summaryrefslogtreecommitdiffstats
path: root/mm (follow)
Commit message (Collapse)AuthorAgeFilesLines
* Merge branch 'writeback-for-linus' of ↵Linus Torvalds2011-12-132-6/+32
|\ | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux * 'writeback-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux: writeback: set max_pause to lowest value on zero bdi_dirty writeback: permit through good bdi even when global dirty exceeded writeback: comment on the bdi dirty threshold fs: Make write(2) interruptible by a fatal signal writeback: Fix issue on make htmldocs
| * writeback: set max_pause to lowest value on zero bdi_dirtyWu Fengguang2011-12-081-2/+1
| | | | | | | | | | | | | | | | | | | | Some trace shows lots of bdi_dirty=0 lines where it's actually some small value if w/o the accounting errors in the per-cpu bdi stats. In this case the max pause time should really be set to the smallest (non-zero) value to avoid IO queue underrun and improve throughput. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * writeback: permit through good bdi even when global dirty exceededWu Fengguang2011-12-081-0/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On a system with 1 local mount and 1 NFS mount, if the NFS server becomes not responding when dd to the NFS mount, the NFS dirty pages may exceed the global dirty limit and _every_ task involving writing will be blocked. The whole system appears unresponsive. The workaround is to permit through the bdi's that only has a small number of dirty pages. The number chosen (bdi_stat_error pages) is not enough to enable the local disk to run in optimal throughput, however is enough to make the system responsive on a broken NFS mount. The user can then kill the dirtiers on the NFS mount and increase the global dirty limit to bring up the local disk's throughput. It risks allowing dirty pages to grow much larger than the global dirty limit when there are 1000+ mounts, however that's very unlikely to happen, especially in low memory profiles. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * writeback: comment on the bdi dirty thresholdWu Fengguang2011-12-081-2/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We do "floating proportions" to let active devices to grow its target share of dirty pages and stalled/inactive devices to decrease its target share over time. It works well except in the case of "an inactive disk suddenly goes busy", where the initial target share may be too small. To mitigate this, bdi_position_ratio() has the below line to raise a small bdi_thresh when it's safe to do so, so that the disk be feed with enough dirty pages for efficient IO and in turn fast rampup of bdi_thresh: bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); balance_dirty_pages() normally does negative feedback control which adjusts ratelimit to balance the bdi dirty pages around the target. In some extreme cases when that is not enough, it will have to block the tasks completely until the bdi dirty pages drop below bdi_thresh. Acked-by: Jan Kara <jack@suse.cz> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * fs: Make write(2) interruptible by a fatal signalJan Kara2011-12-021-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently write(2) to a file is not interruptible by any signal. Sometimes this is desirable, e.g. when you want to quickly kill a process hogging your disk. Also, with commit 499d05ecf990 ("mm: Make task in balance_dirty_pages() killable"), it's necessary to abort the current write accordingly to avoid it quickly dirtying lots more pages at unthrottled rate. This patch makes write interruptible by SIGKILL. We do not allow write to be interruptible by any other signal because that has larger potential of screwing some badly written applications. Reported-by: Kazuya Mio <k-mio@sx.jp.nec.com> Tested-by: Kazuya Mio <k-mio@sx.jp.nec.com> Acked-by: Matthew Wilcox <matthew.r.wilcox@intel.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
* | mm: vmalloc: check for page allocation failure before vmlist insertionMel Gorman2011-12-091-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit f5252e00 ("mm: avoid null pointer access in vm_struct via /proc/vmallocinfo") adds newly allocated vm_structs to the vmlist after it is fully initialised. Unfortunately, it did not check that __vmalloc_area_node() successfully populated the area. In the event of allocation failure, the vmalloc area is freed but the pointer to freed memory is inserted into the vmlist leading to a a crash later in get_vmalloc_info(). This patch adds a check for ____vmalloc_area_node() failure within __vmalloc_node_range. It does not use "goto fail" as in the previous error path as a warning was already displayed by __vmalloc_area_node() before it called vfree in its failure path. Credit goes to Luciano Chavez for doing all the real work of identifying exactly where the problem was. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Luciano Chavez <lnx1138@linux.vnet.ibm.com> Tested-by: Luciano Chavez <lnx1138@linux.vnet.ibm.com> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [3.1.x+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: Ensure that pfn_valid() is called once per pageblock when reserving ↵Michal Hocko2011-12-091-1/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | pageblocks setup_zone_migrate_reserve() expects that zone->start_pfn starts at pageblock_nr_pages aligned pfn otherwise we could access beyond an existing memblock resulting in the following panic if CONFIG_HOLES_IN_ZONE is not configured and we do not check pfn_valid: IP: [<c02d331d>] setup_zone_migrate_reserve+0xcd/0x180 *pdpt = 0000000000000000 *pde = f000ff53f000ff53 Oops: 0000 [#1] SMP Pid: 1, comm: swapper Not tainted 3.0.7-0.7-pae #1 VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform EIP: 0060:[<c02d331d>] EFLAGS: 00010006 CPU: 0 EIP is at setup_zone_migrate_reserve+0xcd/0x180 EAX: 000c0000 EBX: f5801fc0 ECX: 000c0000 EDX: 00000000 ESI: 000c01fe EDI: 000c01fe EBP: 00140000 ESP: f2475f58 DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 Process swapper (pid: 1, ti=f2474000 task=f2472cd0 task.ti=f2474000) Call Trace: [<c02d389c>] __setup_per_zone_wmarks+0xec/0x160 [<c02d3a1f>] setup_per_zone_wmarks+0xf/0x20 [<c08a771c>] init_per_zone_wmark_min+0x27/0x86 [<c020111b>] do_one_initcall+0x2b/0x160 [<c086639d>] kernel_init+0xbe/0x157 [<c05cae26>] kernel_thread_helper+0x6/0xd Code: a5 39 f5 89 f7 0f 46 fd 39 cf 76 40 8b 03 f6 c4 08 74 32 eb 91 90 89 c8 c1 e8 0e 0f be 80 80 2f 86 c0 8b 14 85 60 2f 86 c0 89 c8 <2b> 82 b4 12 00 00 c1 e0 05 03 82 ac 12 00 00 8b 00 f6 c4 08 0f EIP: [<c02d331d>] setup_zone_migrate_reserve+0xcd/0x180 SS:ESP 0068:f2475f58 CR2: 00000000000012b4 We crashed in pageblock_is_reserved() when accessing pfn 0xc0000 because highstart_pfn = 0x36ffe. The issue was introduced in 3.0-rc1 by 6d3163ce ("mm: check if any page in a pageblock is reserved before marking it MIGRATE_RESERVE"). Make sure that start_pfn is always aligned to pageblock_nr_pages to ensure that pfn_valid s always called at the start of each pageblock. Architectures with holes in pageblocks will be correctly handled by pfn_valid_within in pageblock_is_reserved. Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Dang Bo <bdang@vmware.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Arve Hjnnevg <arve@android.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> [3.0+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm/migrate.c: pair unlock_page() and lock_page() when migrating huge pagesHillf Danton2011-12-091-1/+1
| | | | | | | | | | | | | | | | | | | | Avoid unlocking and unlocked page if we failed to lock it. Signed-off-by: Hillf Danton <dhillf@gmail.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | thp: set compound tail page _count to zeroYouquan Song2011-12-092-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 70b50f94f1644 ("mm: thp: tail page refcounting fix") keeps all page_tail->_count zero at all times. But the current kernel does not set page_tail->_count to zero if a 1GB page is utilized. So when an IOMMU 1GB page is used by KVM, it wil result in a kernel oops because a tail page's _count does not equal zero. kernel BUG at include/linux/mm.h:386! invalid opcode: 0000 [#1] SMP Call Trace: gup_pud_range+0xb8/0x19d get_user_pages_fast+0xcb/0x192 ? trace_hardirqs_off+0xd/0xf hva_to_pfn+0x119/0x2f2 gfn_to_pfn_memslot+0x2c/0x2e kvm_iommu_map_pages+0xfd/0x1c1 kvm_iommu_map_memslots+0x7c/0xbd kvm_iommu_map_guest+0xaa/0xbf kvm_vm_ioctl_assigned_device+0x2ef/0xa47 kvm_vm_ioctl+0x36c/0x3a2 do_vfs_ioctl+0x49e/0x4e4 sys_ioctl+0x5a/0x7c system_call_fastpath+0x16/0x1b RIP gup_huge_pud+0xf2/0x159 Signed-off-by: Youquan Song <youquan.song@intel.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | thp: reduce khugepaged freezing latencyAndrea Arcangeli2011-12-091-12/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | khugepaged can sometimes cause suspend to fail, requiring that the user retry the suspend operation. Use wait_event_freezable_timeout() instead of schedule_timeout_interruptible() to avoid missing freezer wakeups. A try_to_freeze() would have been needed in the khugepaged_alloc_hugepage tight loop too in case of the allocation failing repeatedly, and wait_event_freezable_timeout will provide it too. khugepaged would still freeze just fine by trying again the next minute but it's better if it freezes immediately. Reported-by: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Tested-by: Jiri Slaby <jslaby@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Cc: "Rafael J. Wysocki" <rjw@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | vmscan: use atomic-long for shrinker batchingKonstantin Khlebnikov2011-12-091-10/+7
| | | | | | | | | | | | | | | | | | | | Use atomic-long operations instead of looping around cmpxchg(). [akpm@linux-foundation.org: massage atomic.h inclusions] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | vmscan: fix initial shrinker size handlingKonstantin Khlebnikov2011-12-091-3/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A shrinker function can return -1, means that it cannot do anything without a risk of deadlock. For example prune_super() does this if it cannot grab a superblock refrence, even if nr_to_scan=0. Currently we interpret this -1 as a ULONG_MAX size shrinker and evaluate `total_scan' according to this. So the next time around this shrinker can cause really big pressure. Let's skip such shrinkers instead. Also make total_scan signed, otherwise the check (total_scan < 0) below never works. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | slab, lockdep: Fix silly bugPeter Zijlstra2011-12-051-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 30765b92 ("slab, lockdep: Annotate the locks before using them") moves the init_lock_keys() call from after g_cpucache_up = FULL, to before it. And overlooks the fact that init_node_lock_keys() tests for it and ignores everything !FULL. Introduce a LATE stage and change the lockdep test to be <LATE. Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: stable@kernel.org Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* | Merge branch 'slab/urgent' of ↵Linus Torvalds2011-11-291-16/+26
|\ \ | |/ |/| | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux * 'slab/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: slub: avoid potential NULL dereference or corruption slub: use irqsafe_cpu_cmpxchg for put_cpu_partial slub: move discard_slab out of node lock slub: use correct parameter to add a page to partial list tail
