summaryrefslogtreecommitdiffstats
path: root/mm (follow)
Commit message (Collapse)AuthorAgeFilesLines
* mm/vmstat.c: cache align vm_statDimitri Sivanich2011-11-011-1/+1
| | | | | | | | | | | | | | | | | | Avoid false sharing of the vm_stat array. This was found to adversely affect tmpfs I/O performance. Tests run on a 640 cpu UV system. With 120 threads doing parallel writes, each to different tmpfs mounts: No patch: ~300 MB/sec With vm_stat alignment: ~430 MB/sec Signed-off-by: Dimitri Sivanich <sivanich@sgi.com> Acked-by: Christoph Lameter <cl@gentwo.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: munlock use mapcount to avoid terrible overheadHugh Dickins2011-11-011-1/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | A process spent 30 minutes exiting, just munlocking the pages of a large anonymous area that had been alternately mprotected into page-sized vmas: for every single page there's an anon_vma walk through all the other little vmas to find the right one. A general fix to that would be a lot more complicated (use prio_tree on anon_vma?), but there's one very simple thing we can do to speed up the common case: if a page to be munlocked is mapped only once, then it is our vma that it is mapped into, and there's no need whatever to walk through all the others. Okay, there is a very remote race in munlock_vma_pages_range(), if between its follow_page() and lock_page(), another process were to munlock the same page, then page reclaim remove it from our vma, then another process mlock it again. We would find it with page_mapcount 1, yet it's still mlocked in another process. But never mind, that's much less likely than the down_read_trylock() failure which munlocking already tolerates (in try_to_unmap_one()): in due course page reclaim will discover and move the page to unevictable instead. [akpm@linux-foundation.org: add comment] Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/huge_memory: fix typo when updating mmu cacheHillf Danton2011-11-011-1/+1
| | | | | | | | | | | | | | | | | There are three cases of update_mmu_cache() in the file, and the case in function collapse_huge_page() has a typo, namely the last parameter used, which is corrected based on the other two cases. Due to the define of update_mmu_cache by X86, the only arch that implements THP currently, the change here has no really crystal point, but one or two minutes of efforts could be saved for those archs that are likely to support THP in future. Signed-off-by: Hillf Danton <dhillf@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/huge_memory: fix copying user highpageHillf Danton2011-11-011-1/+1
| | | | | | | | | | | | | | The THP copy-on-write handler falls back to regular-sized pages for a huge page replacement upon allocation failure or if THP has been individually disabled in the target VMA. The loop responsible for copying page-sized chunks accidentally uses multiples of PAGE_SHIFT instead of PAGE_SIZE as the virtual address arg for copy_user_highpage(). Signed-off-by: Hillf Danton <dhillf@gmail.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: do not drain pagevecs for mlockall(MCL_FUTURE)Christoph Lameter2011-11-011-1/+2
| | | | | | | | | | | | | | MCL_FUTURE does not move pages between lru list and draining the LRU per cpu pagevecs is a nasty activity. Avoid doing it unecessarily. Signed-off-by: Christoph Lameter <cl@gentwo.org> Cc: David Rientjes <rientjes@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmscan: abort reclaim/compaction if compaction can proceedMel Gorman2011-11-011-11/+21
| | | | | | | | | | | | | | | | If compaction can proceed, shrink_zones() stops doing any work but its callers still call shrink_slab() which raises the priority and potentially sleeps. This is unnecessary and wasteful so this patch aborts direct reclaim/compaction entirely if compaction can proceed. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Cc: Josh Boyer <jwboyer@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmscan: limit direct reclaim for higher order allocationsRik van Riel2011-11-011-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When suffering from memory fragmentation due to unfreeable pages, THP page faults will repeatedly try to compact memory. Due to the unfreeable pages, compaction fails. Needless to say, at that point page reclaim also fails to create free contiguous 2MB areas. However, that doesn't stop the current code from trying, over and over again, and freeing a minimum of 4MB (2UL << sc->order pages) at every single invocation. This resulted in my 12GB system having 2-3GB free memory, a corresponding amount of used swap and very sluggish response times. This can be avoided by having the direct reclaim code not reclaim from zones that already have plenty of free memory available for compaction. If compaction still fails due to unmovable memory, doing additional reclaim will only hurt the system, not help. [jweiner@redhat.com: change comment to explain the order check] Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmscan: add barrier to prevent evictable page in unevictable listMinchan Kim2011-11-012-5/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a race between putback_lru_page() and shmem_lock with lock=0 happens, progrom execution order is as follows, but clear_bit in processor #1 could be reordered right before spin_unlock of processor #1. Then, the page would be stranded on the unevictable list. spin_lock SetPageLRU spin_unlock clear_bit(AS_UNEVICTABLE) spin_lock if PageLRU() if !test_bit(AS_UNEVICTABLE) move evictable list smp_mb if !test_bit(AS_UNEVICTABLE) move evictable list spin_unlock But, pagevec_lookup() in scan_mapping_unevictable_pages() has rcu_read_[un]lock() so it could protect reordering before reaching test_bit(AS_UNEVICTABLE) on processor #1 so this problem never happens. But it's a unexpected side effect and we should solve this problem properly. This patch adds a barrier after mapping_clear_unevictable. I didn't meet this problem but just found during review. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/huge_memory.c: quiet sparse noiseH Hartley Sweeten2011-11-011-1/+4
