| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on (see merge
commit 382b5b87a97d: "Fix a number of issues with MTE, such as
races on the tags being initialised vs the PG_mte_tagged flag as
well as the lack of support for VM_SHARED when KVM is involved.
Patches from Catalin Marinas and Peter Collingbourne").
- Merge the pKVM shadow vcpu state tracking that allows the
hypervisor to have its own view of a vcpu, keeping that state
private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB
pages only) as a prefix of the oncoming support for 4kB and 16kB
pages.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address
support
- Removal of a unused function
x86:
- Allow compiling out SMM support
- Cleanup and documentation of SMM state save area format
- Preserve interrupt shadow in SMM state save area
- Respond to generic signals during slow page faults
- Fixes and optimizations for the non-executable huge page errata
fix.
- Reprogram all performance counters on PMU filter change
- Cleanups to Hyper-V emulation and tests
- Process Hyper-V TLB flushes from a nested guest (i.e. from a L2
guest running on top of a L1 Hyper-V hypervisor)
- Advertise several new Intel features
- x86 Xen-for-KVM:
- Allow the Xen runstate information to cross a page boundary
- Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
- Add support for 32-bit guests in SCHEDOP_poll
- Notable x86 fixes and cleanups:
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped
a few years back when eliminating unnecessary barriers when
switching between vmcs01 and vmcs02.
- Clean up vmread_error_trampoline() to make it more obvious that
params must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL
irrespective of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM
incorrectly thinking a guest needs TSC scaling when running on a
CPU with a constant TSC, but no hardware-enumerated TSC
frequency.
- Advertise (on AMD) that the SMM_CTL MSR is not supported
- Remove unnecessary exports
Generic:
- Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
- Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
- Fix build errors that occur in certain setups (unsure exactly what
is unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
- Introduce actual atomics for clear/set_bit() in selftests
- Add support for pinning vCPUs in dirty_log_perf_test.
- Rename the so called "perf_util" framework to "memstress".
- Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress
tests.
- Add a common ucall implementation; code dedup and pre-work for
running SEV (and beyond) guests in selftests.
- Provide a common constructor and arch hook, which will eventually
be used by x86 to automatically select the right hypercall (AMD vs.
Intel).
- A bunch of added/enabled/fixed selftests for ARM64, covering
memslots, breakpoints, stage-2 faults and access tracking.
- x86-specific selftest changes:
- Clean up x86's page table management.
- Clean up and enhance the "smaller maxphyaddr" test, and add a
related test to cover generic emulation failure.
- Clean up the nEPT support checks.
- Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
- Fix an ordering issue in the AMX test introduced by recent
conversions to use kvm_cpu_has(), and harden the code to guard
against similar bugs in the future. Anything that tiggers
caching of KVM's supported CPUID, kvm_cpu_has() in this case,
effectively hides opt-in XSAVE features if the caching occurs
before the test opts in via prctl().
Documentation:
- Remove deleted ioctls from documentation
- Clean up the docs for the x86 MSR filter.
- Various fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (361 commits)
KVM: x86: Add proper ReST tables for userspace MSR exits/flags
KVM: selftests: Allocate ucall pool from MEM_REGION_DATA
KVM: arm64: selftests: Align VA space allocator with TTBR0
KVM: arm64: Fix benign bug with incorrect use of VA_BITS
KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
KVM: x86: Advertise that the SMM_CTL MSR is not supported
KVM: x86: remove unnecessary exports
KVM: selftests: Fix spelling mistake "probabalistic" -> "probabilistic"
tools: KVM: selftests: Convert clear/set_bit() to actual atomics
tools: Drop "atomic_" prefix from atomic test_and_set_bit()
tools: Drop conflicting non-atomic test_and_{clear,set}_bit() helpers
KVM: selftests: Use non-atomic clear/set bit helpers in KVM tests
perf tools: Use dedicated non-atomic clear/set bit helpers
tools: Take @bit as an "unsigned long" in {clear,set}_bit() helpers
KVM: arm64: selftests: Enable single-step without a "full" ucall()
KVM: x86: fix APICv/x2AVIC disabled when vm reboot by itself
KVM: Remove stale comment about KVM_REQ_UNHALT
KVM: Add missing arch for KVM_CREATE_DEVICE and KVM_{SET,GET}_DEVICE_ATTR
KVM: Reference to kvm_userspace_memory_region in doc and comments
KVM: Delete all references to removed KVM_SET_MEMORY_ALIAS ioctl
...
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.2
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on.
- Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
- Add/Enable/Fix a bunch of selftests covering memslots, breakpoints,
stage-2 faults and access tracking. You name it, we got it, we
probably broke it.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
As a side effect, this tag also drags:
- The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring
series
- A shared branch with the arm64 tree that repaints all the system
registers to match the ARM ARM's naming, and resulting in
interesting conflicts
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
As with PG_arch_2, this flag is only allowed on 64-bit architectures due
to the shortage of bits available. It will be used by the arm64 MTE code
in subsequent patches.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Steven Price <steven.price@arm.com>
[catalin.marinas@arm.com: added flag preserving in __split_huge_page_tail()]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221104011041.290951-5-pcc@google.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Commit 4beba9486abd ("mm: Add PG_arch_2 page flag") introduced a new
page flag for all 64-bit architectures. However, even if an architecture
is 64-bit, it may still have limited spare bits in the 'flags' member of
'struct page'. This may happen if an architecture enables SPARSEMEM
without SPARSEMEM_VMEMMAP as is the case with the newly added loongarch.
This architecture port needs 19 more bits for the sparsemem section
information and, while it is currently fine with PG_arch_2, adding any
more PG_arch_* flags will trigger build-time warnings.