| * slub: avoid potential NULL dereference or corruptionEric Dumazet2011-11-241-10/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | show_slab_objects() can trigger NULL dereferences or memory corruption. Another cpu can change its c->page to NULL or c->node to NUMA_NO_NODE while we use them. Use ACCESS_ONCE(c->page) and ACCESS_ONCE(c->node) to make sure this cannot happen. Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: use irqsafe_cpu_cmpxchg for put_cpu_partialChristoph Lameter2011-11-241-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The cmpxchg must be irq safe. The fallback for this_cpu_cmpxchg only disables preemption which results in per cpu partial page operation potentially failing on non x86 platforms. This patch fixes the following problem reported by Christian Kujau: I seem to hit it with heavy disk & cpu IO is in progress on this PowerBook G4. Full dmesg & .config: http://nerdbynature.de/bits/3.2.0-rc1/oops/ I've enabled some debug options and now it really points to slub.c:2166 http://nerdbynature.de/bits/3.2.0-rc1/oops/oops4m.jpg With debug options enabled I'm currently in the xmon debugger, not sure what to make of it yet, I'll try to get something useful out of it :) Reported-by: Christian Kujau <lists@nerdbynature.de> Tested-by: Christian Kujau <lists@nerdbynature.de> Acked-by: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: move discard_slab out of node lockShaohua Li2011-11-151-4/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lockdep reports there is potential deadlock for slub node list_lock. discard_slab() is called with the lock hold in unfreeze_partials(), which could trigger a slab allocation, which could hold the lock again. discard_slab() doesn't need hold the lock actually, if the slab is already removed from partial list. Acked-by: Christoph Lameter <cl@linux.com> Reported-and-tested-by: Yong Zhang <yong.zhang0@gmail.com> Reported-and-tested-by: Julie Sullivan <kernelmail.jms@gmail.com> Signed-off-by: Shaohua Li <shaohua.li@intel.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: use correct parameter to add a page to partial list tailShaohua Li2011-11-151-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | unfreeze_partials() needs add the page to partial list tail, since such page hasn't too many free objects. We now explictly use DEACTIVATE_TO_TAIL for this, while DEACTIVATE_TO_TAIL != 1. This will cause performance regression (eg, more lock contention in node->list_lock) without below fix. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
* | Merge branch 'for-3.2-fixes' of ↵Linus Torvalds2011-11-282-31/+48
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu * 'for-3.2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: percpu: explain why per_cpu_ptr_to_phys() is more complicated than necessary percpu: fix chunk range calculation percpu: rename pcpu_mem_alloc to pcpu_mem_zalloc
| * | percpu: explain why per_cpu_ptr_to_phys() is more complicated than necessaryDave Young2011-11-231-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add comments about current per_cpu_ptr_to_phys implementation to explain why the logic is more complicated than necessary. -tj: relocated comment into kerneldoc comment Signed-off-by: Dave Young <dyoung@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * | percpu: fix chunk range calculationTejun Heo2011-11-222-20/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Percpu allocator recorded the cpus which map to the first and last units in pcpu_first/last_unit_cpu respectively and used them to determine the address range of a chunk - e.g. it assumed that the first unit has the lowest address in a chunk while the last unit has the highest address. This simply isn't true. Groups in a chunk can have arbitrary positive or negative offsets from the previous one and there is no guarantee that the first unit occupies the lowest offset while the last one the highest. Fix it by actually comparing unit offsets to determine cpus occupying the lowest and highest offsets. Also, rename pcu_first/last_unit_cpu to pcpu_low/high_unit_cpu to avoid confusion. The chunk address range is used to flush cache on vmalloc area map/unmap and decide whether a given address is in the first chunk by per_cpu_ptr_to_phys() and the bug was discovered by invalid per_cpu_ptr_to_phys() translation for crash_note. Kudos to Dave Young for tracking down the problem. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: WANG Cong <xiyou.wangcong@gmail.com> Reported-by: Dave Young <dyoung@redhat.com> Tested-by: Dave Young <dyoung@redhat.com> LKML-Reference: <4EC21F67.10905@redhat.com> Cc: stable @kernel.org
| * | percpu: rename pcpu_mem_alloc to pcpu_mem_zallocBob Liu2011-11-222-11/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently pcpu_mem_alloc() is implemented always return zeroed memory. So rename it to make user like pcpu_get_pages_and_bitmap() know don't reinit it. Signed-off-by: Bob Liu <lliubbo@gmail.com> Reviewed-by: Pekka Enberg <penberg@kernel.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Tejun Heo <tj@kernel.org>
* | | Merge branch 'writeback-for-linus' of ↵Linus Torvalds2011-11-221-16/+7
|\ \ \ | |/ / |/| | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux * 'writeback-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux: writeback: remove vm_dirties and task->dirties writeback: hard throttle 1000+ dd on a slow USB stick mm: Make task in balance_dirty_pages() killable
| * | writeback: remove vm_dirties and task->dirtiesWu Fengguang2011-11-171-9/+0
| | | | | | | | | | | | | | | | | | They are not used any more. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: hard throttle 1000+ dd on a slow USB stickWu Fengguang2011-11-171-6/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The sleep based balance_dirty_pages() can pause at most MAX_PAUSE=200ms on every 1 4KB-page, which means it cannot throttle a task under 4KB/200ms=20KB/s. So when there are more than 512 dd writing to a 10MB/s USB stick, its bdi dirty pages could grow out of control. Even if we can increase MAX_PAUSE, the minimal (task_ratelimit = 1) means a limit of 4KB/s. They can eventually be safeguarded by the global limit check (nr_dirty < dirty_thresh). However if someone is also writing to an HDD at the same time, it'll get poor HDD write performance. We at least want to maintain good write performance for other devices when one device is attacked by some "massive parallel" workload, or suffers from slow write bandwidth, or somehow get stalled due to some error condition (eg. NFS server not responding). For a stalled device, we need to completely block its dirtiers, too, before its bdi dirty pages grow all the way up to the global limit and leave no space for the other functional devices. So change the loop exit condition to /* * Always enforce global dirty limit; also enforce bdi dirty limit * if the normal max_pause sleeps cannot keep things under control. */ if (nr_dirty < dirty_thresh && (bdi_dirty < bdi_thresh || bdi->dirty_ratelimit > 1)) break; which can be further simplified to if (task_ratelimit) break; Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | mm: Make task in balance_dirty_pages() killableJan Kara2011-11-161-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is no reason why task in balance_dirty_pages() shouldn't be killable and it helps in recovering from some error conditions (like when filesystem goes in error state and cannot accept writeback anymore but we still want to kill processes using it to be able to unmount it). There will be follow up patches to further abort the generic_perform_write() and other filesystem write loops, to avoid large write + SIGKILL combination exceeding the dirty limit and possibly strange OOM. Reported-by: Kazuya Mio <k-mio@sx.jp.nec.com> Tested-by: Kazuya Mio <k-mio@sx.jp.nec.com> Reviewed-by: Neil Brown <neilb@suse.de> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
