| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
gcc version 5.2.1 20151010 (Debian 5.2.1-22)
$ size mm/memcontrol.o mm/memcontrol.o.before
text data bss dec hex filename
35535 7908 64 43507 a9f3 mm/memcontrol.o
35762 7908 64 43734 aad6 mm/memcontrol.o.before
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The "vma" parameter to khugepaged_alloc_page() is unused. It has to
remain unused or the drop read lock 'map_sem' optimisation introduce by
commit 8b1645685acf ("mm, THP: don't hold mmap_sem in khugepaged when
allocating THP") wouldn't be safe. So let's remove it.
Signed-off-by: Aaron Tomlin <atomlin@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are many places which use mapping_gfp_mask to restrict a more
generic gfp mask which would be used for allocations which are not
directly related to the page cache but they are performed in the same
context.
Let's introduce a helper function which makes the restriction explicit and
easier to track. This patch doesn't introduce any functional changes.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
combinations
Andrew stated the following
We have quite a history of remote parts of the kernel using
weird/wrong/inexplicable combinations of __GFP_ flags. I tend
to think that this is because we didn't adequately explain the
interface.
And I don't think that gfp.h really improved much in this area as
a result of this patchset. Could you go through it some time and
decide if we've adequately documented all this stuff?
This patches first moves some GFP flag combinations that are part of the MM
internals to mm/internal.h. The rest of the patch documents the __GFP_FOO
bits under various headings and then documents the flag combinations. It
will not help callers that are brain damaged but the clarity might motivate
some fixes and avoid future mistakes.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The primary purpose of watermarks is to ensure that reclaim can always
make forward progress in PF_MEMALLOC context (kswapd and direct reclaim).
These assume that order-0 allocations are all that is necessary for
forward progress.
High-order watermarks serve a different purpose. Kswapd had no high-order
awareness before they were introduced
(https://lkml.kernel.org/r/413AA7B2.4000907@yahoo.com.au). This was
particularly important when there were high-order atomic requests. The
watermarks both gave kswapd awareness and made a reserve for those atomic
requests.
There are two important side-effects of this. The most important is that
a non-atomic high-order request can fail even though free pages are
available and the order-0 watermarks are ok. The second is that
high-order watermark checks are expensive as the free list counts up to
the requested order must be examined.
With the introduction of MIGRATE_HIGHATOMIC it is no longer necessary to
have high-order watermarks. Kswapd and compaction still need high-order
awareness which is handled by checking that at least one suitable
high-order page is free.
With the patch applied, there was little difference in the allocation
failure rates as the atomic reserves are small relative to the number of
allocation attempts. The expected impact is that there will never be an
allocation failure report that shows suitable pages on the free lists.
The one potential side-effect of this is that in a vanilla kernel, the
watermark checks may have kept a free page for an atomic allocation. Now,
we are 100% relying on the HighAtomic reserves and an early allocation to
have allocated them. If the first high-order atomic allocation is after
the system is already heavily fragmented then it'll fail.
[akpm@linux-foundation.org: simplify __zone_watermark_ok(), per Vlastimil]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
High-order watermark checking exists for two reasons -- kswapd high-order
awareness and protection for high-order atomic requests. Historically the
kernel depended on MIGRATE_RESERVE to preserve min_free_kbytes as
high-order free pages for as long as possible. This patch introduces
MIGRATE_HIGHATOMIC that reserves pageblocks for high-order atomic
allocations on demand and avoids using those blocks for order-0
allocations. This is more flexible and reliable than MIGRATE_RESERVE was.
A MIGRATE_HIGHORDER pageblock is created when an atomic high-order
allocation request steals a pageblock but limits the total number to 1% of
the zone. Callers that speculatively abuse atomic allocations for
long-lived high-order allocations to access the reserve will quickly fail.
Note that SLUB is currently not such an abuser as it reclaims at least
once. It is possible that the pageblock stolen has few suitable
high-order pages and will need to steal again in the near future but there
would need to be strong justification to search all pageblocks for an
ideal candidate.
The pageblocks are unreserved if an allocation fails after a direct
reclaim attempt.
The watermark checks account for the reserved pageblocks when the
allocation request is not a high-order atomic allocation.
The reserved pageblocks can not be used for order-0 allocations. This may
allow temporary wastage until a failed reclaim reassigns the pageblock.
This is deliberate as the intent of the reservation is to satisfy a
limited number of atomic high-order short-lived requests if the system
requires them.
The stutter benchmark was used to evaluate this but while it was running
there was a systemtap script that randomly allocated between 1 high-order
page and 12.5% of memory's worth of order-3 pages using GFP_ATOMIC. This
is much larger than the potential reserve and it does not attempt to be
realistic. It is intended to stress random high-order allocations from an
unknown source, show that there is a reduction in failures without
introducing an anomaly where atomic allocations are more reliable than
regular allocations. The amount of memory reserved varied throughout the
workload as reserves were created and reclaimed under memory pressure.