Add a new CONFIG_ARCH_USES_PG_ARCH_X option which can be selected by
architectures that need more PG_arch_* flags beyond PG_arch_1. Select it
on arm64.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
[pcc@google.com: fix build with CONFIG_ARM64_MTE disabled]
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reported-by: kernel test robot <lkp@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Steven Price <steven.price@arm.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221104011041.290951-2-pcc@google.com
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We have had FAULT_FLAG_INTERRUPTIBLE but it was never applied to GUPs. One
issue with it is that not all GUP paths are able to handle signal delivers
besides SIGKILL.
That's not ideal for the GUP users who are actually able to handle these
cases, like KVM.
KVM uses GUP extensively on faulting guest pages, during which we've got
existing infrastructures to retry a page fault at a later time. Allowing
the GUP to be interrupted by generic signals can make KVM related threads
to be more responsive. For examples:
(1) SIGUSR1: which QEMU/KVM uses to deliver an inter-process IPI,
e.g. when the admin issues a vm_stop QMP command, SIGUSR1 can be
generated to kick the vcpus out of kernel context immediately,
(2) SIGINT: which can be used with interactive hypervisor users to stop a
virtual machine with Ctrl-C without any delays/hangs,
(3) SIGTRAP: which grants GDB capability even during page faults that are
stuck for a long time.
Normally hypervisor will be able to receive these signals properly, but not
if we're stuck in a GUP for a long time for whatever reason. It happens
easily with a stucked postcopy migration when e.g. a network temp failure
happens, then some vcpu threads can hang death waiting for the pages. With
the new FOLL_INTERRUPTIBLE, we can allow GUP users like KVM to selectively
enable the ability to trap these signals.
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20221011195809.557016-2-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull kernel hardening updates from Kees Cook:
- Convert flexible array members, fix -Wstringop-overflow warnings, and
fix KCFI function type mismatches that went ignored by maintainers
(Gustavo A. R. Silva, Nathan Chancellor, Kees Cook)
- Remove the remaining side-effect users of ksize() by converting
dma-buf, btrfs, and coredump to using kmalloc_size_roundup(), add
more __alloc_size attributes, and introduce full testing of all
allocator functions. Finally remove the ksize() side-effect so that
each allocation-aware checker can finally behave without exceptions
- Introduce oops_limit (default 10,000) and warn_limit (default off) to
provide greater granularity of control for panic_on_oops and
panic_on_warn (Jann Horn, Kees Cook)
- Introduce overflows_type() and castable_to_type() helpers for cleaner
overflow checking
- Improve code generation for strscpy() and update str*() kern-doc
- Convert strscpy and sigphash tests to KUnit, and expand memcpy tests
- Always use a non-NULL argument for prepare_kernel_cred()
- Disable structleak plugin in FORTIFY KUnit test (Anders Roxell)
- Adjust orphan linker section checking to respect CONFIG_WERROR (Xin
Li)
- Make sure siginfo is cleared for forced SIGKILL (haifeng.xu)
- Fix um vs FORTIFY warnings for always-NULL arguments
* tag 'hardening-v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (31 commits)
ksmbd: replace one-element arrays with flexible-array members
hpet: Replace one-element array with flexible-array member
um: virt-pci: Avoid GCC non-NULL warning
signal: Initialize the info in ksignal
lib: fortify_kunit: build without structleak plugin
panic: Expose "warn_count" to sysfs
panic: Introduce warn_limit
panic: Consolidate open-coded panic_on_warn checks
exit: Allow oops_limit to be disabled
exit: Expose "oops_count" to sysfs
exit: Put an upper limit on how often we can oops
panic: Separate sysctl logic from CONFIG_SMP
mm/pgtable: Fix multiple -Wstringop-overflow warnings
mm: Make ksize() a reporting-only function
kunit/fortify: Validate __alloc_size attribute results
drm/sti: Fix return type of sti_{dvo,hda,hdmi}_connector_mode_valid()
drm/fsl-dcu: Fix return type of fsl_dcu_drm_connector_mode_valid()
driver core: Add __alloc_size hint to devm allocators
overflow: Introduce overflows_type() and castable_to_type()
coredump: Proactively round up to kmalloc bucket size
...
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Several run-time checkers (KASAN, UBSAN, KFENCE, KCSAN, sched) roll
their own warnings, and each check "panic_on_warn". Consolidate this
into a single function so that future instrumentation can be added in
a single location.
Cc: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Gow <davidgow@google.com>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: Jann Horn <jannh@google.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Cc: kasan-dev@googlegroups.com
Cc: linux-mm@kvack.org
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20221117234328.594699-4-keescook@chromium.org
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
With all "silently resizing" callers of ksize() refactored, remove the
logic in ksize() that would allow it to be used to effectively change
the size of an allocation (bypassing __alloc_size hints, etc). Users
wanting this feature need to either use kmalloc_size_roundup() before an
allocation, or use krealloc() directly.
For kfree_sensitive(), move the unpoisoning logic inline. Replace the
some of the partially open-coded ksize() in __do_krealloc with ksize()
now that it doesn't perform unpoisoning.
Adjust the KUnit tests to match the new ksize() behavior. Execution
tested with:
$ ./tools/testing/kunit/kunit.py run \
--kconfig_add CONFIG_KASAN=y \
--kconfig_add CONFIG_KASAN_GENERIC=y \
--arch x86_64 kasan
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: linux-mm@kvack.org
Cc: kasan-dev@googlegroups.com
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Enhanced-by: Andrey Konovalov <andreyknvl@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
__prep_compound_gigantic_folio
folio_set_compound_order() checks if the passed in folio is a large folio.
A large folio is indicated by the PG_head flag. Call __folio_set_head()
before setting the order.