* | | Merge branch 'stable/for-linus-fixes-3.2' of ↵Linus Torvalds2011-11-182-15/+14
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen * 'stable/for-linus-fixes-3.2' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen: xen-gntalloc: signedness bug in add_grefs() xen-gntalloc: integer overflow in gntalloc_ioctl_alloc() xen-gntdev: integer overflow in gntdev_alloc_map() xen:pvhvm: enable PVHVM VCPU placement when using more than 32 CPUs. xen/balloon: Avoid OOM when requesting highmem xen: Remove hanging references to CONFIG_XEN_PLATFORM_PCI xen: map foreign pages for shared rings by updating the PTEs directly
| * | | xen: map foreign pages for shared rings by updating the PTEs directlyDavid Vrabel2011-11-162-15/+14
| | |/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When mapping a foreign page with xenbus_map_ring_valloc() with the GNTTABOP_map_grant_ref hypercall, set the GNTMAP_contains_pte flag and pass a pointer to the PTE (in init_mm). After the page is mapped, the usual fault mechanism can be used to update additional MMs. This allows the vmalloc_sync_all() to be removed from alloc_vm_area(). Signed-off-by: David Vrabel <david.vrabel@citrix.com> Acked-by: Andrew Morton <akpm@linux-foundation.org> [v1: Squashed fix by Michal for no-mmu case] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Michal Simek <monstr@monstr.eu>
* | | Merge branch 'for-linus' of git://git.kernel.dk/linux-blockLinus Torvalds2011-11-181-0/+8
|\ \ \ | |_|/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * 'for-linus' of git://git.kernel.dk/linux-block: block: add missed trace_block_plug paride: fix potential information leak in pg_read() bio: change some signed vars to unsigned block: avoid unnecessary plug list flush cciss: auto engage SCSI mid layer at driver load time loop: cleanup set_status interface include/linux/bio.h: use a static inline function for bio_integrity_clone() loop: prevent information leak after failed read block: Always check length of all iov entries in blk_rq_map_user_iov() The Windows driver .inf disables ASPM on all cciss devices. Do the same. backing-dev: ensure wakeup_timer is deleted block: Revert "[SCSI] genhd: add a new attribute "alias" in gendisk"
| * | backing-dev: ensure wakeup_timer is deletedRabin Vincent2011-11-111-0/+8
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bdi_prune_sb() in bdi_unregister() attempts to removes the bdi links from all super_blocks and then del_timer_sync() the writeback timer. However, this can race with __mark_inode_dirty(), leading to bdi_wakeup_thread_delayed() rearming the writeback timer on the bdi we're unregistering, after we've called del_timer_sync(). This can end up with the bdi being freed with an active timer inside it, as in the case of the following dump after the removal of an SD card. Fix this by redoing the del_timer_sync() in bdi_destory(). ------------[ cut here ]------------ WARNING: at /home/rabin/kernel/arm/lib/debugobjects.c:262 debug_print_object+0x9c/0xc8() ODEBUG: free active (active state 0) object type: timer_list hint: wakeup_timer_fn+0x0/0x180 Modules linked in: Backtrace: [<c00109dc>] (dump_backtrace+0x0/0x110) from [<c0236e4c>] (dump_stack+0x18/0x1c) r6:c02bc638 r5:00000106 r4:c79f5d18 r3:00000000 [<c0236e34>] (dump_stack+0x0/0x1c) from [<c0025e6c>] (warn_slowpath_common+0x54/0x6c) [<c0025e18>] (warn_slowpath_common+0x0/0x6c) from [<c0025f28>] (warn_slowpath_fmt+0x38/0x40) r8:20000013 r7:c780c6f0 r6:c031613c r5:c780c6f0 r4:c02b1b29 r3:00000009 [<c0025ef0>] (warn_slowpath_fmt+0x0/0x40) from [<c015eb4c>] (debug_print_object+0x9c/0xc8) r3:c02b1b29 r2:c02bc662 [<c015eab0>] (debug_print_object+0x0/0xc8) from [<c015f574>] (debug_check_no_obj_freed+0xac/0x1dc) r6:c7964000 r5:00000001 r4:c7964000 [<c015f4c8>] (debug_check_no_obj_freed+0x0/0x1dc) from [<c00a9e38>] (kmem_cache_free+0x88/0x1f8) [<c00a9db0>] (kmem_cache_free+0x0/0x1f8) from [<c014286c>] (blk_release_queue+0x70/0x78) [<c01427fc>] (blk_release_queue+0x0/0x78) from [<c015290c>] (kobject_release+0x70/0x84) r5:c79641f0 r4:c796420c [<c015289c>] (kobject_release+0x0/0x84) from [<c0153ce4>] (kref_put+0x68/0x80) r7:00000083 r6:c74083d0 r5:c015289c r4:c796420c [<c0153c7c>] (kref_put+0x0/0x80) from [<c01527d0>] (kobject_put+0x48/0x5c) r5:c79643b4 r4:c79641f0 [<c0152788>] (kobject_put+0x0/0x5c) from [<c013ddd8>] (blk_cleanup_queue+0x68/0x74) r4:c7964000 [<c013dd70>] (blk_cleanup_queue+0x0/0x74) from [<c01a6370>] (mmc_blk_put+0x78/0xe8) r5:00000000 r4:c794c400 [<c01a62f8>] (mmc_blk_put+0x0/0xe8) from [<c01a64b4>] (mmc_blk_release+0x24/0x38) r5:c794c400 r4:c0322824 [<c01a6490>] (mmc_blk_release+0x0/0x38) from [<c00de11c>] (__blkdev_put+0xe8/0x170) r5:c78d5e00 r4:c74083c0 [<c00de034>] (__blkdev_put+0x0/0x170) from [<c00de2c0>] (blkdev_put+0x11c/0x12c) r8:c79f5f70 r7:00000001 r6:c74083d0 r5:00000083 r4:c74083c0 r3:00000000 [<c00de1a4>] (blkdev_put+0x0/0x12c) from [<c00b0724>] (kill_block_super+0x60/0x6c) r7:c7942300 r6:c79f4000 r5:00000083 r4:c74083c0 [<c00b06c4>] (kill_block_super+0x0/0x6c) from [<c00b0a94>] (deactivate_locked_super+0x44/0x70) r6:c79f4000 r5:c031af64 r4:c794dc00 r3:c00b06c4 [<c00b0a50>] (deactivate_locked_super+0x0/0x70) from [<c00b1358>] (deactivate_super+0x6c/0x70) r5:c794dc00 r4:c794dc00 [<c00b12ec>] (deactivate_super+0x0/0x70) from [<c00c88b0>] (mntput_no_expire+0x188/0x194) r5:c794dc00 r4:c7942300 [<c00c8728>] (mntput_no_expire+0x0/0x194) from [<c00c95e0>] (sys_umount+0x2e4/0x310) r6:c7942300 r5:00000000 r4:00000000 r3:00000000 [<c00c92fc>] (sys_umount+0x0/0x310) from [<c000d940>] (ret_fast_syscall+0x0/0x30) ---[ end trace e5c83c92ada51c76 ]--- Cc: stable@kernel.org Signed-off-by: Rabin Vincent <rabin.vincent@stericsson.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