The allocation failures once the workload warmed up were as follows;
4.2-rc5-vanilla 70%
4.2-rc5-atomic-reserve 56%
The failure rate was also measured while building multiple kernels. The
failure rate was 14% but is 6% with this patch applied.
Overall, this is a small reduction but the reserves are small relative to
the number of allocation requests. In early versions of the patch, the
failure rate reduced by a much larger amount but that required much larger
reserves and perversely made atomic allocations seem more reliable than
regular allocations.
[yalin.wang2010@gmail.com: fix redundant check and a memory leak]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: yalin wang <yalin.wang2010@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
MIGRATE_RESERVE preserves an old property of the buddy allocator that
existed prior to fragmentation avoidance -- min_free_kbytes worth of pages
tended to remain contiguous until the only alternative was to fail the
allocation. At the time it was discovered that high-order atomic
allocations relied on this property so MIGRATE_RESERVE was introduced. A
later patch will introduce an alternative MIGRATE_HIGHATOMIC so this patch
deletes MIGRATE_RESERVE and supporting code so it'll be easier to review.
Note that this patch in isolation may look like a false regression if
someone was bisecting high-order atomic allocation failures.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The zonelist cache (zlc) was introduced to skip over zones that were
recently known to be full. This avoided expensive operations such as the
cpuset checks, watermark calculations and zone_reclaim. The situation
today is different and the complexity of zlc is harder to justify.
1) The cpuset checks are no-ops unless a cpuset is active and in general
are a lot cheaper.
2) zone_reclaim is now disabled by default and I suspect that was a large
source of the cost that zlc wanted to avoid. When it is enabled, it's
known to be a major source of stalling when nodes fill up and it's
unwise to hit every other user with the overhead.
3) Watermark checks are expensive to calculate for high-order
allocation requests. Later patches in this series will reduce the cost
of the watermark checking.
4) The most important issue is that in the current implementation it
is possible for a failed THP allocation to mark a zone full for order-0
allocations and cause a fallback to remote nodes.
The last issue could be addressed with additional complexity but as the
benefit of zlc is questionable, it is better to remove it. If stalls due
to zone_reclaim are ever reported then an alternative would be to
introduce deferring logic based on a timeout inside zone_reclaim itself
and leave the page allocator fast paths alone.
The impact on page-allocator microbenchmarks is negligible as they don't
hit the paths where the zlc comes into play. Most page-reclaim related
workloads showed no noticeable difference as a result of the removal.
The impact was noticeable in a workload called "stutter". One part uses a
lot of anonymous memory, a second measures mmap latency and a third copies
a large file. In an ideal world the latency application would not notice
the mmap latency. On a 2-node machine the results of this patch are
stutter
4.3.0-rc1 4.3.0-rc1
baseline nozlc-v4
Min mmap 20.9243 ( 0.00%) 20.7716 ( 0.73%)
1st-qrtle mmap 22.0612 ( 0.00%) 22.0680 ( -0.03%)
2nd-qrtle mmap 22.3291 ( 0.00%) 22.3809 ( -0.23%)
3rd-qrtle mmap 25.2244 ( 0.00%) 25.2396 ( -0.06%)
Max-90% mmap 48.0995 ( 0.00%) 28.3713 ( 41.02%)
Max-93% mmap 52.5557 ( 0.00%) 36.0170 ( 31.47%)
Max-95% mmap 55.8173 ( 0.00%) 47.3163 ( 15.23%)
Max-99% mmap 67.3781 ( 0.00%) 70.1140 ( -4.06%)
Max mmap 24447.6375 ( 0.00%) 12915.1356 ( 47.17%)
Mean mmap 33.7883 ( 0.00%) 27.7944 ( 17.74%)
Best99%Mean mmap 27.7825 ( 0.00%) 25.2767 ( 9.02%)
Best95%Mean mmap 26.3912 ( 0.00%) 23.7994 ( 9.82%)
Best90%Mean mmap 24.9886 ( 0.00%) 23.2251 ( 7.06%)
Best50%Mean mmap 22.0157 ( 0.00%) 22.0261 ( -0.05%)
Best10%Mean mmap 21.6705 ( 0.00%) 21.6083 ( 0.29%)
Best5%Mean mmap 21.5581 ( 0.00%) 21.4611 ( 0.45%)
Best1%Mean mmap 21.3079 ( 0.00%) 21.1631 ( 0.68%)
Note that the maximum stall latency went from 24 seconds to 12 which is
still bad but an improvement. The milage varies considerably 2-node
machine on an earlier test went from 494 seconds to 47 seconds and a
4-node machine that tested an earlier version of this patch went from a
worst case stall time of 6 seconds to 67ms. The nature of the benchmark
is inherently unpredictable as it is hammering the system and the milage
will vary between machines.
There is a secondary impact with potentially more direct reclaim because
zones are now being considered instead of being skipped by zlc. In this
particular test run it did not occur so will not be described. However,
in at least one test the following was observed
1. Direct reclaim rates were higher. This was likely due to direct reclaim
being entered instead of the zlc disabling a zone and busy looping.