Link: https://lkml.kernel.org/r/20221212225529.22493-1-sidhartha.kumar@oracle.com
Fixes: d1c6095572d0 ("mm/hugetlb: convert hugetlb prep functions to folios")
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reported-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Commit 5df397dec7c4 ("mm: delay page_remove_rmap() until after the TLB has
been flushed") limited the page batching for the mmu gather operation when
a dirty shared page needed to delay rmap removal until after the TLB had
been flushed.
It did so because it needs to walk that array of pages while still holding
the page table lock, and our mmu_gather infrastructure allows for batching
quite a lot of pages. We may have thousands on pages queued up for
freeing, and we wanted to walk only the last batch if we then added a
dirty page to the queue.
However, when I limited it to one batch, I didn't think of the degenerate
case of the special first batch that is embedded on-stack in the
mmu_gather structure (called "local") and that only has eight entries.
So with the right pattern, that "limit delayed rmap to just one batch"
will trigger over and over in that first small batch, and we'll waste a
lot of time flushing TLB's every eight pages.
And those right patterns are trivially triggered by just having a shared
mappings with lots of adjacent dirty pages. Like the 'page_fault3'
subtest of the 'will-it-scale' benchmark, that just maps a shared area,
dirties all pages, and unmaps it. Rinse and repeat.
We still want to limit the batching, but to fix this (easily triggered)
degenerate case, just expand the "only one batch" logic to instead be
"only one batch that isn't the special first on-stack ('local') batch".
That way, when we need to flush the delayed rmaps, we can still limit our
walk to just the last batch - and that first small one.
Link: https://lkml.kernel.org/r/CAHk-=whkL5aM1fR7kYUmhHQHBcMUc-bDoFP7EwYjTxy64DGtvw@mail.gmail.com
Fixes: 5df397dec7c4 ("mm: delay page_remove_rmap() until after the TLB has been flushed")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: kernel test robot <yujie.liu@intel.com>
Link: https://lore.kernel.org/oe-lkp/202212051534.852804af-yujie.liu@intel.com
Tested-by: Huang, Ying <ying.huang@intel.com>
Tested-by: Hugh Dickins <hughd@google.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Cc: "Yin, Fengwei" <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Recent Clang changes may cause it to delete calls of memcpy(), if the
source is an uninitialized volatile local. This happens because passing a
pointer to a volatile local into memcpy() discards the volatile qualifier,
giving the compiler a free hand to optimize the memcpy() call away.
Use OPTIMIZER_HIDE_VAR() to hide the uninitialized var from the too-smart
compiler.
Link: https://lkml.kernel.org/r/20221205145740.694038-1-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Suggested-by: Marco Elver <elver@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
When handling MADV_WILLNEED in madvise(), a soflockup may occurr in
swapin_walk_pmd_entry() if swapping in lots of memory on a slow device.
Add a cond_resched() to avoid the possible softlockup.
Link: https://lkml.kernel.org/r/20221205140327.72304-1-wangkefeng.wang@huawei.com
Fixes: 1998cc048901 ("mm: make madvise(MADV_WILLNEED) support swap file prefetch")
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Patch series "selftests/vm: fix some tests on 32bit".
I finally had the time to run some of the selftests written by me
(especially "cow") on x86 PAE. I found some unexpected "surprises" :)
With these changes, and with [1] on top of mm-unstable, the "cow" tests
and the "ksm_functional_tests" compile and pass as expected (expected
failures with hugetlb in the "cow" tests). "madv_populate" has one
expected test failure -- x86 does not support softdirty tracking.
#1-#3 fix commits with stable commit ids. #4 fixes a test that is not in
mm-stable yet.
A note that there are many other compile errors/warnings when compiling on
32bit and with older Linux headers ... something for another day.
[1] https://lkml.kernel.org/r/20221205150857.167583-1-david@redhat.com
This patch (of 4):
... we have to kmap()/kunmap(), otherwise this won't work as expected
with highmem.
Link: https://lkml.kernel.org/r/20221205193716.276024-1-david@redhat.com
Link: https://lkml.kernel.org/r/20221205193716.276024-2-david@redhat.com
Fixes: c77369b437f9 ("mm/gup_test: start/stop/read functionality for PIN LONGTERM test")
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>,
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Commit 4b51634cd16a, introducing the COMPOUND_MAPPED bit, paid attention
to the impossibility of subpages_mapcount ever appearing negative; but did
not attend to those races in which it can momentarily appear larger than
thought possible.
These arise from how page_remove_rmap() first decrements page->_mapcount
or compound_mapcount, then, if that transition goes negative (logical 0),
decrements subpages_mapcount. The initial decrement lets a racing
page_add_*_rmap() reincrement _mapcount or compound_mapcount immediately,
and then in rare cases its corresponding increment of subpages_mapcount
may be completed before page_remove_rmap()'s decrement. There could even
(with increasing unlikelihood) be a series of increments intermixed with
the decrements.
In practice, checking subpages_mapcount with a temporary WARN on range,
has caught values of 0x1000000 (2*COMPOUND_MAPPED, when move_pages() was
using remove_migration_pmd()) and 0x800201 (do_huge_pmd_wp_page() using
__split_huge_pmd()): page_add_anon_rmap() racing page_remove_rmap(), as
predicted.
I certainly found it harder to reason about than when bit_spin_locked, but
the easy case gives a clue to how to handle the harder case. The easy
case being the three !(nr & COMPOUND_MAPPED) checks, which should
obviously be replaced by (nr < COMPOUND_MAPPED) checks - to count a page
as compound mapped, even while the bit in that position is 0.
The harder case is when trying to decide how many subpages are newly
covered or uncovered, when compound map is first added or last removed:
not knowing all that racily happened between first and second atomic ops.