| | | | | | | | | | | | | | | Quiet the sparse noise: warning: symbol 'khugepaged_scan' was not declared. Should it be static? warning: context imbalance in 'khugepaged_scan_mm_slot' - unexpected unlock Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/mempolicy.c: quiet sparse noiseH Hartley Sweeten2011-11-011-1/+1
| | | | | | | | | | | | | | Quiet the spares noise: warning: symbol 'default_policy' was not declared. Should it be static? Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Stephen Wilson <wilsons@start.ca> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/thrash.c: quiet sparse noiseH Hartley Sweeten2011-11-011-1/+1
| | | | | | | | | | | | | Quiet the following sparse noise: warning: symbol 'swap_token_memcg' was not declared. Should it be static? Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com> Cc: Rik van Riel <riel@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/memblock.c: quiet sparse noiseH Hartley Sweeten2011-11-011-1/+2
| | | | | | | | | | | | | | Quiet the following sparse noise in this file: warning: symbol 'memblock_overlaps_region' was not declared. Should it be static? Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers,com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Tomi Valkeinen <tomi.valkeinen@nokia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: disable user interface to manually rescue unevictable pagesJohannes Weiner2011-11-011-76/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | At one point, anonymous pages were supposed to go on the unevictable list when no swap space was configured, and the idea was to manually rescue those pages after adding swap and making them evictable again. But nowadays, swap-backed pages on the anon LRU list are not scanned without available swap space anyway, so there is no point in moving them to a separate list anymore. The manual rescue could also be used in case pages were stranded on the unevictable list due to race conditions. But the code has been around for a while now and newly discovered bugs should be properly reported and dealt with instead of relying on such a manual fixup. In addition to the lack of a usecase, the sysfs interface to rescue pages from a specific NUMA node has been broken since its introduction, so it's unlikely that anybody ever relied on that. This patch removes the functionality behind the sysctl and the node-interface and emits a one-time warning when somebody tries to access either of them. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reported-by: Kautuk Consul <consul.kautuk@gmail.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmscan.c: fix invalid strict_strtoul() check in write_scan_unevictable_node()Kautuk Consul2011-11-011-2/+2
| | | | | | | | | | | | | | | | | | | | | | | write_scan_unevictable_node() checks the value req returned by strict_strtoul() and returns 1 if req is 0. However, when strict_strtoul() returns 0, it means successful conversion of buf to unsigned long. Due to this, the function was not proceeding to scan the zones for unevictable pages even though we write a valid value to the scan_unevictable_pages sys file. Change this check slightly to check for invalid value in buf as well as 0 value stored in res after successful conversion via strict_strtoul. In both cases, we do not perform the scanning of this node's zones. Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: fix kunmap_high() commentLi Haifeng2011-11-011-1/+1
| | | | | | Signed-off-by: Li Haifeng <omycle@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: make compact_zone_order() staticKyungmin Park2011-11-011-1/+1
| | | | | | | | | | There's no compact_zone_order() user outside file scope, so make it static. Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* HWPOISON: convert pr_debug()s to pr_info()sDean Nelson2011-11-011-6/+6
| | | | | | | | | | | | | | | | | | | Commit fb46e73520940b ("HWPOISON: Convert pr_debugs to pr_info) authored by Andi Kleen converted a number of pr_debug()s to pr_info()s. About the same time additional code with pr_debug()s was added by two other commits 8c6c2ecb4466 ("HWPOSION, hugetlb: recover from free hugepage error when !MF_COUNT_INCREASED") and d950b95882f3d ("HWPOISON, hugetlb: soft offlining for hugepage"). And these pr_debug()s failed to get converted to pr_info()s. This patch converts them as well. And does some minor related whitespace cleanup. Signed-off-by: Dean Nelson <dnelson@redhat.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/mmap.c: eliminate the ret variable from mm_take_all_locks()Kautuk Consul2011-11-011-6/+3
| | | | | | | | | The ret variable is really not needed in mm_take_all_locks(). Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm-add-comment-explaining-task-state-setting-in-bdi_forker_thread-fixAndrew Morton2011-11-011-3/+2