Busy looping may have the effect of allowing kswapd to make more
progress and in some cases may be better overall. If this is found then
the correct action is to put direct reclaimers to sleep on a waitqueue
and allow kswapd make forward progress. Busy looping on the zlc is even
worse than when the allocator used to blindly call congestion_wait().
2. There was higher swap activity as direct reclaim was active.
3. Direct reclaim efficiency was lower. This is related to 1 as more
scanning activity also encountered more pages that could not be
immediately reclaimed
In that case, the direct page scan and reclaim rates are noticeable but
it is not considered a problem for a few reasons
1. The test is primarily concerned with latency. The mmap attempts are also
faulted which means there are THP allocation requests. The ZLC could
cause zones to be disabled causing the process to busy loop instead
of reclaiming. This looks like elevated direct reclaim activity but
it's the correct action to take based on what processes requested.
2. The test hammers reclaim and compaction heavily. The number of successful
THP faults is highly variable but affects the reclaim stats. It's not a
realistic or reasonable measure of page reclaim activity.
3. No other page-reclaim intensive workload that was tested showed a problem.
4. If a workload is identified that benefitted from the busy looping then it
should be fixed by having direct reclaimers sleep on a wait queue until
woken by kswapd instead of busy looping. We had this class of problem before
when congestion_waits() with a fixed timeout was a brain damaged decision
but happened to benefit some workloads.
If a workload is identified that relied on the zlc to busy loop then it
should be fixed correctly and have a direct reclaimer sleep on a waitqueue
until woken by kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
__GFP_WAIT was used to signal that the caller was in atomic context and
could not sleep. Now it is possible to distinguish between true atomic
context and callers that are not willing to sleep. The latter should
clear __GFP_DIRECT_RECLAIM so kswapd will still wake. As clearing
__GFP_WAIT behaves differently, there is a risk that people will clear the
wrong flags. This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly
indicate what it does -- setting it allows all reclaim activity, clearing
them prevents it.
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts. They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve". __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".
Over time, callers had a requirement to not block when fallback options
were available. Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.
This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative. High priority users continue to use
__GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim. __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.
This patch then converts a number of sites
o __GFP_ATOMIC is used by callers that are high priority and have memory
pools for those requests. GFP_ATOMIC uses this flag.
o Callers that have a limited mempool to guarantee forward progress clear
__GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
into this category where kswapd will still be woken but atomic reserves
are not used as there is a one-entry mempool to guarantee progress.
o Callers that are checking if they are non-blocking should use the
helper gfpflags_allow_blocking() where possible. This is because
checking for __GFP_WAIT as was done historically now can trigger false
positives. Some exceptions like dm-crypt.c exist where the code intent
is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
flag manipulations.
o Callers that built their own GFP flags instead of starting with GFP_KERNEL
and friends now also need to specify __GFP_KSWAPD_RECLAIM.
The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.
The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL. They may
now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
File-backed pages that will be immediately written are balanced between
zones. This heuristic tries to avoid having a single zone filled with
recently dirtied pages but the checks are unnecessarily expensive. Move
consider_zone_balanced into the alloc_context instead of checking bitmaps
multiple times. The patch also gives the parameter a more meaningful
name.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Overall, the intent of this series is to remove the zonelist cache which
was introduced to avoid high overhead in the page allocator. Once this is
done, it is necessary to reduce the cost of watermark checks.
The series starts with minor micro-optimisations.
Next it notes that GFP flags that affect watermark checks are abused.
__GFP_WAIT historically identified callers that could not sleep and could
access reserves. This was later abused to identify callers that simply
prefer to avoid sleeping and have other options. A patch distinguishes
between atomic callers, high-priority callers and those that simply wish
to avoid sleep.
The zonelist cache has been around for a long time but it is of dubious
merit with a lot of complexity and some issues that are explained. The
most important issue is that a failed THP allocation can cause a zone to
be treated as "full". This potentially causes unnecessary stalls, reclaim
activity or remote fallbacks. The issues could be fixed but it's not
worth it. The series places a small number of other micro-optimisations
on top before examining GFP flags watermarks.
High-order watermarks enforcement can cause high-order allocations to fail
even though pages are free. The watermark checks both protect high-order
atomic allocations and make kswapd aware of high-order pages but there is
a much better way that can be handled using migrate types. This series
uses page grouping by mobility to reserve pageblocks for high-order
allocations with the size of the reservation depending on demand. kswapd
awareness is maintained by examining the free lists. By patch 12 in this
series, there are no high-order watermark checks while preserving the
properties that motivated the introduction of the watermark checks.
This patch (of 10):
No user of zone_watermark_ok_safe() specifies alloc_flags. This patch
removes the unnecessary parameter.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce is_sysrq_oom helper function indicating oom kill triggered
by sysrq to improve readability.