* | hugetlb: release pages in the error path of hugetlb_cow()Hillf Danton2011-11-161-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | If we fail to prepare an anon_vma, the {new, old}_page should be released, or they will leak. Signed-off-by: Hillf Danton <dhillf@gmail.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | oom: do not kill tasks with oom_score_adj OOM_SCORE_ADJ_MINMichal Hocko2011-11-161-0/+5
|/ | | | | | | | | | | | | | | | | | | | | | | Commit c9f01245 ("oom: remove oom_disable_count") has removed the oom_disable_count counter which has been used for early break out from oom_badness so we could never select a task with oom_score_adj set to OOM_SCORE_ADJ_MIN (oom disabled). Now that the counter is gone we are always going through heuristics calculation and we always return a non zero positive value. This means that we can end up killing a task with OOM disabled because it is indistinguishable from regular tasks with 1% resp. CAP_SYS_ADMIN tasks with 3% usage of memory or tasks with oom_score_adj set but OOM enabled. Let's break out early if the task should have OOM disabled. Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* writeback: fix uninitialized task_ratelimitWu Fengguang2011-11-071-4/+4
| | | | | | | | | | | In balance_dirty_pages() task_ratelimit may be not initialized (initialization skiped by goto pause), and then used when calling tracing hook. Fix it by moving the task_ratelimit assignment before goto pause. Reported-by: Witold Baryluk <baryluk@smp.if.uj.edu.pl> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
* Merge branch 'modsplit-Oct31_2011' of ↵Linus Torvalds2011-11-0738-36/+33
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux * 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: (230 commits) Revert "tracing: Include module.h in define_trace.h" irq: don't put module.h into irq.h for tracking irqgen modules. bluetooth: macroize two small inlines to avoid module.h ip_vs.h: fix implicit use of module_get/module_put from module.h nf_conntrack.h: fix up fallout from implicit moduleparam.h presence include: replace linux/module.h with "struct module" wherever possible include: convert various register fcns to macros to avoid include chaining crypto.h: remove unused crypto_tfm_alg_modname() inline uwb.h: fix implicit use of asm/page.h for PAGE_SIZE pm_runtime.h: explicitly requires notifier.h linux/dmaengine.h: fix implicit use of bitmap.h and asm/page.h miscdevice.h: fix up implicit use of lists and types stop_machine.h: fix implicit use of smp.h for smp_processor_id of: fix implicit use of errno.h in include/linux/of.h of_platform.h: delete needless include <linux/module.h> acpi: remove module.h include from platform/aclinux.h miscdevice.h: delete unnecessary inclusion of module.h device_cgroup.h: delete needless include <linux/module.h> net: sch_generic remove redundant use of <linux/module.h> net: inet_timewait_sock doesnt need <linux/module.h> ... Fix up trivial conflicts (other header files, and removal of the ab3550 mfd driver) in - drivers/media/dvb/frontends/dibx000_common.c - drivers/media/video/{mt9m111.c,ov6650.c} - drivers/mfd/ab3550-core.c - include/linux/dmaengine.h
| * mm: fix implicit stat.h usage in dmapool.cPaul Gortmaker2011-10-311-0/+1
| | | | | | | | | | | | | | | | | | The removal of the implicitly everywhere module.h and its child includes will reveal this implicit stat.h usage: mm/dmapool.c:108: error: ‘S_IRUGO’ undeclared here (not in a function) Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
| * mm: Map most files to use export.h instead of module.hPaul Gortmaker2011-10-3130-30/+30
| | | | | | | | | | | | | | | | The files changed within are only using the EXPORT_SYMBOL macro variants. They are not using core modular infrastructure and hence don't need module.h but only the export.h header. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
| * mm: Add export.h for EXPORT_SYMBOL to active symbol exportersPaul Gortmaker2011-10-312-0/+2
| | | | | | | | | | | | | | | | | | | | These files were getting <linux/module.h> via an implicit include path, but we want to crush those out of existence since they cost time during compiles of processing thousands of lines of headers for no reason. Give them the lightweight header that just contains the EXPORT_SYMBOL infrastructure. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
| * mm: delete various needless include <linux/module.h>Paul Gortmaker2011-10-316-6/+0
| | | | | | | | | | | | | | | | There is nothing modular in these files, and no reason to drag in all the 357 headers that module.h brings with it, since it just slows down compiles. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
* | Merge branch 'writeback-for-linus' of ↵Linus Torvalds2011-11-073-154/+560
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux * 'writeback-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux: writeback: Add a 'reason' to wb_writeback_work writeback: send work item to queue_io, move_expired_inodes writeback: trace event balance_dirty_pages writeback: trace event bdi_dirty_ratelimit writeback: fix ppc compile warnings on do_div(long long, unsigned long) writeback: per-bdi background threshold writeback: dirty position control - bdi reserve area writeback: control dirty pause time writeback: limit max dirty pause time writeback: IO-less balance_dirty_pages() writeback: per task dirty rate limit writeback: stabilize bdi->dirty_ratelimit writeback: dirty rate control writeback: add bg_threshold parameter to __bdi_update_bandwidth() writeback: dirty position control writeback: account per-bdi accumulated dirtied pages