But the easy way to handle that, is again to count the page as compound
mapped all the while that its subpages_mapcount indicates so - ignoring
the _mapcount or compound_mapcount transition while it is on the way to
being reversed.
Link: https://lkml.kernel.org/r/4388158-3092-a960-ff2d-55f2b0fe4ef8@google.com
Fixes: 4b51634cd16a ("mm,thp,rmap: subpages_mapcount COMPOUND_MAPPED if PMD-mapped")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
I'd been worried by high "swapcached" counts in memcg OOM reports, thought
we had a problem freeing swapcache, but it was just the accounting that
was wrong.
Two issues:
1. When __remove_mapping() removes swapcache,
__delete_from_swap_cache() relies on memcg_data for the right counts to
be updated; but that had already been reset by mem_cgroup_swapout().
Swap those calls around - mem_cgroup_swapout() does not require the
swapcached flag to be set.
6.1 commit ac35a4902374 ("mm: multi-gen LRU: minimal
implementation") already made a similar swap for workingset_eviction(),
but not for this.
2. memcg's "swapcached" count was added for memcg v2 stats, but
displayed on OOM even for memcg v1: so mem_cgroup_move_account() ought
to move it.
Link: https://lkml.kernel.org/r/b8b96ee0-1e1e-85f8-df97-c82a11d7cd14@google.com
Fixes: b6038942480e ("mm: memcg: add swapcache stat for memcg v2")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The nodes= arg instructs the kernel to only scan the given nodes for
proactive reclaim. For example use cases, consider a 2 tier memory
system:
nodes 0,1 -> top tier
nodes 2,3 -> second tier
$ echo "1m nodes=0" > memory.reclaim
This instructs the kernel to attempt to reclaim 1m memory from node 0.
Since node 0 is a top tier node, demotion will be attempted first. This
is useful to direct proactive reclaim to specific nodes that are under
pressure.
$ echo "1m nodes=2,3" > memory.reclaim
This instructs the kernel to attempt to reclaim 1m memory in the second
tier, since this tier of memory has no demotion targets the memory will be
reclaimed.
$ echo "1m nodes=0,1" > memory.reclaim
Instructs the kernel to reclaim memory from the top tier nodes, which can
be desirable according to the userspace policy if there is pressure on the
top tiers. Since these nodes have demotion targets, the kernel will
attempt demotion first.
Since commit 3f1509c57b1b ("Revert "mm/vmscan: never demote for memcg
reclaim""), the proactive reclaim interface memory.reclaim does both
reclaim and demotion. Reclaim and demotion incur different latency costs
to the jobs in the cgroup. Demoted memory would still be addressable by
the userspace at a higher latency, but reclaimed memory would need to
incur a pagefault.
The 'nodes' arg is useful to allow the userspace to control demotion and
reclaim independently according to its policy: if the memory.reclaim is
called on a node with demotion targets, it will attempt demotion first; if
it is called on a node without demotion targets, it will only attempt
reclaim.
Link: https://lkml.kernel.org/r/20221202223533.1785418-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: zefan li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Reclaiming directly from top tier nodes breaks the aging pipeline of
memory tiers. If we have a RAM -> CXL -> storage hierarchy, we should
demote from RAM to CXL and from CXL to storage. If we reclaim a page from
RAM, it means we 'demote' it directly from RAM to storage, bypassing
potentially a huge amount of pages colder than it in CXL.
However disabling reclaim from top tier nodes entirely would cause ooms in
edge scenarios where lower tier memory is unreclaimable for whatever
reason, e.g. memory being mlocked() or too hot to reclaim. In these
cases we would rather the job run with a performance regression rather
than it oom altogether.
However, we can disable reclaim from top tier nodes for proactive reclaim.
That reclaim is not real memory pressure, and we don't have any cause to
be breaking the aging pipeline.
[akpm@linux-foundation.org: restore comment layout, per Ying Huang]
Link: https://lkml.kernel.org/r/20221201233317.1394958-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Patch series "mm: memcg: fix protection of reclaim target memcg", v3.
This series fixes a bug in calculating the protection of the reclaim
target memcg where we end up using stale effective protection values from
the last reclaim operation, instead of completely ignoring the protection
of the reclaim target as intended. More detailed explanation and examples
in patch 1, which includes the fix. Patches 2 & 3 introduce a selftest
case that catches the bug.
This patch (of 3):
When we are doing memcg reclaim, the intended behavior is that we
ignore any protection (memory.min, memory.low) of the target memcg (but
not its children). Ever since the patch pointed to by the "Fixes" tag,
we actually read a stale value for the target memcg protection when
deciding whether to skip the memcg or not because it is protected. If
the stale value happens to be high enough, we don't reclaim from the
target memcg.
Essentially, in some cases we may falsely skip reclaiming from the
target memcg of reclaim because we read a stale protection value from
last time we reclaimed from it.
During reclaim, mem_cgroup_calculate_protection() is used to determine the
effective protection (emin and elow) values of a memcg. The protection of
the reclaim target is ignored, but we cannot set their effective
protection to 0 due to a limitation of the current implementation (see
comment in mem_cgroup_protection()). Instead, we leave their effective
protection values unchaged, and later ignore it in
mem_cgroup_protection().
However, mem_cgroup_protection() is called later in
shrink_lruvec()->get_scan_count(), which is after the
mem_cgroup_below_{min/low}() checks in shrink_node_memcgs(). As a result,
the stale effective protection values of the target memcg may lead us to
skip reclaiming from the target memcg entirely, before calling
shrink_lruvec(). This can be even worse with recursive protection, where
the stale target memcg protection can be higher than its standalone
protection. See two examples below (a similar version of example (a) is
added to test_memcontrol in a later patch).