No functional changes.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Merge patch-bomb from Andrew Morton:
- inotify tweaks
- some ocfs2 updates (many more are awaiting review)
- various misc bits
- kernel/watchdog.c updates
- Some of mm. I have a huge number of MM patches this time and quite a
lot of it is quite difficult and much will be held over to next time.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
selftests: vm: add tests for lock on fault
mm: mlock: add mlock flags to enable VM_LOCKONFAULT usage
mm: introduce VM_LOCKONFAULT
mm: mlock: add new mlock system call
mm: mlock: refactor mlock, munlock, and munlockall code
kasan: always taint kernel on report
mm, slub, kasan: enable user tracking by default with KASAN=y
kasan: use IS_ALIGNED in memory_is_poisoned_8()
kasan: Fix a type conversion error
lib: test_kasan: add some testcases
kasan: update reference to kasan prototype repo
kasan: move KASAN_SANITIZE in arch/x86/boot/Makefile
kasan: various fixes in documentation
kasan: update log messages
kasan: accurately determine the type of the bad access
kasan: update reported bug types for kernel memory accesses
kasan: update reported bug types for not user nor kernel memory accesses
mm/kasan: prevent deadlock in kasan reporting
mm/kasan: don't use kasan shadow pointer in generic functions
mm/kasan: MODULE_VADDR is not available on all archs
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The previous patch introduced a flag that specified pages in a VMA should
be placed on the unevictable LRU, but they should not be made present when
the area is created. This patch adds the ability to set this state via
the new mlock system calls.
We add MLOCK_ONFAULT for mlock2 and MCL_ONFAULT for mlockall.
MLOCK_ONFAULT will set the VM_LOCKONFAULT modifier for VM_LOCKED.
MCL_ONFAULT should be used as a modifier to the two other mlockall flags.
When used with MCL_CURRENT, all current mappings will be marked with
VM_LOCKED | VM_LOCKONFAULT. When used with MCL_FUTURE, the mm->def_flags
will be marked with VM_LOCKED | VM_LOCKONFAULT. When used with both
MCL_CURRENT and MCL_FUTURE, all current mappings and mm->def_flags will be
marked with VM_LOCKED | VM_LOCKONFAULT.
Prior to this patch, mlockall() will unconditionally clear the
mm->def_flags any time it is called without MCL_FUTURE. This behavior is
maintained after adding MCL_ONFAULT. If a call to mlockall(MCL_FUTURE) is
followed by mlockall(MCL_CURRENT), the mm->def_flags will be cleared and
new VMAs will be unlocked. This remains true with or without MCL_ONFAULT
in either mlockall() invocation.
munlock() will unconditionally clear both vma flags. munlockall()
unconditionally clears for VMA flags on all VMAs and in the mm->def_flags
field.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The cost of faulting in all memory to be locked can be very high when
working with large mappings. If only portions of the mapping will be used
this can incur a high penalty for locking.
For the example of a large file, this is the usage pattern for a large
statical language model (probably applies to other statical or graphical
models as well). For the security example, any application transacting in
data that cannot be swapped out (credit card data, medical records, etc).
This patch introduces the ability to request that pages are not
pre-faulted, but are placed on the unevictable LRU when they are finally
faulted in. The VM_LOCKONFAULT flag will be used together with VM_LOCKED
and has no effect when set without VM_LOCKED. Setting the VM_LOCKONFAULT
flag for a VMA will cause pages faulted into that VMA to be added to the
unevictable LRU when they are faulted or if they are already present, but
will not cause any missing pages to be faulted in.
Exposing this new lock state means that we cannot overload the meaning of
the FOLL_POPULATE flag any longer. Prior to this patch it was used to
mean that the VMA for a fault was locked. This means we need the new
FOLL_MLOCK flag to communicate the locked state of a VMA. FOLL_POPULATE
will now only control if the VMA should be populated and in the case of
VM_LOCKONFAULT, it will not be set.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
With the refactored mlock code, introduce a new system call for mlock.
The new call will allow the user to specify what lock states are being
added. mlock2 is trivial at the moment, but a follow on patch will add a
new mlock state making it useful.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
mlock() allows a user to control page out of program memory, but this
comes at the cost of faulting in the entire mapping when it is allocated.
For large mappings where the entire area is not necessary this is not
ideal. Instead of forcing all locked pages to be present when they are
allocated, this set creates a middle ground. Pages are marked to be
placed on the unevictable LRU (locked) when they are first used, but they
are not faulted in by the mlock call.
This series introduces a new mlock() system call that takes a flags
argument along with the start address and size. This flags argument gives
the caller the ability to request memory be locked in the traditional way,
or to be locked after the page is faulted in. A new MCL flag is added to
mirror the lock on fault behavior from mlock() in mlockall().
There are two main use cases that this set covers. The first is the
security focussed mlock case. A buffer is needed that cannot be written
to swap. The maximum size is known, but on average the memory used is
significantly less than this maximum. With lock on fault, the buffer is
guaranteed to never be paged out without consuming the maximum size every
time such a buffer is created.
The second use case is focussed on performance. Portions of a large file
are needed and we want to keep the used portions in memory once accessed.
