() bit of the page but will not be able to put that page in unevictable LRU as the page is on the pagevec of a different CPU. Even on drain, that page will go to evictable LRU because the PageMlocked() bit is not checked on pagevec drain. The page will eventually go to right LRU on reclaim but the LRU stats will remain skewed for a long time. This patch puts all the pages, even unevictable, to the pagevecs and on the drain, the pages will be added on their LRUs correctly by checking their evictability. This resolves the mlocked pages on pagevec of other CPUs issue because when those pagevecs will be drained, the mlocked file pages will go to unevictable LRU. Also this makes the race with munlock easier to resolve because the pagevec drains happen in LRU lock. However there is still one place which makes a page evictable and does PageLRU check on that page without LRU lock and needs special attention. TestClearPageMlocked() and isolate_lru_page() in clear_page_mlock(). #0: __pagevec_lru_add_fn #1: clear_page_mlock SetPageLRU() if (!TestClearPageMlocked()) return smp_mb() // <--required // inside does PageLRU if (!PageMlocked()) if (isolate_lru_page()) move to evictable LRU putback_lru_page() else move to unevictable LRU In '#1', TestClearPageMlocked() provides full memory barrier semantics and thus the PageLRU check (inside isolate_lru_page) can not be reordered before it. In '#0', without explicit memory barrier, the PageMlocked() check can be reordered before SetPageLRU(). If that happens, '#0' can put a page in unevictable LRU and '#1' might have just cleared the Mlocked bit of that page but fails to isolate as PageLRU fails as '#0' still hasn't set PageLRU bit of that page. That page will be stranded on the unevictable LRU. There is one (good) side effect though. Without this patch, the pages allocated for System V shared memory segment are added to evictable LRUs even after shmctl(SHM_LOCK) on that segment. This patch will correctly put such pages to unevictable LRU. Link: http://lkml.kernel.org/r/20171121211241.18877-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shaohua Li <shli@fb.com> Cc: Jan Kara <jack@suse.cz> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: docs: fix parameter names mismatchMike Rapoport2018-02-071-2/+2
| | | | | | | | | | | There are several places where parameter descriptions do no match the actual code. Fix it. Link: http://lkml.kernel.org/r/1516700871-22279-3-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/swap.c: make functions and their kernel-doc agreeRandy Dunlap2018-02-011-6/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix some basic kernel-doc notation in mm/swap.c: - for function lru_cache_add_anon(), make its kernel-doc function name match its function name and change colon to hyphen following the function name - for function pagevec_lookup_entries(), change the function parameter name from nr_pages to nr_entries since that is more descriptive of what the parameter actually is and then it matches the kernel-doc comments also Fix function kernel-doc to match the change in commit 67fd707f4681: - drop the kernel-doc notation for @nr_pages from pagevec_lookup_range() and correct the function description for that change Link: http://lkml.kernel.org/r/3b42ee3e-04a9-a6ca-6be4-f00752a114fe@infradead.org Fixes: 67fd707f4681 ("mm: remove nr_pages argument from pagevec_lookup_{,range}_tag()") Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: drop hotplug lock from lru_add_drain_all()Michal Hocko2018-02-011-8/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pulling cpu hotplug locks inside the mm core function like lru_add_drain_all just asks for problems and the recent lockdep splat [1] just proves this. While the usage in that particular case might be wrong we should avoid the locking as lru_add_drain_all() is used in many places. It seems that this is not all that hard to achieve actually. We have done the same thing for drain_all_pages which is analogous by commit a459eeb7b852 ("mm, page_alloc: do not depend on cpu hotplug locks inside the allocator"). All we have to care about is to handle - the work item might be executed on a different cpu in worker from unbound pool so it doesn't run on pinned on the cpu - we have to make sure that we do not race with page_alloc_cpu_dead calling lru_add_drain_cpu the first part is already handled because the worker calls lru_add_drain which disables preemption when calling lru_add_drain_cpu on the local cpu it is draining. The later is true because page_alloc_cpu_dead is called on the controlling CPU after the hotplugged CPU vanished completely. [1] http://lkml.kernel.org/r/089e0825eec8955c1f055c83d476@google.com [add a cpu hotplug locking interaction as per tglx] Link: http://lkml.kernel.org/r/20171116120535.23765-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Tejun Heo <tj@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, pagevec: rename pagevec drained fieldMel Gorman2017-11-161-2/+2