(a) A simple example with proactive reclaim is as follows. Consider the
following hierarchy:
ROOT
|
A
|
B (memory.min = 10M)
Consider the following scenario:
- B has memory.current = 10M.
- The system undergoes global reclaim (or memcg reclaim in A).
- In shrink_node_memcgs():
- mem_cgroup_calculate_protection() calculates the effective min (emin)
of B as 10M.
- mem_cgroup_below_min() returns true for B, we do not reclaim from B.
- Now if we want to reclaim 5M from B using proactive reclaim
(memory.reclaim), we should be able to, as the protection of the
target memcg should be ignored.
- In shrink_node_memcgs():
- mem_cgroup_calculate_protection() immediately returns for B without
doing anything, as B is the target memcg, relying on
mem_cgroup_protection() to ignore B's stale effective min (still 10M).
- mem_cgroup_below_min() reads the stale effective min for B and we
skip it instead of ignoring its protection as intended, as we never
reach mem_cgroup_protection().
(b) An more complex example with recursive protection is as follows.
Consider the following hierarchy with memory_recursiveprot:
ROOT
|
A (memory.min = 50M)
|
B (memory.min = 10M, memory.high = 40M)
Consider the following scenario:
- B has memory.current = 35M.
- The system undergoes global reclaim (target memcg is NULL).
- B will have an effective min of 50M (all of A's unclaimed protection).
- B will not be reclaimed from.
- Now allocate 10M more memory in B, pushing it above it's high limit.
- The system undergoes memcg reclaim from B (target memcg is B).
- Like example (a), we do nothing in mem_cgroup_calculate_protection(),
then call mem_cgroup_below_min(), which will read the stale effective
min for B (50M) and skip it. In this case, it's even worse because we
are not just considering B's standalone protection (10M), but we are
reading a much higher stale protection (50M) which will cause us to not
reclaim from B at all.
This is an artifact of commit 45c7f7e1ef17 ("mm, memcg: decouple
e{low,min} state mutations from protection checks") which made
mem_cgroup_calculate_protection() only change the state without returning
any value. Before that commit, we used to return MEMCG_PROT_NONE for the
target memcg, which would cause us to skip the
mem_cgroup_below_{min/low}() checks. After that commit we do not return
anything and we end up checking the min & low effective protections for
the target memcg, which are stale.
Update mem_cgroup_supports_protection() to also check if we are reclaiming
from the target, and rename it to mem_cgroup_unprotected() (now returns
true if we should not protect the memcg, much simpler logic).
Link: https://lkml.kernel.org/r/20221202031512.1365483-1-yosryahmed@google.com
Link: https://lkml.kernel.org/r/20221202031512.1365483-2-yosryahmed@google.com
Fixes: 45c7f7e1ef17 ("mm, memcg: decouple e{low,min} state mutations from protection checks")
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Chris Down <chris@chrisdown.name>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vasily Averin <vasily.averin@linux.dev>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
security_vm_enough_memory_mm() accounts memory via a call to
vm_acct_memory(). Therefore any subsequent failures should unaccount for
this memory prior to returning the error.
Link: https://lkml.kernel.org/r/20221202045339.2999017-1-apopple@nvidia.com
Fixes: 28c5609fb236 ("mm/mmap: preallocate maple nodes for brk vma expansion")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add a comment to explain why we call get_pfnblock_migratetype() twice in
__free_pages_ok().
Link: https://lkml.kernel.org/r/20221201135045.31663-1-wonder_rock@126.com
Signed-off-by: Deyan Wang <wonder_rock@126.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
After the recent changes done to KUnit-enabled KASAN tests, non-KASAN
KUnit tests stopped being failed when KASAN report is detected.
Recover that property by failing the currently running non-KASAN KUnit
test when KASAN detects and prints a report for a bad memory access.
Note that if the bad accesses happened in a kernel thread that doesn't
have a reference to the currently running KUnit-test available via
current->kunit_test, the test won't be failed. This is a limitation of
KUnit, which doesn't yet provide a thread-agnostic way to find the
reference to the currenly running test.
Link: https://lkml.kernel.org/r/7be29a8ea967cee6b7e48d3d5a242d1d0bd96851.1669820505.git.andreyknvl@google.com
Fixes: 49d9977ac909 ("kasan: check CONFIG_KASAN_KUNIT_TEST instead of CONFIG_KUNIT")
Fixes: 7ce0ea19d50e ("kasan: switch kunit tests to console tracepoints")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: David Gow <davidgow@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Many hugetlb allocation helper functions have now been converting to
folios, update their higher level callers to be compatible with folios.
alloc_pool_huge_page is reorganized to avoid a smatch warning reporting
the folio variable is uninitialized.
[sidhartha.kumar@oracle.com: update alloc_and_dissolve_hugetlb_folio comments]
Link: https://lkml.kernel.org/r/20221206233512.146535-1-sidhartha.kumar@oracle.com
Link: https://lkml.kernel.org/r/20221129225039.82257-11-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reported-by: Wei Chen <harperchen1110@gmail.com>
Suggested-by: John Hubbard <jhubbard@nvidia.com>
Suggested-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Tarun Sahu <tsahu@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Convert prep_new_huge_page() and __prep_compound_gigantic_page() to
folios.
Link: https://lkml.kernel.org/r/20221129225039.82257-10-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Tarun Sahu <tsahu@linux.ibm.com>
Cc: Wei Chen <harperchen1110@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Convert callers of free_gigantic_page() to use folios, function is then
renamed to free_gigantic_folio().