| | | | | | | | | fiddle wording Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ksm: fix the comment of try_to_unmap_one()Wanlong Gao2011-11-011-1/+1
| | | | | | | | | try_to_unmap_one() is called by try_to_unmap_ksm(), too. Signed-off-by: Wanlong Gao <gaowanlong@cn.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/vmalloc.c: report more vmalloc failuresJoe Perches2011-11-011-3/+8
| | | | | | | | | | | | | | Some vmalloc failure paths do not report OOM conditions. Add warn_alloc_failed, which also does a dump_stack, to those failure paths. This allows more site specific vmalloc failure logging message printks to be removed. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* kswapd: assign new_order and new_classzone_idx after wakeup in sleepingAlex,Shi2011-11-011-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There 2 places to read pgdat in kswapd. One is return from a successful balance, another is waked up from kswapd sleeping. The new_order and new_classzone_idx represent the balance input order and classzone_idx. But current new_order and new_classzone_idx are not assigned after kswapd_try_to_sleep(), that will cause a bug in the following scenario. 1: after a successful balance, kswapd goes to sleep, and new_order = 0; new_classzone_idx = __MAX_NR_ZONES - 1; 2: kswapd waked up with order = 3 and classzone_idx = ZONE_NORMAL 3: in the balance_pgdat() running, a new balance wakeup happened with order = 5, and classzone_idx = ZONE_NORMAL 4: the first wakeup(order = 3) finished successufly, return order = 3 but, the new_order is still 0, so, this balancing will be treated as a failed balance. And then the second tighter balancing will be missed. So, to avoid the above problem, the new_order and new_classzone_idx need to be assigned for later successful comparison. Signed-off-by: Alex Shi <alex.shi@intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Tested-by: Pádraig Brady <P@draigBrady.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/memblock.c: small function definition fixesJonghwan Choi2011-11-011-1/+1
| | | | | | | | | warning: function 'memblock_memory_can_coalesce' with external linkage has definition. Signed-off-by: Jonghwan Choi <jhbird.choi@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* kswapd: avoid unnecessary rebalance after an unsuccessful balancingAlex,Shi2011-11-011-3/+11
| | | | | | | | | | | | | | | | | | | | | | | | In commit 215ddd66 ("mm: vmscan: only read new_classzone_idx from pgdat when reclaiming successfully") , Mel Gorman said kswapd is better to sleep after a unsuccessful balancing if there is tighter reclaim request pending in the balancing. But in the following scenario, kswapd do something that is not matched our expectation. The patch fixes this issue. 1, Read pgdat request A (classzone_idx, order = 3) 2, balance_pgdat() 3, During pgdat, a new pgdat request B (classzone_idx, order = 5) is placed 4, balance_pgdat() returns but failed since returned order = 0 5, pgdat of request A assigned to balance_pgdat(), and do balancing again. While the expectation behavior of kswapd should try to sleep. Signed-off-by: Alex Shi <alex.shi@intel.com> Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Tested-by: Pádraig Brady <P@draigBrady.com> Cc: Rik van Riel <riel@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* debug-pagealloc: add support for highmem pagesAkinobu Mita2011-11-011-34/+10
| | | | | | | | | | This adds support for highmem pages poisoning and verification to the debug-pagealloc feature for no-architecture support. [akpm@linux-foundation.org: remove unneeded preempt_disable/enable] Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: neaten warn_alloc_failedJoe Perches2011-11-012-7/+13
| | | | | | | | | | | | Add __attribute__((format (printf...) to the function to validate format and arguments. Use vsprintf extension %pV to avoid any possible message interleaving. Coalesce format string. Convert printks/pr_warning to pr_warn. [akpm@linux-foundation.org: use the __printf() macro] Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: mremap support and TLB optimizationAndrea Arcangeli2011-11-012-4/+63
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mremap: avoid sending one IPI per pageAndrea Arcangeli2011-11-011-6/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This replaces ptep_clear_flush() with ptep_get_and_clear() and a single flush_tlb_range() at the end of the loop, to avoid sending one IPI for each page. The mmu_notifier_invalidate_range_start/end section is enlarged accordingly but this is not going to fundamentally change things. It was more by accident that the region under mremap was for the most part still available for secondary MMUs: the primary MMU was never allowed to reliably access that region for the duration of the mremap (modulo trapping SIGSEGV on the old address range which sounds unpractical and flakey). If users wants secondary MMUs not to lose access to a large region under mremap they should reduce the mremap size accordingly in userland and run multiple calls. Overall this will run faster so it's actually going to reduce the time the region is under mremap for the primary MMU which should provide a net benefit to apps. For KVM this is a noop because the guest physical memory is never mremapped, there's just no point it ever moving it while guest runs. One target of this optimization is JVM GC (so unrelated to the mmu notifier logic). Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mremap: check for overflow using deltasAndrea Arcangeli2011-11-011-2/+3