This is the case for large graphical models where the path through the
graph is not known until run time. The entire graph is unlikely to be
used in a given invocation, but once a node has been used it needs to stay
resident for further processing. Given these constraints we have a number
of options. We can potentially waste a large amount of memory by mlocking
the entire region (this can also cause a significant stall at startup as
the entire file is read in). We can mlock every page as we access them
without tracking if the page is already resident but this introduces large
overhead for each access. The third option is mapping the entire region
with PROT_NONE and using a signal handler for SIGSEGV to
mprotect(PROT_READ) and mlock() the needed page. Doing this page at a
time adds a significant performance penalty. Batching can be used to
mitigate this overhead, but in order to safely avoid trying to mprotect
pages outside of the mapping, the boundaries of each mapping to be used in
this way must be tracked and available to the signal handler. This is
precisely what the mm system in the kernel should already be doing.
For mlock(MLOCK_ONFAULT) the user is charged against RLIMIT_MEMLOCK as if
mlock(MLOCK_LOCKED) or mmap(MAP_LOCKED) was used, so when the VMA is
created not when the pages are faulted in. For mlockall(MCL_ONFAULT) the
user is charged as if MCL_FUTURE was used. This decision was made to keep
the accounting checks out of the page fault path.
To illustrate the benefit of this set I wrote a test program that mmaps a
5 GB file filled with random data and then makes 15,000,000 accesses to
random addresses in that mapping. The test program was run 20 times for
each setup. Results are reported for two program portions, setup and
execution. The setup phase is calling mmap and optionally mlock on the
entire region. For most experiments this is trivial, but it highlights
the cost of faulting in the entire region. Results are averages across
the 20 runs in milliseconds.
mmap with mlock(MLOCK_LOCKED) on entire range:
Setup avg: 8228.666
Processing avg: 8274.257
mmap with mlock(MLOCK_LOCKED) before each access:
Setup avg: 0.113
Processing avg: 90993.552
mmap with PROT_NONE and signal handler and batch size of 1 page:
With the default value in max_map_count, this gets ENOMEM as I attempt
to change the permissions, after upping the sysctl significantly I get:
Setup avg: 0.058
Processing avg: 69488.073
mmap with PROT_NONE and signal handler and batch size of 8 pages:
Setup avg: 0.068
Processing avg: 38204.116
mmap with PROT_NONE and signal handler and batch size of 16 pages:
Setup avg: 0.044
Processing avg: 29671.180
mmap with mlock(MLOCK_ONFAULT) on entire range:
Setup avg: 0.189
Processing avg: 17904.899
The signal handler in the batch cases faulted in memory in two steps to
avoid having to know the start and end of the faulting mapping. The first
step covers the page that caused the fault as we know that it will be
possible to lock. The second step speculatively tries to mlock and
mprotect the batch size - 1 pages that follow. There may be a clever way
to avoid this without having the program track each mapping to be covered
by this handeler in a globally accessible structure, but I could not find
it. It should be noted that with a large enough batch size this two step
fault handler can still cause the program to crash if it reaches far
beyond the end of the mapping.
These results show that if the developer knows that a majority of the
mapping will be used, it is better to try and fault it in at once,
otherwise mlock(MLOCK_ONFAULT) is significantly faster.
The performance cost of these patches are minimal on the two benchmarks I
have tested (stream and kernbench). The following are the average values
across 20 runs of stream and 10 runs of kernbench after a warmup run whose
results were discarded.
Avg throughput in MB/s from stream using 1000000 element arrays
Test 4.2-rc1 4.2-rc1+lock-on-fault
Copy: 10,566.5 10,421
Scale: 10,685 10,503.5
Add: 12,044.1 11,814.2
Triad: 12,064.8 11,846.3
Kernbench optimal load
4.2-rc1 4.2-rc1+lock-on-fault
Elapsed Time 78.453 78.991
User Time 64.2395 65.2355
System Time 9.7335 9.7085
Context Switches 22211.5 22412.1
Sleeps 14965.3 14956.1
This patch (of 6):
Extending the mlock system call is very difficult because it currently
does not take a flags argument. A later patch in this set will extend
mlock to support a middle ground between pages that are locked and faulted
in immediately and unlocked pages. To pave the way for the new system
call, the code needs some reorganization so that all the actual entry
point handles is checking input and translating to VMA flags.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently we already taint the kernel in some cases. E.g. if we hit some
bug in slub memory we call object_err() which will taint the kernel with
TAINT_BAD_PAGE flag. But for other kind of bugs kernel left untainted.
Always taint with TAINT_BAD_PAGE if kasan found some bug. This is useful
for automated testing.
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
It's recommended to have slub's user tracking enabled with CONFIG_KASAN,
because:
a) User tracking disables slab merging which improves
detecting out-of-bounds accesses.
b) User tracking metadata acts as redzone which also improves
detecting out-of-bounds accesses.
c) User tracking provides additional information about object.
This information helps to understand bugs.
Currently it is not enabled by default. Besides recompiling the kernel
with KASAN and reinstalling it, user also have to change the boot cmdline,
which is not very handy.