| * | writeback: Add a 'reason' to wb_writeback_workCurt Wohlgemuth2011-10-303-3/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This creates a new 'reason' field in a wb_writeback_work structure, which unambiguously identifies who initiates writeback activity. A 'wb_reason' enumeration has been added to writeback.h, to enumerate the possible reasons. The 'writeback_work_class' and tracepoint event class and 'writeback_queue_io' tracepoints are updated to include the symbolic 'reason' in all trace events. And the 'writeback_inodes_sbXXX' family of routines has had a wb_stats parameter added to them, so callers can specify why writeback is being started. Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Curt Wohlgemuth <curtw@google.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: trace event balance_dirty_pagesWu Fengguang2011-10-301-0/+22
| | | | | | | | | | | | | | | | | | | | | Useful for analyzing the dynamics of the throttling algorithms and debugging user reported problems. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: trace event bdi_dirty_ratelimitWu Fengguang2011-10-301-0/+2
| | | | | | | | | | | | | | | | | | It helps understand how various throttle bandwidths are updated. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: fix ppc compile warnings on do_div(long long, unsigned long)Wu Fengguang2011-10-111-8/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix powerpc compile warnings mm/page-writeback.c: In function 'bdi_position_ratio': mm/page-writeback.c:622:3: warning: comparison of distinct pointer types lacks a cast [enabled by default] page-writeback.c:635:4: warning: comparison of distinct pointer types lacks a cast [enabled by default] Also fix gcc "uninitialized var" warnings. Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: dirty position control - bdi reserve areaWu Fengguang2011-10-031-0/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Keep a minimal pool of dirty pages for each bdi, so that the disk IO queues won't underrun. Also gently increase a small bdi_thresh to avoid it stuck in 0 for some light dirtied bdi. It's particularly useful for JBOD and small memory system. It may result in (pos_ratio > 1) at the setpoint and push the dirty pages high. This is more or less intended because the bdi is in the danger of IO queue underflow. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: control dirty pause timeWu Fengguang2011-10-031-1/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The dirty pause time shall ultimately be controlled by adjusting nr_dirtied_pause, since there is relationship pause = pages_dirtied / task_ratelimit Assuming pages_dirtied ~= nr_dirtied_pause task_ratelimit ~= dirty_ratelimit We get nr_dirtied_pause ~= dirty_ratelimit * desired_pause Here dirty_ratelimit is preferred over task_ratelimit because it's more stable. It's also important to limit possible large transitional errors: - bw is changing quickly - pages_dirtied << nr_dirtied_pause on entering dirty exceeded area - pages_dirtied >> nr_dirtied_pause on btrfs (to be improved by a separate fix, but still expect non-trivial errors) So we end up using the above formula inside clamp_val(). The best test case for this code is to run 100 "dd bs=4M" tasks on btrfs and check its pause time distribution. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: limit max dirty pause timeWu Fengguang2011-10-031-2/+42
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Apply two policies to scale down the max pause time for 1) small number of concurrent dirtiers 2) small memory system (comparing to storage bandwidth) MAX_PAUSE=200ms may only be suitable for high end servers with lots of concurrent dirtiers, where the large pause time can reduce much overheads. Otherwise, smaller pause time is desirable whenever possible, so as to get good responsiveness and smooth user experiences. It's actually required for good disk utilization in the case when all the dirty pages can be synced to disk within MAX_PAUSE=200ms. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: IO-less balance_dirty_pages()Wu Fengguang2011-10-031-105/+56
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As proposed by Chris, Dave and Jan, don't start foreground writeback IO inside balance_dirty_pages(). Instead, simply let it idle sleep for some time to throttle the dirtying task. In the mean while, kick off the per-bdi flusher thread to do background writeback IO. RATIONALS ========= - disk seeks on concurrent writeback of multiple inodes (Dave Chinner) If every thread doing writes and being throttled start foreground writeback, it leads to N IO submitters from at least N different inodes at the same time, end up with N different sets of IO being issued with potentially zero locality to each other, resulting in much lower elevator sort/merge efficiency and hence we seek the disk all over the place to service the different sets of IO. OTOH, if there is only one submission thread, it doesn't jump between inodes in the same way when congestion clears - it keeps writing to the same inode, resulting in large related chunks of sequential IOs being issued to the disk. This is more efficient than the above foreground writeback because the elevator works better and the disk seeks less. - lock contention and cache bouncing on concurrent IO submitters (Dave Chinner) With this patchset, the fs_mark benchmark on a 12-drive software RAID0 goes from CPU bound to IO bound, freeing "3-4 CPUs worth of spinlock contention". * "CPU usage has dropped by ~55%", "it certainly appears that most of the CPU time saving comes from the removal of contention on the inode_wb_list_lock" (IMHO at least 10% comes from the reduction of cacheline bouncing, because the new code is able to call much less frequently into balance_dirty_pages() and hence access the global page states) * the user space "App overhead" is reduced by 20%, by avoiding the cacheline pollution by the complex writeback code path * "for a ~5% throughput reduction", "the number of write IOs have dropped by ~25%", and the elapsed time reduced from 41:42.17 to 40:53.23. * On a simple test of 100 dd, it reduces the CPU %system time from 30% to 3%, and improves IO throughput from 38MB/s to 42MB/s. - IO size too small for fast arrays and too large for slow USB sticks The write_chunk used by current balance_dirty_pages() cannot be directly set to some large value (eg. 128MB) for better