| | | | | | | | | | | | | | | Using "- 1" relies on the old_end to be page aligned and PAGE_SIZE > 1, those are reasonable requirements but the check remains obscure and it looks more like an off by one error than an overflow check. This I feel will improve readability. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memblock: add NO_BOOTMEM config symbolSam Ravnborg2011-11-011-0/+3
| | | | | | | | | | | | | | | | | | | | With the NO_BOOTMEM symbol added architectures may now use the following syntax to tell that they do not need bootmem: select NO_BOOTMEM This is much more convinient than adding a new kconfig symbol which was otherwise required. Adding this symbol does not conflict with the architctures that already define their own symbol. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Cc: Yinghai Lu <yinghai@kernel.org> Acked-by: Tejun Heo <tj@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memblock: add memblock_start_of_DRAM()Sam Ravnborg2011-11-011-0/+6
| | | | | | | | | | | | | | | | | SPARC32 require access to the start address. Add a new helper memblock_start_of_DRAM() to give access to the address of the first memblock - which contains the lowest address. The awkward name was chosen to match the already present memblock_end_of_DRAM(). Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Acked-by: Tejun Heo <tj@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: avoid null pointer access in vm_struct via /proc/vmallocinfoMitsuo Hayasaka2011-11-011-17/+48
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The /proc/vmallocinfo shows information about vmalloc allocations in vmlist that is a linklist of vm_struct. It, however, may access pages field of vm_struct where a page was not allocated. This results in a null pointer access and leads to a kernel panic. Why this happens: In __vmalloc_node_range() called from vmalloc(), newly allocated vm_struct is added to vmlist at __get_vm_area_node() and then, some fields of vm_struct such as nr_pages and pages are set at __vmalloc_area_node(). In other words, it is added to vmlist before it is fully initialized. At the same time, when the /proc/vmallocinfo is read, it accesses the pages field of vm_struct according to the nr_pages field at show_numa_info(). Thus, a null pointer access happens. The patch adds the newly allocated vm_struct to the vmlist *after* it is fully initialized. So, it can avoid accessing the pages field with unallocated page when show_numa_info() is called. Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: David Rientjes <rientjes@google.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: <stable@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/debug-pagealloc.c: use memchr_invAkinobu Mita2011-11-011-5/+3
| | | | | | | | Use newly introduced memchr_inv() for page verification. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* lib/string.c: introduce memchr_inv()Akinobu Mita2011-11-011-45/+2
| | | | | | | | | | | | | | | | | | memchr_inv() is mainly used to check whether the whole buffer is filled with just a specified byte. The function name and prototype are stolen from logfs and the implementation is from SLUB. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Acked-by: Christoph Lameter <cl@linux-foundation.org> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Matt Mackall <mpm@selenic.com> Acked-by: Joern Engel <joern@logfs.org> Cc: Marcin Slusarz <marcin.slusarz@gmail.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/debug-pagealloc.c: use plain __ratelimit() instead of printk_ratelimit()Akinobu Mita2011-11-011-1/+3
| | | | | | | | | printk_ratelimit() should not be used, because it shares ratelimiting state with all other unrelated printk_ratelimit() callsites. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmscan: count pages into balanced for zone with good watermarkShaohua Li2011-11-011-0/+2
| | | | | | | | | | | | | It's possible a zone watermark is ok when entering the balance_pgdat() loop, while the zone is within the requested classzone_idx. Count pages from this zone into `balanced'. In this way, we can skip shrinking zones too much for high order allocation. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: vmscan: immediately reclaim end-of-LRU dirty pages when writeback completesMel Gorman2011-11-012-2/+10
| | | | | | | | | | | | | | | | | | | | | | | | | When direct reclaim encounters a dirty page, it gets recycled around the LRU for another cycle. This patch marks the page PageReclaim similar to deactivate_page() so that the page gets reclaimed almost immediately after the page gets cleaned. This is to avoid reclaiming clean pages that are younger than a dirty page encountered at the end of the LRU that might have been something like a use-once page. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <jweiner@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Alex Elder <aelder@sgi.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <chris.mason@oracle.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: vmscan: throttle reclaim if encountering too many dirty pages under ↵Mel Gorman2011-11-011-3/+39