Link: https://lkml.kernel.org/r/20221129225039.82257-9-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Tarun Sahu <tsahu@linux.ibm.com>
Cc: Wei Chen <harperchen1110@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Convert callers of enqueue_huge_page() to pass in a folio, function is
renamed to enqueue_hugetlb_folio().
Link: https://lkml.kernel.org/r/20221129225039.82257-8-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Tarun Sahu <tsahu@linux.ibm.com>
Cc: Wei Chen <harperchen1110@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Convert add_hugetlb_page() to take in a folio, also convert
hugetlb_cma_page() to take in a folio.
Link: https://lkml.kernel.org/r/20221129225039.82257-7-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Tarun Sahu <tsahu@linux.ibm.com>
Cc: Wei Chen <harperchen1110@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Make more progress on converting the free_huge_page() destructor to
operate on folios by converting update_and_free_page() to folios.
Link: https://lkml.kernel.org/r/20221129225039.82257-6-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>\
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Tarun Sahu <tsahu@linux.ibm.com>
Cc: Wei Chen <harperchen1110@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Removes page_folio() call by converting callers to directly pass a folio
into __remove_hugetlb_page().
Link: https://lkml.kernel.org/r/20221129225039.82257-5-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Tarun Sahu <tsahu@linux.ibm.com>
Cc: Wei Chen <harperchen1110@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Removes compound_head() call by using a folio rather than a head page.
Link: https://lkml.kernel.org/r/20221129225039.82257-4-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Tarun Sahu <tsahu@linux.ibm.com>
Cc: Wei Chen <harperchen1110@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Convert page operations within __destroy_compound_gigantic_page() to the
corresponding folio operations.
Link: https://lkml.kernel.org/r/20221129225039.82257-3-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Tarun Sahu <tsahu@linux.ibm.com>
Cc: Wei Chen <harperchen1110@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Patch series "convert core hugetlb functions to folios", v5.
============== OVERVIEW ===========================
Now that many hugetlb helper functions that deal with hugetlb specific
flags[1] and hugetlb cgroups[2] are converted to folios, higher level
allocation, prep, and freeing functions within hugetlb can also be
converted to operate in folios.
Patch 1 of this series implements the wrapper functions around setting the
compound destructor and compound order for a folio. Besides the user
added in patch 1, patch 2 and patch 9 also use these helper functions.
Patches 2-10 convert the higher level hugetlb functions to folios.
============== TESTING ===========================
LTP:
Ran 10 back to back rounds of the LTP hugetlb test suite.
Gigantic Huge Pages:
Test allocation and freeing via hugeadm commands:
hugeadm --pool-pages-min 1GB:10
hugeadm --pool-pages-min 1GB:0
Demote:
Demote 1 1GB hugepages to 512 2MB hugepages
echo 1 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
echo 1 > /sys/kernel/mm/hugepages/hugepages-1048576kB/demote
cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
# 512
cat /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
# 0
[1] https://lore.kernel.org/lkml/20220922154207.1575343-1-sidhartha.kumar@oracle.com/
[2] https://lore.kernel.org/linux-mm/20221101223059.460937-1-sidhartha.kumar@oracle.com/
This patch (of 10):
Add folio equivalents for set_compound_order() and
set_compound_page_dtor().
Also remove extra new-lines introduced by mm/hugetlb: convert
move_hugetlb_state() to folios and mm/hugetlb_cgroup: convert
hugetlb_cgroup_uncharge_page() to folios.
[sidhartha.kumar@oracle.com: clarify folio_set_compound_order() zero support]
Link: https://lkml.kernel.org/r/20221207223731.32784-1-sidhartha.kumar@oracle.com
Link: https://lkml.kernel.org/r/20221129225039.82257-1-sidhartha.kumar@oracle.com
Link: https://lkml.kernel.org/r/20221129225039.82257-2-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Suggested-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Tarun Sahu <tsahu@linux.ibm.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Wei Chen <harperchen1110@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
There are no longer any callers of lru_cache_add(), so remove it. This
saves 79 bytes of kernel text. Also cleanup some comments such that
they reference the new folio_add_lru() instead.
Link: https://lkml.kernel.org/r/20221101175326.13265-6-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Replaces some calls with their folio equivalents. This is in preparation
for the removal of lru_cache_add(). This replaces 3 calls to
compound_head() with 1.
Link: https://lkml.kernel.org/r/20221101175326.13265-5-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Replaces lru_cache_add() and lru_cache_add_inactive_or_unevictable() with
folio_add_lru() and folio_add_lru_vma(). This is in preparation for the
removal of lru_cache_add().
Link: https://lkml.kernel.org/r/20221101175326.13265-4-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Patch series "Removing the lru_cache_add() wrapper".
This patchset replaces all calls of lru_cache_add() with the folio
equivalent: folio_add_lru(). This is allows us to get rid of the wrapper
The series passes xfstests and the userfaultfd selftests.
This patch (of 5):
Eliminates 7 calls to compound_head().
Link: https://lkml.kernel.org/r/20221101175326.13265-1-vishal.moola@gmail.com
Link: https://lkml.kernel.org/r/20221101175326.13265-2-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Generalise vmemmap_populate_hugepages() so ARM64 & X86 & LoongArch can
share its implementation.
Link: https://lkml.kernel.org/r/20221027125253.3458989-4-chenhuacai@loongson.cn
Signed-off-by: Feiyang Chen <chenfeiyang@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Min Zhou <zhoumin@loongson.cn>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Philippe Mathieu-Daudé <philmd@linaro.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Xuefeng Li <lixuefeng@loongson.cn>
Cc: Xuerui Wang <kernel@xen0n.name>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add sparse memory vmemmap support for LoongArch. SPARSEMEM_VMEMMAP uses a
virtually mapped memmap to optimise pfn_to_page and page_to_pfn
operations. This is the most efficient option when sufficient kernel
resources are available.