IO efficiency. Because it could lead to more than 1 second user perceivable stalls. Even the current 4MB write size may be too large for slow USB sticks. The fact that balance_dirty_pages() starts IO on itself couples the IO size to wait time, which makes it hard to do suitable IO size while keeping the wait time under control. Now it's possible to increase writeback chunk size proportional to the disk bandwidth. In a simple test of 50 dd's on XFS, 1-HDD, 3GB ram, the larger writeback size dramatically reduces the seek count to 1/10 (far beyond my expectation) and improves the write throughput by 24%. - long block time in balance_dirty_pages() hurts desktop responsiveness Many of us may have the experience: it often takes a couple of seconds or even long time to stop a heavy writing dd/cp/tar command with Ctrl-C or "kill -9". - IO pipeline broken by bumpy write() progress There are a broad class of "loop {read(buf); write(buf);}" applications whose read() pipeline will be under-utilized or even come to a stop if the write()s have long latencies _or_ don't progress in a constant rate. The current threshold based throttling inherently transfers the large low level IO completion fluctuations to bumpy application write()s, and further deteriorates with increasing number of dirtiers and/or bdi's. For example, when doing 50 dd's + 1 remote rsync to an XFS partition, the rsync progresses very bumpy in legacy kernel, and throughput is improved by 67% by this patchset. (plus the larger write chunk size, it will be 93% speedup). The new rate based throttling can support 1000+ dd's with excellent smoothness, low latency and low overheads. For the above reasons, it's much better to do IO-less and low latency pauses in balance_dirty_pages(). Jan Kara, Dave Chinner and me explored the scheme to let balance_dirty_pages() wait for enough writeback IO completions to safeguard the dirty limit. However it's found to have two problems: - in large NUMA systems, the per-cpu counters may have big accounting errors, leading to big throttle wait time and jitters. - NFS may kill large amount of unstable pages with one single COMMIT. Because NFS server serves COMMIT with expensive fsync() IOs, it is desirable to delay and reduce the number of COMMITs. So it's not likely to optimize away such kind of bursty IO completions, and the resulted large (and tiny) stall times in IO completion based throttling. So here is a pause time oriented approach, which tries to control the pause time in each balance_dirty_pages() invocations, by controlling the number of pages dirtied before calling balance_dirty_pages(), for smooth and efficient dirty throttling: - avoid useless (eg. zero pause time) balance_dirty_pages() calls - avoid too small pause time (less than 4ms, which burns CPU power) - avoid too large pause time (more than 200ms, which hurts responsiveness) - avoid big fluctuations of pause times It can control pause times at will. The default policy (in a followup patch) will be to do ~10ms pauses in 1-dd case, and increase to ~100ms in 1000-dd case. BEHAVIOR CHANGE =============== (1) dirty threshold Users will notice that the applications will get throttled once crossing the global (background + dirty)/2=15% threshold, and then balanced around 17.5%. Before patch, the behavior is to just throttle it at 20% dirtyable memory in 1-dd case. Since the task will be soft throttled earlier than before, it may be perceived by end users as performance "slow down" if his application happens to dirty more than 15% dirtyable memory. (2) smoothness/responsiveness Users will notice a more responsive system during heavy writeback. "killall dd" will take effect instantly. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: per task dirty rate limitWu Fengguang2011-10-031-39/+50
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add two fields to task_struct. 1) account dirtied pages in the individual tasks, for accuracy 2) per-task balance_dirty_pages() call intervals, for flexibility The balance_dirty_pages() call interval (ie. nr_dirtied_pause) will scale near-sqrt to the safety gap between dirty pages and threshold. The main problem of per-task nr_dirtied is, if 1k+ tasks start dirtying pages at exactly the same time, each task will be assigned a large initial nr_dirtied_pause, so that the dirty threshold will be exceeded long before each task reached its nr_dirtied_pause and hence call balance_dirty_pages(). The solution is to watch for the number of pages dirtied on each CPU in between the calls into balance_dirty_pages(). If it exceeds ratelimit_pages (3% dirty threshold), force call balance_dirty_pages() for a chance to set bdi->dirty_exceeded. In normal situations, this safeguarding condition is not expected to trigger at all. On the sqrt in dirty_poll_interval(): It will serve as an initial guess when dirty pages are still in the freerun area. When dirty pages are floating inside the dirty control scope [freerun, limit], a followup patch will use some refined dirty poll interval to get the desired pause time. thresh-dirty (MB) sqrt 1 16 2 22 4 32 8 45 16 64 32 90 64 128 128 181 256 256 512 362 1024 512 The above table means, given 1MB (or 1GB) gap and the dd tasks polling balance_dirty_pages() on every 16 (or 512) pages, the dirty limit won't be exceeded as long as there are less than 16 (or 512) concurrent dd's. So sqrt naturally leads to less overheads and more safe concurrent tasks for large memory servers, which have large (thresh-freerun) gaps. peter: keep the per-CPU ratelimit for safeguarding the 1k+ tasks case CC: Peter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: Andrea Righi <andrea@betterlinux.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: stabilize bdi->dirty_ratelimitWu Fengguang2011-10-032-1/+71