Enable slub user tracking by default with KASAN=y, since there is no good
reason to not do this.
[akpm@linux-foundation.org: little fixes, per David]
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Use IS_ALIGNED() to determine whether the shadow span two bytes. It
generates less code and more readable. Also add some comments in shadow
check functions.
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The current KASAN code can not find the following out-of-bounds bugs:
char *ptr;
ptr = kmalloc(8, GFP_KERNEL);
memset(ptr+7, 0, 2);
the cause of the problem is the type conversion error in
*memory_is_poisoned_n* function. So this patch fix that.
Signed-off-by: Wang Long <long.wanglong@huawei.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Update the reference to the kasan prototype repository on github, since it
was renamed.
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We decided to use KASAN as the short name of the tool and
KernelAddressSanitizer as the full one. Update log messages according to
that.
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Makes KASAN accurately determine the type of the bad access. If the shadow
byte value is in the [0, KASAN_SHADOW_SCALE_SIZE) range we can look at
the next shadow byte to determine the type of the access.
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Update the names of the bad access types to better reflect the type of
the access that happended and make these error types "literals" that can
be used for classification and deduplication in scripts.
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Each access with address lower than
kasan_shadow_to_mem(KASAN_SHADOW_START) is reported as user-memory-access.
This is not always true, the accessed address might not be in user space.
Fix this by reporting such accesses as null-ptr-derefs or
wild-memory-accesses.
There's another reason for this change. For userspace ASan we have a
bunch of systems that analyze error types for the purpose of
classification and deduplication. Sooner of later we will write them to
KASAN as well. Then clearly and explicitly stated error types will bring
value.
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When we end up calling kasan_report in real mode, our shadow mapping for
the spinlock variable will show poisoned. This will result in us calling
kasan_report_error with lock_report spin lock held. To prevent this
disable kasan reporting when we are priting error w.r.t kasan.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We can't use generic functions like print_hex_dump to access kasan shadow
region. This require us to setup another kasan shadow region for the
address passed (kasan shadow address). Some architectures won't be able
to do that. Hence make a copy of the shadow region row and pass that to
generic functions.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Use is_module_address instead
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The function only disable/enable reporting. In the later patch we will be
adding a kasan early enable/disable. Rename kasan_enabled to properly
reflect its function.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
LKP reports that v4.2 commit afa2db2fb6f1 ("tmpfs: truncate prealloc
blocks past i_size") causes a 14.5% slowdown in the AIM9 creat-clo
benchmark.
creat-clo does just what you'd expect from the name, and creat's O_TRUNC
on 0-length file does indeed get into more overhead now shmem_setattr()
tests "0 <= 0" instead of "0 < 0".
I'm not sure how much we care, but I think it would not be too VW-like to
add in a check for whether any pages (or swap) are allocated: if none are
allocated, there's none to remove from the radix_tree. At first I thought
that check would be good enough for the unmaps too, but no: we should not
skip the unlikely case of unmapping pages beyond the new EOF, which were
COWed from holes which have now been reclaimed, leaving none.
This gives me an 8.5% speedup: on Haswell instead of LKP's Westmere, and
running a debug config before and after: I hope those account for the
lesser speedup.
And probably someone has a benchmark where a thousand threads keep on
stat'ing the same file repeatedly: forestall that report by adjusting v4.3
commit 44a30220bc0a ("shmem: recalculate file inode when fstat") not to
take the spinlock in shmem_getattr() when there's no work to do.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Ying Huang <ying.huang@linux.intel.com>
Tested-by: Ying Huang <ying.huang@linux.intel.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit 424cdc141380 ("memcg: convert threshold to bytes") has fixed a
regression introduced by 3e32cb2e0a12 ("mm: memcontrol: lockless page
counters") where thresholds were silently converted to use page units
rather than bytes when interpreting the user input.
The fix is not complete, though, as properly pointed out by Ben Hutchings
during stable backport review. The page count is converted to bytes but
unsigned long is used to hold the value which would be obviously not
sufficient for 32b systems with more than 4G thresholds. The same applies
to usage as taken from mem_cgroup_usage which might overflow.
Let's remove this bytes vs. pages internal tracking differences and
handle thresholds in page units internally. Chage mem_cgroup_usage() to
return the value in page units and revert 424cdc141380 because this should
be sufficient for the consistent handling. mem_cgroup_read_u64 as the
only users of mem_cgroup_usage outside of the threshold handling code is
converted to give the proper in bytes result. It is doing that already
for page_counter output so this is more consistent as well.
The value presented to the userspace is still in bytes units.
Fixes: 424cdc141380 ("memcg: convert threshold to bytes")
Fixes: 3e32cb2e0a12 ("mm: memcontrol: lockless page counters")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
From: Michal Hocko <mhocko@kernel.org>
Subject: memcg-fix-thresholds-for-32b-architectures-fix
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
From: Andrew Morton <akpm@linux-foundation.org>
Subject: memcg-fix-thresholds-for-32b-architectures-fix-fix
don't attempt to inline mem_cgroup_usage()
The compiler ignores the inline anwyay. And __always_inlining it adds 600
bytes of goop to the .o file.