| | | | | | | | | | | | | | | | | | According to Vlastimil Babka, the drained field in pagevec is potentially misleading because it might be interpreted as draining this pagevec instead of the percpu lru pagevecs. Rename the field for clarity. Link: http://lkml.kernel.org/r/20171019093346.ylahzdpzmoriyf4v@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove cold parameter from free_hot_cold_page*Mel Gorman2017-11-161-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Most callers users of free_hot_cold_page claim the pages being released are cache hot. The exception is the page reclaim paths where it is likely that enough pages will be freed in the near future that the per-cpu lists are going to be recycled and the cache hotness information is lost. As no one really cares about the hotness of pages being released to the allocator, just ditch the parameter. The APIs are renamed to indicate that it's no longer about hot/cold pages. It should also be less confusing as there are subtle differences between them. __free_pages drops a reference and frees a page when the refcount reaches zero. free_hot_cold_page handled pages whose refcount was already zero which is non-obvious from the name. free_unref_page should be more obvious. No performance impact is expected as the overhead is marginal. The parameter is removed simply because it is a bit stupid to have a useless parameter copied everywhere. [mgorman@techsingularity.net: add pages to head, not tail] Link: http://lkml.kernel.org/r/20171019154321.qtpzaeftoyyw4iey@techsingularity.net Link: http://lkml.kernel.org/r/20171018075952.10627-8-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove cold parameter for release_pagesMel Gorman2017-11-161-4/+4
| | | | | | | | | | | | | | | | | | | | | All callers of release_pages claim the pages being released are cache hot. As no one cares about the hotness of pages being released to the allocator, just ditch the parameter. No performance impact is expected as the overhead is marginal. The parameter is removed simply because it is a bit stupid to have a useless parameter copied everywhere. Link: http://lkml.kernel.org/r/20171018075952.10627-7-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, pagevec: remove cold parameter for pagevecsMel Gorman2017-11-161-2/+2
| | | | | | | | | | | | | | | | | | | | | | Every pagevec_init user claims the pages being released are hot even in cases where it is unlikely the pages are hot. As no one cares about the hotness of pages being released to the allocator, just ditch the parameter. No performance impact is expected as the overhead is marginal. The parameter is removed simply because it is a bit stupid to have a useless parameter copied everywhere. Link: http://lkml.kernel.org/r/20171018075952.10627-6-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: only drain per-cpu pagevecs once per pagevec usageMel Gorman2017-11-161-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a pagevec is initialised on the stack, it is generally used multiple times over a range of pages, looking up entries and then releasing them. On each pagevec_release, the per-cpu deferred LRU pagevecs are drained on the grounds the page being released may be on those queues and the pages may be cache hot. In many cases only the first drain is necessary as it's unlikely that the range of pages being walked is racing against LRU addition. Even if there is such a race, the impact is marginal where as constantly redraining the lru pagevecs costs. This patch ensures that pagevec is only drained once in a given lifecycle without increasing the cache footprint of the pagevec structure. Only sparsetruncate tiny is shown here as large files have many exceptional entries and calls pagecache_release less frequently. sparsetruncate (tiny) 4.14.0-rc4 4.14.0-rc4 batchshadow-v1r1 onedrain-v1r1 Min Time 141.00 ( 0.00%) 141.00 ( 0.00%) 1st-qrtle Time 142.00 ( 0.00%) 142.00 ( 0.00%) 2nd-qrtle Time 142.00 ( 0.00%) 142.00 ( 0.00%) 3rd-qrtle Time 143.00 ( 0.00%) 143.00 ( 0.00%) Max-90% Time 144.00 ( 0.00%) 144.00 ( 0.00%) Max-95% Time 146.00 ( 0.00%) 145.00 ( 0.68%) Max-99% Time 198.00 ( 0.00%) 194.00 ( 2.02%) Max Time 254.00 ( 0.00%) 208.00 ( 18.11%) Amean Time 145.12 ( 0.00%) 144.30 ( 0.56%) Stddev