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are some imperfections in balanced_dirty_ratelimit. 1) large fluctuations The dirty_rate used for computing balanced_dirty_ratelimit is merely averaged in the past 200ms (very small comparing to the 3s estimation period for write_bw), which makes rather dispersed distribution of balanced_dirty_ratelimit. It's pretty hard to average out the singular points by increasing the estimation period. Considering that the averaging technique will introduce very undesirable time lags, I give it up totally. (btw, the 3s write_bw averaging time lag is much more acceptable because its impact is one-way and therefore won't lead to oscillations.) The more practical way is filtering -- most singular balanced_dirty_ratelimit points can be filtered out by remembering some prev_balanced_rate and prev_prev_balanced_rate. However the more reliable way is to guard balanced_dirty_ratelimit with task_ratelimit. 2) due to truncates and fs redirties, the (write_bw <=> dirty_rate) match could become unbalanced, which may lead to large systematical errors in balanced_dirty_ratelimit. The truncates, due to its possibly bumpy nature, can hardly be compensated smoothly. So let's face it. When some over-estimated balanced_dirty_ratelimit brings dirty_ratelimit high, dirty pages will go higher than the setpoint. task_ratelimit will in turn become lower than dirty_ratelimit. So if we consider both balanced_dirty_ratelimit and task_ratelimit and update dirty_ratelimit only when they are on the same side of dirty_ratelimit, the systematical errors in balanced_dirty_ratelimit won't be able to bring dirty_ratelimit far away. The balanced_dirty_ratelimit estimation may also be inaccurate near @limit or @freerun, however is less an issue. 3) since we ultimately want to - keep the fluctuations of task ratelimit as small as possible - keep the dirty pages around the setpoint as long time as possible the update policy used for (2) also serves the above goals nicely: if for some reason the dirty pages are high (task_ratelimit < dirty_ratelimit), and dirty_ratelimit is low (dirty_ratelimit < balanced_dirty_ratelimit), there is no point to bring up dirty_ratelimit in a hurry only to hurt both the above two goals. So, we make use of task_ratelimit to limit the update of dirty_ratelimit in two ways: 1) avoid changing dirty rate when it's against the position control target (the adjusted rate will slow down the progress of dirty pages going back to setpoint). 2) limit the step size. task_ratelimit is changing values step by step, leaving a consistent trace comparing to the randomly jumping balanced_dirty_ratelimit. task_ratelimit also has the nice smaller errors in stable state and typically larger errors when there are big errors in rate. So it's a pretty good limiting factor for the step size of dirty_ratelimit. Note that bdi->dirty_ratelimit is always tracking balanced_dirty_ratelimit. task_ratelimit is merely used as a limiting factor. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: dirty rate controlWu Fengguang2011-10-032-2/+82
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It's all about bdi->dirty_ratelimit, which aims to be (write_bw / N) when there are N dd tasks. On write() syscall, use bdi->dirty_ratelimit ============================================ balance_dirty_pages(pages_dirtied) { task_ratelimit = bdi->dirty_ratelimit * bdi_position_ratio(); pause = pages_dirtied / task_ratelimit; sleep(pause); } On every 200ms, update bdi->dirty_ratelimit =========================================== bdi_update_dirty_ratelimit() { task_ratelimit = bdi->dirty_ratelimit * bdi_position_ratio(); balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate; bdi->dirty_ratelimit = balanced_dirty_ratelimit } Estimation of balanced bdi->dirty_ratelimit =========================================== balanced task_ratelimit ----------------------- balance_dirty_pages() needs to throttle tasks dirtying pages such that the total amount of dirty pages stays below the specified dirty limit in order to avoid memory deadlocks. Furthermore we desire fairness in that tasks get throttled proportionally to the amount of pages they dirty. IOW we want to throttle tasks such that we match the dirty rate to the writeout bandwidth, this yields a stable amount of dirty pages: dirty_rate == write_bw (1) The fairness requirement gives us: task_ratelimit = balanced_dirty_ratelimit == write_bw / N (2) where N is the number of dd tasks. We don't know N beforehand, but still can estimate balanced_dirty_ratelimit within 200ms. Start by throttling each dd task at rate task_ratelimit = task_ratelimit_0 (3) (any non-zero initial value is OK) After 200ms, we measured dirty_rate = # of pages dirtied by all dd's / 200ms write_bw = # of pages written to the disk / 200ms For the aggressive dd dirtiers, the equality holds dirty_rate == N * task_rate == N * task_ratelimit_0 (4) Or task_ratelimit_0 == dirty_rate / N (5) Now we conclude that the balanced task ratelimit can be estimated by write_bw balanced_dirty_ratelimit = task_ratelimit_0 * ---------- (6) dirty_rate Because with (4) and (5) we can get the desired equality (1): write_bw balanced_dirty_ratelimit == (dirty_rate / N) * ---------- dirty_rate == write_bw / N Then using the balanced task ratelimit we can compute task pause times like: task_pause = task->nr_dirtied / task_ratelimit task_ratelimit with position control ------------------------------------ However, while the above gives us means of matching the dirty rate to the writeout bandwidth, it at best provides us with a stable dirty page count (assuming a static system). In order to control the dirty page count such that it is high enough to provide performance, but does not exceed the specified limit we need another control. The dirty position control works by extending (2) to task_ratelimit = balanced_dirty_ratelimit * pos_ratio (7) where pos_ratio is a negative feedback function that subjects to 1) f(setpoint) = 1.0 2) df/dx < 0 That is, if the dirty pages are ABOVE the setpoint, we throttle each task a bit more HEAVY than balanced_dirty_ratelimit, so that the dirty pages are created less fast than they are cleaned, thus DROP to the setpoints (and the reverse). Based on (7) and the assumption that both dirty_ratelimit and pos_ratio remains CONSTANT for the past 200ms, we get task_ratelimit_0 = balanced_dirty_ratelimit * pos_ratio (8) Putting (8) into (6), we get the formula used in bdi_update_dirty_ratelimit(): write_bw balanced_dirty_ratelimit *= pos_ratio * ---------- (9) dirty_rate Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>