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
page_counter_try_charge() currently returns 0 on success and -ENOMEM on
failure, which is surprising behavior given the function name.
Make it follow the expected pattern of try_stuff() functions that return a
boolean true to indicate success, or false for failure.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
memory.current on the root level doesn't add anything that wouldn't be
more accurate and detailed using system statistics. It already doesn't
include slabs, and it'll be a pain to keep in sync when further memory
types are accounted in the memory controller. Remove it.
Note that this applies to the new unified hierarchy interface only.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
My recent patch "mm, hugetlb: use memory policy when available" added some
bloat to hugetlb.o. This patch aims to get some of the bloat back,
especially when NUMA is not in play.
It does this with an implicit #ifdef and marking some things static that
should have been static in my first patch. It also makes the warnings
only VM_WARN_ON()s. They were responsible for a pretty big chunk of the
bloat.
Doing this gets our NUMA=n text size back to a wee bit _below_ where we
started before the original patch.
It also shaves a bit of space off the NUMA=y case, but not much.
Enforcing the mempolicy definitely takes some text and it's hard to avoid.
size(1) output:
text data bss dec hex filename
30745 3433 2492 36670 8f3e hugetlb.o.nonuma.baseline
31305 3755 2492 37552 92b0 hugetlb.o.nonuma.patch1
30713 3433 2492 36638 8f1e hugetlb.o.nonuma.patch2 (this patch)
25235 473 41276 66984 105a8 hugetlb.o.numa.baseline
25715 475 41276 67466 1078a hugetlb.o.numa.patch1
25491 473 41276 67240 106a8 hugetlb.o.numa.patch2 (this patch)
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
I have a hugetlbfs user which is never explicitly allocating huge pages
with 'nr_hugepages'. They only set 'nr_overcommit_hugepages' and then let
the pages be allocated from the buddy allocator at fault time.
This works, but they noticed that mbind() was not doing them any good and
the pages were being allocated without respect for the policy they
specified.
The code in question is this:
> struct page *alloc_huge_page(struct vm_area_struct *vma,
...
> page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
> if (!page) {
> page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
dequeue_huge_page_vma() is smart and will respect the VMA's memory policy.
But, it only grabs _existing_ huge pages from the huge page pool. If the
pool is empty, we fall back to alloc_buddy_huge_page() which obviously
can't do anything with the VMA's policy because it isn't even passed the
VMA.
Almost everybody preallocates huge pages. That's probably why nobody has
ever noticed this. Looking back at the git history, I don't think this
_ever_ worked from when alloc_buddy_huge_page() was introduced in
7893d1d5, 8 years ago.
The fix is to pass vma/addr down in to the places where we actually call
in to the buddy allocator. It's fairly straightforward plumbing. This
has been lightly tested.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
There are no users of the node_hstates array outside of the
mm/hugetlb.c. So let's make it static.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
As far as I can tell, strncpy_from_unsafe never returns -EFAULT. ret is
the result of a __copy_from_user_inatomic(), which is 0 for success and
positive (in this case necessarily 1) for access error - it is never
negative. So we were always returning the length of the, possibly
truncated, destination string.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
mm/cma.c: In function 'cma_alloc':
mm/cma.c:366: warning: 'pfn' may be used uninitialized in this function
The patch actually improves the tracing a bit: if alloc_contig_range()
fails, tracing will display the offending pfn rather than -1.
Cc: Stefan Strogin <stefan.strogin@gmail.com>
Cc: Michal Nazarewicz <mpn@google.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Cc: Thierry Reding <treding@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
clear_page_dirty_for_io() has accumulated writeback and memcg subtleties
since v2.6.16 first introduced page migration; and the set_page_dirty()
which completed its migration of PageDirty, later had to be moderated to
__set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too.
No actual problems seen with this procedure recently, but if you look into
what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually
achieving, it turns out to be nothing more than moving the PageDirty flag,
and its NR_FILE_DIRTY stat from one zone to another.
It would be good to avoid a pile of irrelevant decrementations and
incrementations, and improper event counting, and unnecessary descent of
the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which
radix_tree_replace_slot() left in place anyway).
Do the NR_FILE_DIRTY movement, like the other stats movements, while
interrupts still disabled in migrate_page_move_mapping(); and don't even
bother if the zone is the same. Do the PageDirty movement there under
tree_lock too, where old page is frozen and newpage not yet visible:
bearing in mind that as soon as newpage becomes visible in radix_tree, an
un-page-locked set_page_dirty() might interfere (or perhaps that's just
not possible: anything doing so should already hold an additional
reference to the old page, preventing its migration; but play safe).
But we do still need to transfer PageDirty in migrate_page_copy(), for
those who don't go the mapping route through migrate_page_move_mapping().
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We have had trouble in the past from the way in which page migration's
newpage is initialized in dribs and drabs - see commit 8bdd63809160 ("mm:
fix direct reclaim writeback regression") which proposed a cleanup.