Time 12.74 ( 0.00%) 9.62 ( 24.49%) Coeff Time 8.78 ( 0.00%) 6.67 ( 24.06%) Best99%Amean Time 144.29 ( 0.00%) 143.82 ( 0.32%) Best95%Amean Time 142.68 ( 0.00%) 142.31 ( 0.26%) Best90%Amean Time 142.52 ( 0.00%) 142.19 ( 0.24%) Best75%Amean Time 142.26 ( 0.00%) 141.98 ( 0.20%) Best50%Amean Time 141.90 ( 0.00%) 141.71 ( 0.13%) Best25%Amean Time 141.80 ( 0.00%) 141.43 ( 0.26%) The impact on bonnie is marginal and within the noise because a significant percentage of the file being truncated has been reclaimed and consists of shadow entries which reduce the hotness of the pagevec_release path. Link: http://lkml.kernel.org/r/20171018075952.10627-5-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove nr_pages argument from pagevec_lookup_{,range}_tag()Jan Kara2017-11-161-2/+2
| | | | | | | | | | | All users of pagevec_lookup() and pagevec_lookup_range() now pass PAGEVEC_SIZE as a desired number of pages. Just drop the argument. Link: http://lkml.kernel.org/r/20171009151359.31984-15-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: add variant of pagevec_lookup_range_tag() taking number of pagesJan Kara2017-11-161-0/+9
| | | | | | | | | | | | | | Currently pagevec_lookup_range_tag() takes number of pages to look up but most users don't need this. Create a new function pagevec_lookup_range_nr_tag() that takes maximum number of pages to lookup for Ceph which wants this functionality so that we can drop nr_pages argument from pagevec_lookup_range_tag(). Link: http://lkml.kernel.org/r/20171009151359.31984-13-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: implement find_get_pages_range_tag()Jan Kara2017-11-161-4/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "Ranged pagevec tagged lookup", v3. In this series I provide a ranged variant of pagevec_lookup_tag() and use it in places where it makes sense. This series removes some common code and it also has a potential for speeding up some operations similarly as for pagevec_lookup_range() (but for now I can think of only artificial cases where this happens). This patch (of 16): Implement a variant of find_get_pages_tag() that stops iterating at given index. Lots of users of this function (through pagevec_lookup()) actually want a range lookup and all of them are currently open-coding this. Also create corresponding pagevec_lookup_range_tag() function. Link: http://lkml.kernel.org/r/20171009151359.31984-2-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Chao Yu <yuchao0@huawei.com> Cc: David Howells <dhowells@redhat.com> Cc: David Sterba <dsterba@suse.com> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steve French <sfrench@samba.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: "Yan, Zheng" <zyan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: avoid marking swap cached page as lazyfreeShaohua Li2017-10-041-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | MADV_FREE clears pte dirty bit and then marks the page lazyfree (clear SwapBacked). There is no lock to prevent the page is added to swap cache between these two steps by page reclaim. Page reclaim could add the page to swap cache and unmap the page. After page reclaim, the page is added back to lru. At that time, we probably start draining per-cpu pagevec and mark the page lazyfree. So the page could be in a state with SwapBacked cleared and PG_swapcache set. Next time there is a refault in the virtual address, do_swap_page can find the page from swap cache but the page has PageSwapCache false because SwapBacked isn't set, so do_swap_page will bail out and do nothing. The task will keep running into fault handler. Fixes: 802a3a92ad7a ("mm: reclaim MADV_FREE pages") Link: http://lkml.kernel.org/r/6537ef3814398c0073630b03f176263bc81f0902.1506446061.git.shli@fb.com Signed-off-by: Shaohua Li <shli@fb.com> Reported-by: Artem Savkov <asavkov@redhat.com> Tested-by: Artem Savkov <asavkov@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> [4.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/device-public-memory: device memory cache coherent with CPUJérôme Glisse2017-09-091-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Platform with advance system bus (like CAPI or CCIX) allow device memory to be accessible from CPU in a cache coherent fashion. Add a new type of ZONE_DEVICE to represent such memory. The use case are the same as for the un-addressable device memory but without all the corners cases. Link: http://lkml.kernel.org/r/20170817000548.32038-19-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove nr_pages argument from pagevec_lookup{,_range}()Jan Kara2017-09-071-3/+2