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | writeback Workloads that are allocating frequently and writing files place a large number of dirty pages on the LRU. With use-once logic, it is possible for them to reach the end of the LRU quickly requiring the reclaimer to scan more to find clean pages. Ordinarily, processes that are dirtying memory will get throttled by dirty balancing but this is a global heuristic and does not take into account that LRUs are maintained on a per-zone basis. This can lead to a situation whereby reclaim is scanning heavily, skipping over a large number of pages under writeback and recycling them around the LRU consuming CPU. This patch checks how many of the number of pages isolated from the LRU were dirty and under writeback. If a percentage of them under writeback, the process will be throttled if a backing device or the zone is congested. Note that this applies whether it is anonymous or file-backed pages that are under writeback meaning that swapping is potentially throttled. This is intentional due to the fact if the swap device is congested, scanning more pages and dispatching more IO is not going to help matters. The percentage that must be in writeback depends on the priority. At default priority, all of them must be dirty. At DEF_PRIORITY-1, 50% of them must be, DEF_PRIORITY-2, 25% etc. i.e. as pressure increases the greater the likelihood the process will get throttled to allow the flusher threads to make some progress. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Alex Elder <aelder@sgi.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <chris.mason@oracle.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: vmscan: do not writeback filesystem pages in kswapd except in high priorityMel Gorman2011-11-011-5/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | It is preferable that no dirty pages are dispatched for cleaning from the page reclaim path. At normal priorities, this patch prevents kswapd writing pages. However, page reclaim does have a requirement that pages be freed in a particular zone. If it is failing to make sufficient progress (reclaiming < SWAP_CLUSTER_MAX at any priority priority), the priority is raised to scan more pages. A priority of DEF_PRIORITY - 3 is considered to be the point where kswapd is getting into trouble reclaiming pages. If this priority is reached, kswapd will dispatch pages for writing. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Alex Elder <aelder@sgi.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <chris.mason@oracle.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: vmscan: remove dead code related to lumpy reclaim waiting on pages under ↵Mel Gorman2011-11-011-16/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | writeback Lumpy reclaim worked with two passes - the first which queued pages for IO and the second which waited on writeback. As direct reclaim can no longer write pages there is some dead code. This patch removes it but direct reclaim will continue to wait on pages under writeback while in synchronous reclaim mode. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Alex Elder <aelder@sgi.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <chris.mason@oracle.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: vmscan: do not writeback filesystem pages in direct reclaimMel Gorman2011-11-012-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Testing from the XFS folk revealed that there is still too much I/O from the end of the LRU in kswapd. Previously it was considered acceptable by VM people for a small number of pages to be written back from reclaim with testing generally showing about 0.3% of pages reclaimed were written back (higher if memory was low). That writing back a small number of pages is ok has been heavily disputed for quite some time and Dave Chinner explained it well; It doesn't have to be a very high number to be a problem. IO is orders of magnitude slower than the CPU time it takes to flush a page, so the cost of making a bad flush decision is very high. And single page writeback from the LRU is almost always a bad flush decision. To complicate matters, filesystems respond very differently to requests from reclaim according to Christoph Hellwig; xfs tries to write it back if the requester is kswapd ext4 ignores the request if it's a delayed allocation btrfs ignores the request As a result, each filesystem has different performance characteristics when under memory pressure and there are many pages being dirtied. In some cases, the request is ignored entirely so the VM cannot depend on the IO being dispatched. The objective of this series is to reduce writing of filesystem-backed pages from reclaim, play nicely with writeback that is already in progress and throttle reclaim appropriately when writeback pages are encountered. The assumption is that the flushers will always write pages faster than if reclaim issues the IO. A secondary goal is to avoid the problem whereby direct reclaim splices two potentially deep call stacks together. There is a potential new problem as reclaim has less control over how long before a page in a particularly zone or container is cleaned and direct reclaimers depend on kswapd or flusher threads to do the necessary work. However, as filesystems sometimes ignore direct reclaim requests already, it is not expected to be a serious issue. Patch 1 disables writeback of filesystem pages from direct reclaim entirely. Anonymous pages are still written. Patch 