Link: https://lkml.kernel.org/r/20221027125253.3458989-3-chenhuacai@loongson.cn
Signed-off-by: Min Zhou <zhoumin@loongson.cn>
Signed-off-by: Feiyang Chen <chenfeiyang@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Philippe Mathieu-Daudé <philmd@linaro.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Will Deacon <will@kernel.org>
Cc: Xuefeng Li <lixuefeng@loongson.cn>
Cc: Xuerui Wang <kernel@xen0n.name>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
In certain cases (e.g. when handling a softirq)
__msan_instrument_asm_store(&var, sizeof(var)) may be called with from
within KMSAN runtime, but later the value of @var is used with
!kmsan_in_runtime(), leading to false positives.
Because kmsan_internal_unpoison_memory() doesn't take locks, it should be
fine to call it without kmsan_in_runtime() checks, which fixes the
mentioned false positives.
Link: https://lkml.kernel.org/r/20221128094541.2645890-2-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Marco Elver <elver@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
generic_fadvise() sets endbyte = -1 to specify end of file (i.e. if
length == 0 is passed from userspace). Most other callers to
filemap_fdatawrite_range() use LLONG_MAX for this purpose, particularly if
they also call fdatawait_range() (which requires end >= start). For
example, sync_file_range(), vfs_fsync() (where the range is passed down
through per-fs ->fsync() callbacks), filemap_flush(), etc.
generic_fadvise() does not currently wait on writeback, but fix the call
up to be consistent with other callers.
Link: https://lkml.kernel.org/r/20221128155632.3950447-3-bfoster@redhat.com
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Patch series "filemap: skip write and wait if end offset precedes start",
v2.
A fix for the odd write and wait behavior described in the patch 1 commit
log. Technically patch 1 could simply remove the check rather than lift
it into the callers, but this seemed a bit more user friendly to me.
Patch 2 is appended after observation that fadvise() interacted poorly
with the v1 patch. This is no longer a problem with v2, making patch 2
purely a cleanup.
This series survived both fstests and ltp regression runs without
observable problems. I had (end < start) warning checks in each relevant
function, with fadvise() being the only caller that triggered them. That
said, I dropped the warnings after testing because there seemed to much
potential for noise from the various other callers.
This patch (of 2):
A call to file[map]_write_and_wait_range() with an end offset that
precedes the start offset but happens to land in the same page can trigger
writeback submission but fails to wait on the submitted page. Writeback
submission occurs because __filemap_fdatawrite_range() passes both offsets
down into write_cache_pages(), which rounds down to page indexes before it
starts processing writeback. However, __filemap_fdatawait_range()
immediately returns if the byte-granular end offset precedes the start
offset.
This behavior was observed in the form of unpredictable latency from a
frequent write and wait call with incorrect parameters. The behavior gave
the impression that the fdatawait path might occasionally fail to wait on
writeback, but further investigation showed the latency was from
write_cache_pages() waiting on writeback state to clear for a page already
under writeback. Therefore, this indicated that fdatawait actually never
waits on writeback in this particular situation.
The byte granular check in __filemap_fdatawait_range() goes all the way
back to the old wait_on_page_writeback() helper. It originally used page
offsets and so would have waited in this problematic case. That changed
to byte granularity file offsets in commit 94004ed726f3 ("kill
wait_on_page_writeback_range"), which subtly changed this behavior. The
check itself has become somewhat redundant since the error checking code
that used to follow the wait loop (at the time of the aforementioned
commit) has now been removed and lifted into the higher level callers.
Therefore, we can restore historical fdatawait behavior by simply removing
the check. Since the current fdatawait behavior has been in place for
quite some time and is consistent with other interfaces that use file
offsets, instead lift the check into the file[map]_write_and_wait_range()
helpers to provide consistent behavior between the write and wait.
Link: https://lkml.kernel.org/r/20221128155632.3950447-1-bfoster@redhat.com
Link: https://lkml.kernel.org/r/20221128155632.3950447-2-bfoster@redhat.com
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This commit adds the writeback mechanism for zsmalloc, analogous to the
zbud allocator. Zsmalloc will attempt to determine the coldest zspage
(i.e least recently used) in the pool, and attempt to write back all the
stored compressed objects via the pool's evict handler.
Link: https://lkml.kernel.org/r/20221128191616.1261026-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This adds a new field to zs_pool to store evict handlers for writeback,
analogous to the zbud allocator.
Link: https://lkml.kernel.org/r/20221128191616.1261026-6-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This helps determines the coldest zspages as candidates for writeback.
Link: https://lkml.kernel.org/r/20221128191616.1261026-5-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Currently, zsmalloc has a hierarchy of locks, which includes a pool-level
migrate_lock, and a lock for each size class. We have to obtain both
locks in the hotpath in most cases anyway, except for zs_malloc. This
exception will no longer exist when we introduce a LRU into the zs_pool
for the new writeback functionality - we will need to obtain a pool-level
lock to synchronize LRU handling even in zs_malloc.
In preparation for zsmalloc writeback, consolidate these locks into a
single pool-level lock, which drastically reduces the complexity of
synchronization in zsmalloc.
We have also benchmarked the lock consolidation to see the performance
effect of this change on zram.
First, we ran a synthetic FS workload on a server machine with 36 cores
(same machine for all runs), using
fs_mark -d ../zram1mnt -s 100000 -n 2500 -t 32 -k
before and after for btrfs and ext4 on zram (FS usage is 80%).