| | | | | | | | | | | | All users of pagevec_lookup() and pagevec_lookup_range() now pass PAGEVEC_SIZE as a desired number of pages. Just drop the argument. Link: http://lkml.kernel.org/r/20170726114704.7626-11-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: implement find_get_pages_range()Jan Kara2017-09-071-8/+14
| | | | | | | | | | | | | | | Implement a variant of find_get_pages() that stops iterating at given index. This may be substantial performance gain if the mapping is sparse. See following commit for details. Furthermore lots of users of this function (through pagevec_lookup()) actually want a range lookup and all of them are currently open-coding this. Also create corresponding pagevec_lookup_range() function. Link: http://lkml.kernel.org/r/20170726114704.7626-4-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: make pagevec_lookup() update indexJan Kara2017-09-071-2/+3
| | | | | | | | | | | Make pagevec_lookup() (and underlying find_get_pages()) update index to the next page where iteration should continue. Most callers want this and also pagevec_lookup_tag() already does this. Link: http://lkml.kernel.org/r/20170726114704.7626-3-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: swap: provide lru_add_drain_all_cpuslocked()Thomas Gleixner2017-07-111-3/+8
| | | | | | | | | | | | | | | | | | | | | | | | | The rework of the cpu hotplug locking unearthed potential deadlocks with the memory hotplug locking code. The solution for these is to rework the memory hotplug locking code as well and take the cpu hotplug lock before the memory hotplug lock in mem_hotplug_begin(), but this will cause a recursive locking of the cpu hotplug lock when the memory hotplug code calls lru_add_drain_all(). Split out the inner workings of lru_add_drain_all() into lru_add_drain_all_cpuslocked() so this function can be invoked from the memory hotplug code with the cpu hotplug lock held. Link: http://lkml.kernel.org/r/20170704093421.419329357@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: per-cgroup memory reclaim statsRoman Gushchin2017-07-071-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | Track the following reclaim counters for every memory cgroup: PGREFILL, PGSCAN, PGSTEAL, PGACTIVATE, PGDEACTIVATE, PGLAZYFREE and PGLAZYFREED. These values are exposed using the memory.stats interface of cgroup v2. The meaning of each value is the same as for global counters, available using /proc/vmstat. Also, for consistency, rename mem_cgroup_count_vm_event() to count_memcg_event_mm(). Link: http://lkml.kernel.org/r/1494530183-30808-1-git-send-email-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: move MADV_FREE pages into LRU_INACTIVE_FILE listShaohua Li2017-05-041-21/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | madv()'s MADV_FREE indicate pages are 'lazyfree'. They are still anonymous pages, but they can be freed without pageout. To distinguish these from normal anonymous pages, we clear their SwapBacked flag. MADV_FREE pages could be freed without pageout, so they pretty much like used once file pages. For such pages, we'd like to reclaim them once there is memory pressure. Also it might be unfair reclaiming MADV_FREE pages always before used once file pages and we definitively want to reclaim the pages before other anonymous and file pages. To speed up MADV_FREE pages reclaim, we put the pages into LRU_INACTIVE_FILE list. The rationale is LRU_INACTIVE_FILE list is tiny nowadays and should be full of used once file pages. Reclaiming MADV_FREE pages will not have much interfere of anonymous and active file pages. And the inactive file pages and MADV_FREE pages will be reclaimed according to their age, so we don't reclaim too many MADV_FREE pages too. Putting the MADV_FREE pages into LRU_INACTIVE_FILE_LIST also means we can reclaim the pages without swap support. This idea is suggested by Johannes. This patch doesn't move MADV_FREE pages to LRU_INACTIVE_FILE list yet to avoid bisect failure, next patch will do it. The patch is based on Minchan's original patch. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/2f87063c1e9354677b7618c647abde77b07561e5.1487965799.git.shli@fb.com Signed-off-by: Shaohua Li <shli@fb.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'x86-mm-for-linus' of ↵Linus Torvalds2017-05-021-0/+10