2 removes dead code in lumpy reclaim as it is no longer able to synchronously write pages. This hurts lumpy reclaim but there is an expectation that compaction is used for hugepage allocations these days and lumpy reclaim's days are numbered. Patches 3-4 add warnings to XFS and ext4 if called from direct reclaim. With patch 1, this "never happens" and is intended to catch regressions in this logic in the future. Patch 5 disables writeback of filesystem pages from kswapd unless the priority is raised to the point where kswapd is considered to be in trouble. Patch 6 throttles reclaimers if too many dirty pages are being encountered and the zones or backing devices are congested. Patch 7 invalidates dirty pages found at the end of the LRU so they are reclaimed quickly after being written back rather than waiting for a reclaimer to find them I consider this series to be orthogonal to the writeback work but it is worth noting that the writeback work affects the viability of patch 8 in particular. I tested this on ext4 and xfs using fs_mark, a simple writeback test based on dd and a micro benchmark that does a streaming write to a large mapping (exercises use-once LRU logic) followed by streaming writes to a mix of anonymous and file-backed mappings. The command line for fs_mark when botted with 512M looked something like ./fs_mark -d /tmp/fsmark-2676 -D 100 -N 150 -n 150 -L 25 -t 1 -S0 -s 10485760 The number of files was adjusted depending on the amount of available memory so that the files created was about 3xRAM. For multiple threads, the -d switch is specified multiple times. The test machine is x86-64 with an older generation of AMD processor with 4 cores. The underlying storage was 4 disks configured as RAID-0 as this was the best configuration of storage I had available. Swap is on a separate disk. Dirty ratio was tuned to 40% instead of the default of 20%. Testing was run with and without monitors to both verify that the patches were operating as expected and that any performance gain was real and not due to interference from monitors. Here is a summary of results based on testing XFS. 512M1P-xfs Files/s mean 32.69 ( 0.00%) 34.44 ( 5.08%) 512M1P-xfs Elapsed Time fsmark 51.41 48.29 512M1P-xfs Elapsed Time simple-wb 114.09 108.61 512M1P-xfs Elapsed Time mmap-strm 113.46 109.34 512M1P-xfs Kswapd efficiency fsmark 62% 63% 512M1P-xfs Kswapd efficiency simple-wb 56% 61% 512M1P-xfs Kswapd efficiency mmap-strm 44% 42% 512M-xfs Files/s mean 30.78 ( 0.00%) 35.94 (14.36%) 512M-xfs Elapsed Time fsmark 56.08 48.90 512M-xfs Elapsed Time simple-wb 112.22 98.13 512M-xfs Elapsed Time mmap-strm 219.15 196.67 512M-xfs Kswapd efficiency fsmark 54% 56% 512M-xfs Kswapd efficiency simple-wb 54% 55% 512M-xfs Kswapd efficiency mmap-strm 45% 44% 512M-4X-xfs Files/s mean 30.31 ( 0.00%) 33.33 ( 9.06%) 512M-4X-xfs Elapsed Time fsmark 63.26 55.88 512M-4X-xfs Elapsed Time simple-wb 100.90 90.25 512M-4X-xfs Elapsed Time mmap-strm 261.73 255.38 512M-4X-xfs Kswapd efficiency fsmark 49% 50% 512M-4X-xfs Kswapd efficiency simple-wb 54% 56% 512M-4X-xfs Kswapd efficiency mmap-strm 37% 36% 512M-16X-xfs Files/s mean 60.89 ( 0.00%) 65.22 ( 6.64%) 512M-16X-xfs Elapsed Time fsmark 67.47 58.25 512M-16X-xfs Elapsed Time simple-wb 103.22 90.89 512M-16X-xfs Elapsed Time mmap-strm 237.09 198.82 512M-16X-xfs Kswapd efficiency fsmark 45% 46% 512M-16X-xfs Kswapd efficiency simple-wb 53% 55% 512M-16X-xfs Kswapd efficiency mmap-strm 33% 33% Up until 512-4X, the FSmark improvements were statistically significant. For the 4X and 16X tests the results were within standard deviations but just barely. The time to completion for all tests is improved which is an important result. In general, kswapd efficiency is not affected by skipping dirty pages. 1024M1P-xfs Files/s mean 39.09 ( 0.00%) 41.15 ( 5.01%) 1024M1P-xfs Elapsed Time fsmark 84.14 80.41 1024M1P-xfs Elapsed Time simple-wb 210.77 184.78 1024M1P-xfs Elapsed Time mmap-strm 162.00 160.34 1024M1P-xfs Kswapd efficiency fsmark 69% 75% 1024M1P-xfs Kswapd efficiency simple-wb 71% 77% 1024M1P-xfs Kswapd efficiency mmap-strm 43% 44% 1024M-xfs Files/s mean 35.45 ( 0.00%) 37.00 ( 4.19%) 1024M-xfs Elapsed Time fsmark 94.59 91.00 1024M-xfs Elapsed Time simple-wb 229.84 195.08 1024M-xfs Elapsed Time mmap-strm 405.38 440.29 1024M-xfs Kswapd efficiency fsmark 79% 71% 1024M-xfs Kswapd efficiency simple-wb 74% 74% 1024M-xfs Kswapd efficiency mmap-strm 39% 42% 1024M-4X-xfs Files/s mean 32.63 ( 0.00%) 35.05 ( 6.90%) 1024M-4X-xfs Elapsed Time fsmark 103.33 97.74 1024M-4X-xfs Elapsed Time simple-wb 204.48 178.57 1024M-4X-xfs Elapsed Time mmap-strm 528.38 511.88 1024M-4X-xfs Kswapd efficiency fsmark 81% 70% 1024M-4X-xfs Kswapd efficiency simple-wb 73% 72% 1024M-4X-xfs Kswapd efficiency mmap-strm 39% 38% 1024M-16X-xfs Files/s mean 42.65 ( 0.00%) 42.97 ( 0.74%) 1024M-16X-xfs Elapsed Time fsmark 103.11 99.11 1024M-16X-xfs Elapsed Time simple-wb 200.83 178.24 1024M-16X-xfs Elapsed Time mmap-strm 397.35 459.82 1024M-16X-xfs Kswapd efficiency fsmark 84% 69% 1024M-16X-xfs Kswapd efficiency simple-wb 74% 73% 1024M-16X-xfs Kswapd efficiency mmap-strm 39% 40% All FSMark tests up to 16X had statistically significant improvements. For the most part, tests are completing faster with the exception of the streaming writes to a mixture of anonymous and file-backed mappings which were slower in two cases In the cases where the mmap-strm tests were slower, there was more swapping due to dirty pages being skipped. The number of additional pages swapped is almost identical to the fewer number of pages written from reclaim. In other words, roughly the same number of pages were reclaimed but swapping was slower. As the test is a bit unrealistic and stresses memory heavily, the small shift is acceptable. 