Here is the result (unit is file/second):
With lock consolidation (btrfs):
Average: 13520.2, Median: 13531.0, Stddev: 137.5961482019028
Without lock consolidation (btrfs):
Average: 13487.2, Median: 13575.0, Stddev: 309.08283679298665
With lock consolidation (ext4):
Average: 16824.4, Median: 16839.0, Stddev: 89.97388510006668
Without lock consolidation (ext4)
Average: 16958.0, Median: 16986.0, Stddev: 194.7370021336469
As you can see, we observe a 0.3% regression for btrfs, and a 0.9%
regression for ext4. This is a small, barely measurable difference in my
opinion.
For a more realistic scenario, we also tries building the kernel on zram.
Here is the time it takes (in seconds):
With lock consolidation (btrfs):
real
Average: 319.6, Median: 320.0, Stddev: 0.8944271909999159
user
Average: 6894.2, Median: 6895.0, Stddev: 25.528415540334656
sys
Average: 521.4, Median: 522.0, Stddev: 1.51657508881031
Without lock consolidation (btrfs):
real
Average: 319.8, Median: 320.0, Stddev: 0.8366600265340756
user
Average: 6896.6, Median: 6899.0, Stddev: 16.04057355583023
sys
Average: 520.6, Median: 521.0, Stddev: 1.140175425099138
With lock consolidation (ext4):
real
Average: 320.0, Median: 319.0, Stddev: 1.4142135623730951
user
Average: 6896.8, Median: 6878.0, Stddev: 28.621670111997307
sys
Average: 521.2, Median: 521.0, Stddev: 1.7888543819998317
Without lock consolidation (ext4)
real
Average: 319.6, Median: 319.0, Stddev: 0.8944271909999159
user
Average: 6886.2, Median: 6887.0, Stddev: 16.93221781102523
sys
Average: 520.4, Median: 520.0, Stddev: 1.140175425099138
The difference is entirely within the noise of a typical run on zram.
This hardly justifies the complexity of maintaining both the pool lock and
the class lock. In fact, for writeback, we would need to introduce yet
another lock to prevent data races on the pool's LRU, further complicating
the lock handling logic. IMHO, it is just better to collapse all of these
into a single pool-level lock.
Link: https://lkml.kernel.org/r/20221128191616.1261026-4-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
There is a lot of provision for flexibility that isn't actually needed or
used. Zswap (the only zpool user) always passes zpool_ops with an .evict
method set. The backends who reclaim only do so for zswap, so they can
also directly call zpool_ops without indirection or checks.
Finally, there is no need to check the retries parameters and bail with
-EINVAL in the reclaim function, when that's called just a few lines below
with a hard-coded 8. There is no need to duplicate the evictable and
sleep_mapped attrs from the driver in zpool_ops.
Link: https://lkml.kernel.org/r/20221128191616.1261026-3-nphamcs@gmail.com
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Patch series "Implement writeback for zsmalloc", v7.
Unlike other zswap allocators such as zbud or z3fold, zsmalloc currently
lacks the writeback mechanism. This means that when the zswap pool is
full, it will simply reject further allocations, and the pages will be
written directly to swap.
This series of patches implements writeback for zsmalloc. When the zswap
pool becomes full, zsmalloc will attempt to evict all the compressed
objects in the least-recently used zspages.
This patch (of 6):
zswap's customary lock order is tree->lock before pool->lock, because the
tree->lock protects the entries' refcount, and the free callbacks in the
backends acquire their respective pool locks to dispatch the backing
object. zsmalloc's map callback takes the pool lock, so zswap must not
grab the tree->lock while a handle is mapped. This currently only happens
during writeback, which isn't implemented for zsmalloc. In preparation
for it, move the tree->lock section out of the mapped entry section
Link: https://lkml.kernel.org/r/20221128191616.1261026-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20221128191616.1261026-2-nphamcs@gmail.com
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
When MADV_PAGEOUT is called on a private file mapping VMA region, we bail
out early if the process is neither owner nor write capable of the file.
However, this VMA may have both private/shared clean pages and private
dirty pages. The opportunity of paging out the private dirty pages (Anon
pages) is missed. Fix this behavior by allowing private file mappings
pageout further and perform the file access check along with PageAnon()
during page walk.
We observe ~10% improvement in zram usage, thus leaving more available
memory on a 4GB RAM system running Android.
[quic_pkondeti@quicinc.com: v2]
Link: https://lkml.kernel.org/r/1669962597-27724-1-git-send-email-quic_pkondeti@quicinc.com
Link: https://lkml.kernel.org/r/1667971116-12900-1-git-send-email-quic_pkondeti@quicinc.com
Signed-off-by: Pavankumar Kondeti <quic_pkondeti@quicinc.com>
Cc: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
"mm_khugepaged_collapse_file" for capturing is_shmem.
Currently, is_shmem is not being captured. Capturing is_shmem is useful
as it can indicate if tmpfs is being used as a backing store instead of
persistent storage. Add the tracepoint in collapse_file() named
"mm_khugepaged_collapse_file" for capturing is_shmem.
[gautammenghani201@gmail.com: swap is_shmem and addr to save space, per Steven Rostedt]
Link: https://lkml.kernel.org/r/20221202201807.182829-1-gautammenghani201@gmail.com
Link: https://lkml.kernel.org/r/20221026052218.148234-1-gautammenghani201@gmail.com
Signed-off-by: Gautam Menghani <gautammenghani201@gmail.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> [tracing]
Cc: David Hildenbrand <david@redhat.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Fortunately, the last user (KSM) is gone, so let's just remove this rather
special code from generic GUP handling -- especially because KSM never
required the PMD handling as KSM only deals with individual base pages.
[akpm@linux-foundation.org: fix merge snafu]Link: https://lkml.kernel.org/r/20221021101141.84170-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|