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 mm updates from Ingo Molnar: "The main x86 MM changes in this cycle were: - continued native kernel PCID support preparation patches to the TLB flushing code (Andy Lutomirski) - various fixes related to 32-bit compat syscall returning address over 4Gb in applications, launched from 64-bit binaries - motivated by C/R frameworks such as Virtuozzo. (Dmitry Safonov) - continued Intel 5-level paging enablement: in particular the conversion of x86 GUP to the generic GUP code. (Kirill A. Shutemov) - x86/mpx ABI corner case fixes/enhancements (Joerg Roedel) - ... plus misc updates, fixes and cleanups" * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits) mm, zone_device: Replace {get, put}_zone_device_page() with a single reference to fix pmem crash x86/mm: Fix flush_tlb_page() on Xen x86/mm: Make flush_tlb_mm_range() more predictable x86/mm: Remove flush_tlb() and flush_tlb_current_task() x86/vm86/32: Switch to flush_tlb_mm_range() in mark_screen_rdonly() x86/mm/64: Fix crash in remove_pagetable() Revert "x86/mm/gup: Switch GUP to the generic get_user_page_fast() implementation" x86/boot/e820: Remove a redundant self assignment x86/mm: Fix dump pagetables for 4 levels of page tables x86/mpx, selftests: Only check bounds-vs-shadow when we keep shadow x86/mpx: Correctly report do_mpx_bt_fault() failures to user-space Revert "x86/mm/numa: Remove numa_nodemask_from_meminfo()" x86/espfix: Add support for 5-level paging x86/kasan: Extend KASAN to support 5-level paging x86/mm: Add basic defines/helpers for CONFIG_X86_5LEVEL=y x86/paravirt: Add 5-level support to the paravirt code x86/mm: Define virtual memory map for 5-level paging x86/asm: Remove __VIRTUAL_MASK_SHIFT==47 assert x86/boot: Detect 5-level paging support x86/mm/numa: Remove numa_nodemask_from_meminfo() ...
| * mm, zone_device: Replace {get, put}_zone_device_page() with a single ↵Dan Williams2017-05-011-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | reference to fix pmem crash The x86 conversion to the generic GUP code included a small change which causes crashes and data corruption in the pmem code - not good. The root cause is that the /dev/pmem driver code implicitly relies on the x86 get_user_pages() implementation doing a get_page() on the page refcount, because get_page() does a get_zone_device_page() which properly refcounts pmem's separate page struct arrays that are not present in the regular page struct structures. (The pmem driver does this because it can cover huge memory areas.) But the x86 conversion to the generic GUP code changed the get_page() to page_cache_get_speculative() which is faster but doesn't do the get_zone_device_page() call the pmem code relies on. One way to solve the regression would be to change the generic GUP code to use get_page(), but that would slow things down a bit and punish other generic-GUP using architectures for an x86-ism they did not care about. (Arguably the pmem driver was probably not working reliably for them: but nvdimm is an Intel feature, so non-x86 exposure is probably still limited.) So restructure the pmem code's interface with the MM instead: get rid of the get/put_zone_device_page() distinction, integrate put_zone_device_page() into __put_page() and and restructure the pmem completion-wait and teardown machinery: Kirill points out that the calls to {get,put}_dev_pagemap() can be removed from the mm fast path if we take a single get_dev_pagemap() reference to signify that the page is alive and use the final put of the page to drop that reference. This does require some care to make sure that any waits for the percpu_ref to drop to zero occur *after* devm_memremap_page_release(), since it now maintains its own elevated reference. This speeds up things while also making the pmem refcounting more robust going forward. Suggested-by: Kirill Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Kirill Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/149339998297.24933.1129582806028305912.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | mm: move pcp and lru-pcp draining into single wqMichal Hocko2017-04-081-19/+8
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We currently have 2 specific WQ_RECLAIM workqueues in the mm code. vmstat_wq for updating pcp stats and lru_add_drain_wq dedicated to drain per cpu lru caches. This seems more than necessary because both can run on a single WQ. Both do not block on locks requiring a memory allocation nor perform any allocations themselves. We will save one rescuer thread this way. On the other hand drain_all_pages() queues work on the system wq which doesn't have rescuer and so this depend on memory allocation (when all workers are stuck allocating and new ones cannot be created). Initially we thought this would be more of a theoretical problem but Hugh Dickins has reported: : 4.11-rc has been giving me hangs after hours of swapping load. At : first they