4608M1P-xfs Files/s mean 29.75 ( 0.00%) 30.96 ( 3.91%) 4608M1P-xfs Elapsed Time fsmark 512.01 492.15 4608M1P-xfs Elapsed Time simple-wb 618.18 566.24 4608M1P-xfs Elapsed Time mmap-strm 488.05 465.07 4608M1P-xfs Kswapd efficiency fsmark 93% 86% 4608M1P-xfs Kswapd efficiency simple-wb 88% 84% 4608M1P-xfs Kswapd efficiency mmap-strm 46% 45% 4608M-xfs Files/s mean 27.60 ( 0.00%) 28.85 ( 4.33%) 4608M-xfs Elapsed Time fsmark 555.96 532.34 4608M-xfs Elapsed Time simple-wb 659.72 571.85 4608M-xfs Elapsed Time mmap-strm 1082.57 1146.38 4608M-xfs Kswapd efficiency fsmark 89% 91% 4608M-xfs Kswapd efficiency simple-wb 88% 82% 4608M-xfs Kswapd efficiency mmap-strm 48% 46% 4608M-4X-xfs Files/s mean 26.00 ( 0.00%) 27.47 ( 5.35%) 4608M-4X-xfs Elapsed Time fsmark 592.91 564.00 4608M-4X-xfs Elapsed Time simple-wb 616.65 575.07 4608M-4X-xfs Elapsed Time mmap-strm 1773.02 1631.53 4608M-4X-xfs Kswapd efficiency fsmark 90% 94% 4608M-4X-xfs Kswapd efficiency simple-wb 87% 82% 4608M-4X-xfs Kswapd efficiency mmap-strm 43% 43% 4608M-16X-xfs Files/s mean 26.07 ( 0.00%) 26.42 ( 1.32%) 4608M-16X-xfs Elapsed Time fsmark 602.69 585.78 4608M-16X-xfs Elapsed Time simple-wb 606.60 573.81 4608M-16X-xfs Elapsed Time mmap-strm 1549.75 1441.86 4608M-16X-xfs Kswapd efficiency fsmark 98% 98% 4608M-16X-xfs Kswapd efficiency simple-wb 88% 82% 4608M-16X-xfs Kswapd efficiency mmap-strm 44% 42% Unlike the other tests, the fsmark results are not statistically significant but the min and max times are both improved and for the most part, tests completed faster. There are other indications that this is an improvement as well. For example, in the vast majority of cases, there were fewer pages scanned by direct reclaim implying in many cases that stalls due to direct reclaim are reduced. KSwapd is scanning more due to skipping dirty pages which is unfortunate but the CPU usage is still acceptable In an earlier set of tests, I used blktrace and in almost all cases throughput throughout the entire test was higher. However, I ended up discarding those results as recording blktrace data was too heavy for my liking. On a laptop, I plugged in a USB stick and ran a similar tests of tests using it as backing storage. A desktop environment was running and for the entire duration of the tests, firefox and gnome terminal were launching and exiting to vaguely simulate a user. 1024M-xfs Files/s mean 0.41 ( 0.00%) 0.44 ( 6.82%) 1024M-xfs Elapsed Time fsmark 2053.52 1641.03 1024M-xfs Elapsed Time simple-wb 1229.53 768.05 1024M-xfs Elapsed Time mmap-strm 4126.44 4597.03 1024M-xfs Kswapd efficiency fsmark 84% 85% 1024M-xfs Kswapd efficiency simple-wb 92% 81% 1024M-xfs Kswapd efficiency mmap-strm 60% 51% 1024M-xfs Avg wait ms fsmark 5404.53 4473.87 1024M-xfs Avg wait ms simple-wb 2541.35 1453.54 1024M-xfs Avg wait ms mmap-strm 3400.25 3852.53 The mmap-strm results were hurt because firefox launching had a tendency to push the test out of memory. On the postive side, firefox launched marginally faster with the patches applied. Time to completion for many tests was faster but more importantly - the "Avg wait" time as measured by iostat was far lower implying the system would be more responsive. It was also the case that "Avg wait ms" on the root filesystem was lower. I tested it manually and while the system felt slightly more responsive while copying data to a USB stick, it was marginal enough that it could be my imagination. This patch: do not writeback filesystem pages in direct reclaim. When kswapd is failing to keep zones above the min watermark, a process will enter direct reclaim in the same manner kswapd does. If a dirty page is encountered during the scan, this page is written to backing storage using mapping->writepage. This causes two problems. First, it can result in very deep call stacks, particularly if the target storage or filesystem are complex. Some filesystems ignore write requests from direct reclaim as a result. The second is that a single-page flush is inefficient in terms of IO. While there is an expectation that the elevator will merge requests, this does not always happen. Quoting Christoph Hellwig; The elevator has a relatively small window it can operate on, and can never fix up a bad large scale writeback pattern. This patch prevents direct reclaim writing back filesystem pages by checking if current is kswapd. Anonymous pages are still written to swap as there is not the equivalent of a flusher thread for anonymous pages. If the dirty pages cannot be written back, they are placed back on the LRU lists. There is now a direct dependency on dirty page balancing to prevent too many pages in the system being dirtied which would prevent reclaim making forward progress. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Alex Elder <aelder@sgi.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <chris.mason@oracle.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: vmscan: drop nr_force_scan[] from get_scan_countJohannes Weiner2011-11-011-24/+12
| | | | | | | | | | | | | | | | | | | | | | | The nr_force_scan[] tuple holds the effective scan numbers for anon and file pages in case the situation called for a forced scan and the regularly calculated scan numbers turned out zero. However, the effective scan number can always be assumed to be SWAP_CLUSTER_MAX right before the division into anon and file. The numerators and denominator are properly set up for all cases, be it force scan for just file, just anon, or both, to do the right thing. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: output a list of loaded modules when we hit bad_page()Dave Jones2011-11-011-0/+1
| | | | | | | | | When we get a bad_page bug report, it's useful to see what modules the user had loaded. Signed-off-by: Dave Jones <davej@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* oom: fix race while temporarily setting current's oom_score_adjDavid Rientjes2011-11-013-2/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | | test_set_oom_score_adj() was introduced in 72788c385604 ("oom: replace PF_OOM_ORIGIN with toggling oom_score_adj") to temporarily elevate current's oom_score_adj for ksm and swapoff without requiring an additional per-process flag. Using that function to both set oom_score_adj to OOM_SCORE_ADJ_MAX and then reinstate the previous value is racy since it's possible that userspace can set the value to something else itself before the old value is reinstated. That results in userspace setting current's oom_score_adj to a different value and then the kernel immediately setting it back to its previous value without notification. To fix this, a new compare_swap_oom_score_adj() function is introduced with the same semantics as the compare and swap CAS instruction, or CMPXCHG on x86. It is used to reinstate the previous value of oom_score_adj if and only if the present value is the same as the old value. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Ying Han <yinghan@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* oom: remove oom_disable_countDavid Rientjes2011-11-011-18/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | This removes mm->oom_disable_count entirely since it's unnecessary and currently buggy. The counter was intended to be per-process but it's currently decremented in the exit path for each thread that exits, causing it to underflow. The count was originally intended to prevent oom killing threads that share memory with threads that cannot be killed since it doesn't lead to future memory freeing. The counter could be fixed to represent all threads sharing the same mm, but it's better to remove the count since: - it is possible that the OOM_DISABLE thread sharing memory with the victim is waiting on that thread to exit and will actually cause future memory freeing, and - there is no guarantee that a thread is disabled from oom killing just because another thread sharing its mm is oom disabled. Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Oleg Nesterov <oleg@redhat.com> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Ying Han <yinghan@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* oom: avoid killing kthreads if they assume the oom killed thread's mmDavid Rientjes2011-11-011-2/+3
| | | | | | | | | | | | | | | | | | | | After selecting a task to kill, the oom killer iterates all processes and kills all other threads that share the same mm_struct in different thread groups. It would not otherwise be helpful to kill a thread if its memory would not be subsequently freed. A kernel thread, however, may assume a user thread's mm by using use_mm(). This is only temporary and should not result in sending a SIGKILL to that kthread. This patch ensures that only user threads and not kthreads are sent a SIGKILL if they share the same mm_struct as the oom killed task. Signed-off-by: David Rientjes <rientjes@google.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* oom: thaw threads if oom killed thread is frozen before deferringDavid Rientjes2011-11-011-1/+5
| | | | | | | | | | | | | | | | If a thread has been oom killed and is frozen, thaw it before returning to the page allocator. Otherwise, it can stay frozen indefinitely and no memory will be freed. Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/page-writeback.c: document bdi_min_ratioJohannes Weiner2011-11-011-1/+3
| | | | | | | | | | Looks like someone got distracted after adding the comment characters. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmscan: add block plug for page reclaimShaohua Li2011-11-011-0/+3
| | | | | | | | | | | | | | | | | | | | | per-task block plug can reduce block queue lock contention and increase request merge. Currently page reclaim doesn't support it. I originally thought page reclaim doesn't need it, because kswapd thread count is limited and file cache write is done at flusher mostly. When I test a workload with heavy swap in a 4-node machine, each CPU is doing direct page reclaim and swap. This causes block queue lock contention. In my test, without below patch, the CPU utilization is about 2% ~ 7%. With the patch, the CPU utilization is about 1% ~ 3%. Disk throughput isn't changed. This should improve normal kswapd write and file cache write too (increase request merge for example), but might not be so obvious as I explain above. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: migration: clean up unmap_and_move()Minchan Kim2011-11-011-35/+40
| | | | | | | | | | | | | | | unmap_and_move() is one a big messy function. Clean it up. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>