looked like memory leaks ("fork: Cannot allocate memory"); : but for no good reason I happened to do "cat /proc/sys/vm/stat_refresh" : before looking at /proc/meminfo one time, and the stat_refresh stuck : in D state, waiting for completion of flush_work like many kworkers. : kthreadd waiting for completion of flush_work in drain_all_pages(). This worker should be using WQ_RECLAIM as well in order to guarantee a forward progress. We can reuse the same one as for lru draining and vmstat. Link: http://lkml.kernel.org/r/20170307131751.24936-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Suggested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@suse.de> Tested-by: Yang Li <pku.leo@gmail.com> Tested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: vmscan: move dirty pages out of the way until they're flushedJohannes Weiner2017-02-251-4/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We noticed a performance regression when moving hadoop workloads from 3.10 kernels to 4.0 and 4.6. This is accompanied by increased pageout activity initiated by kswapd as well as frequent bursts of allocation stalls and direct reclaim scans. Even lowering the dirty ratios to the equivalent of less than 1% of memory would not eliminate the issue, suggesting that dirty pages concentrate where the scanner is looking. This can be traced back to recent efforts of thrash avoidance. Where 3.10 would not detect refaulting pages and continuously supply clean cache to the inactive list, a thrashing workload on 4.0+ will detect and activate refaulting pages right away, distilling used-once pages on the inactive list much more effectively. This is by design, and it makes sense for clean cache. But for the most part our workload's cache faults are refaults and its use-once cache is from streaming writes. We end up with most of the inactive list dirty, and we don't go after the active cache as long as we have use-once pages around. But waiting for writes to avoid reclaiming clean cache that *might* refault is a bad trade-off. Even if the refaults happen, reads are faster than writes. Before getting bogged down on writeback, reclaim should first look at *all* cache in the system, even active cache. To accomplish this, activate pages that are dirty or under writeback when they reach the end of the inactive LRU. The pages are marked for immediate reclaim, meaning they'll get moved back to the inactive LRU tail as soon as they're written back and become reclaimable. But in the meantime, by reducing the inactive list to only immediately reclaimable pages, we allow the scanner to deactivate and refill the inactive list with clean cache from the active list tail to guarantee forward progress. [hannes@cmpxchg.org: update comment] Link: http://lkml.kernel.org/r/20170202191957.22872-8-hannes@cmpxchg.org Link: http://lkml.kernel.org/r/20170123181641.23938-6-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/swap: split swap cache into 64MB trunksHuang, Ying2017-02-231-6/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The patch is to improve the scalability of the swap out/in via using fine grained locks for the swap cache. In current kernel, one address space will be used for each swap device. And in the common configuration, the number of the swap device is very small (one is typical). This causes the heavy lock contention on the radix tree of the address space if multiple tasks swap out/in concurrently. But in fact, there is no dependency between pages in the swap cache. So that, we can split the one shared address space for each swap device into several address spaces to reduce the lock contention. In the patch, the shared address space is split into 64MB trunks. 64MB is chosen to balance the memory space usage and effect of lock contention reduction. The size of struct address_space on x86_64 architecture is 408B, so with the patch, 6528B more memory will be used for every 1GB swap space on x86_64 architecture. One address space is still shared for the swap entries in the same 64M trunks. To avoid lock contention for the first round of swap space allocation, the order of the swap clusters in the initial free clusters list is changed. The swap space distance between the consecutive swap clusters in the free cluster list is at least 64M. After the first round of allocation, the swap clusters are expected to be freed randomly, so the lock contention should be reduced effectively. Link: http://lkml.kernel.org/r/735bab895e64c930581ffb0a05b661e01da82bc5.1484082593.git.tim.c.chen@linux.intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> escreveu: Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: add PageWaiters indicating tasks are waiting for a page bitNicholas Piggin2016-12-251-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a new page flag, PageWaiters, to indicate the page waitqueue has tasks waiting. This can be tested rather than testing waitqueue_active which requires another cacheline load. This bit is always set when the page has tasks on page_waitqueue(page), and is set and cleared under the waitqueue lock. It may be set when there are no tasks on the waitqueue, which will cause a harmless extra wakeup check that will clears the bit. The generic bit-waitqueue infrastructure is no longer used for pages. Instead, waitqueues are used directly with a custom key type. The generic code was not flexible enough to have PageWaiters manipulation under the waitqueue lock (which simplifies concurrency). This improves the performance of page lock intensive microbenchmarks by 2-3%. Putting two bits in the same word opens the opportunity to remove the memory barrier between clearing the lock bit and testing the waiters bit, after some work on the arch primitives (e.g., ensuring memory operand widths match and cover both bits). Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Andrew Lutomirski <luto@kernel.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: reduce usage of huge zero page's atomic counterAaron Lu2016-10-081-3/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The global zero page is used to satisfy an anonymous read fault. If THP(Transparent HugePage) is enabled then the global huge zero page is used. The global huge zero page uses an atomic counter for reference counting and is allocated/freed dynamically according to its counter value. CPU time spent on that counter will greatly increase if there are a lot of processes doing anonymous read faults. This patch proposes a way to reduce the access to the global counter so that the CPU load can be reduced accordingly. To do this, a new flag of the mm_struct is introduced: MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch the global counter in two cases: 1 The first time it uses the global huge zero page; 2 The time when mm_user of its mm_struct reaches zero. Note that right now, the huge zero page is eligible to be freed as soon as its last use goes away. With this patch, the page will not be eligible to be freed until the exit of the last process from which it was ever used. And with the use of mm_user, the kthread is not eligible to use huge zero page either. Since no kthread is using huge zero page today, there is no difference after applying this patch. But if that is not desired, I can change it to when mm_count reaches zero. Case used for test on Haswell EP: usemem -n 72 --readonly -j 0x200000 100G Which spawns 72 processes and each will mmap 100G anonymous space and then do read only access to that space sequentially with a step of 2MB. CPU cycles from perf report for base commit: 54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page CPU cycles from perf report for this commit: 0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page Performance(throughput) of the workload for base commit: 1784430792 Performance(throughput) of the workload for this commit: 4726928591 164% increase. Runtime of the workload for base commit: 707592 us Runtime of the workload for this commit: 303970 us 50% drop. Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, pagevec: release/reacquire lru_lock on pgdat changeMel Gorman2016-07-291-10/+10
| | | | | | | | | | | | | | | | With node-lru, the locking is based on the pgdat. Previously it was required that a pagevec drain released one zone lru_lock and acquired another zone lru_lock on every zone change. Now, it's only necessary if the node changes. The end-result is fewer lock release/acquires if the pages are all on the same node but in different zones. Link: http://lkml.kernel.org/r/1468588165-12461-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, vmscan: move LRU lists to nodeMel Gorman2016-07-291-25/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, vmscan: move lru_lock to the nodeMel Gorman2016-07-291-15/+15
| | | | | | | | | | | | | | | | | | | | | Node-based reclaim requires node-based LRUs and locking. This is a preparation patch that just moves the lru_lock to the node so later patches are easier to review. It is a mechanical change but note this patch makes contention worse because the LRU lock is hotter and direct reclaim and kswapd can contend on the same lock even when reclaiming from different zones. Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>