We have no actual problem now, but I think the procedure would be clearer
(and alternative get_new_page pools safer to implement) if we assert that
newpage is not touched until we are sure that it's going to be used -
except for taking the trylock on it in __unmap_and_move().
So shift the early initializations from move_to_new_page() into
migrate_page_move_mapping(), mapping and NULL-mapping paths. Similarly
migrate_huge_page_move_mapping(), but its NULL-mapping path can just be
deleted: you cannot reach hugetlbfs_migrate_page() with a NULL mapping.
Adjust stages 3 to 8 in the Documentation file accordingly.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Hitherto page migration has avoided using a migration entry for a
swapcache page mapped into userspace, apparently for historical reasons.
So any page blessed with swapcache would entail a minor fault when it's
next touched, which page migration otherwise tries to avoid. Swapcache in
an mlocked area is rare, so won't often matter, but still better fixed.
Just rearrange the block in try_to_unmap_one(), to handle TTU_MIGRATION
before checking PageAnon, that's all (apart from some reindenting).
Well, no, that's not quite all: doesn't this by the way fix a soft_dirty
bug, that page migration of a file page was forgetting to transfer the
soft_dirty bit? Probably not a serious bug: if I understand correctly,
soft_dirty afficionados usually have to handle file pages separately
anyway; but we publish the bit in /proc/<pid>/pagemap on file mappings as
well as anonymous, so page migration ought not to perturb it.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
__unmap_and_move() contains a long stale comment on page_get_anon_vma()
and PageSwapCache(), with an odd control flow that's hard to follow.
Mostly this reflects our confusion about the lifetime of an anon_vma, in
the early days of page migration, before we could take a reference to one.
Nowadays this seems quite straightforward: cut it all down to essentials.
I cannot see the relevance of swapcache here at all, so don't treat it any
differently: I believe the old comment reflects in part our anon_vma
confusions, and in part the original v2.6.16 page migration technique,
which used actual swap to migrate anon instead of swap-like migration
entries. Why should a swapcache page not be migrated with the aid of
migration entry ptes like everything else? So lose that comment now, and
enable migration entries for swapcache in the next patch.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Clean up page migration a little more by calling remove_migration_ptes()
from the same level, on success or on failure, from __unmap_and_move() or
from unmap_and_move_huge_page().
Don't reset page->mapping of a PageAnon old page in move_to_new_page(),
leave that to when the page is freed. Except for here in page migration,
it has been an invariant that a PageAnon (bit set in page->mapping) page
stays PageAnon until it is freed, and I think we're safer to keep to that.
And with the above rearrangement, it's necessary because zap_pte_range()
wants to identify whether a migration entry represents a file or an anon
page, to update the appropriate rss stats without waiting on it.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Clean up page migration a little by moving the trylock of newpage from
move_to_new_page() into __unmap_and_move(), where the old page has been
locked. Adjust unmap_and_move_huge_page() and balloon_page_migrate()
accordingly.
But make one kind-of-functional change on the way: whereas trylock of
newpage used to BUG() if it failed, now simply return -EAGAIN if so.
Cutting out BUG()s is good, right? But, to be honest, this is really to
extend the usefulness of the custom put_new_page feature, allowing a pool
of new pages to be shared perhaps with racing uses.
Use an "else" instead of that "skip_unmap" label.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
I don't know of any problem from the way it's used in our current tree,
but there is one defect in page migration's custom put_new_page feature.
An unused newpage is expected to be released with the put_new_page(), but
there was one MIGRATEPAGE_SUCCESS (0) path which released it with
putback_lru_page(): which can be very wrong for a custom pool.
Fixed more easily by resetting put_new_page once it won't be needed, than
by adding a further flag to modify the rc test.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
It's migrate.c not migration,c, and nowadays putback_movable_pages() not
putback_lru_pages().
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
After v4.3's commit 0610c25daa3e ("memcg: fix dirty page migration")
mem_cgroup_migrate() doesn't have much to offer in page migration: convert
migrate_misplaced_transhuge_page() to set_page_memcg() instead.
Then rename mem_cgroup_migrate() to mem_cgroup_replace_page(), since its
remaining callers are replace_page_cache_page() and shmem_replace_page():
both of whom passed lrucare true, so just eliminate that argument.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit e6c509f85455 ("mm: use clear_page_mlock() in page_remove_rmap()")
in v3.7 inadvertently made mlock_migrate_page() impotent: page migration
unmaps the page from userspace before migrating, and that commit clears
PageMlocked on the final unmap, leaving mlock_migrate_page() with
nothing to do. Not a serious bug, the next attempt at reclaiming the
page would fix it up; but a betrayal of page migration's intent - the
new page ought to emerge as PageMlocked.
I don't see how to fix it for mlock_migrate_page() itself; but easily
fixed in remove_migration_pte(), by calling mlock_vma_page() when the vma
is VM_LOCKED - under pte lock as in try_to_unmap_one().
Delete mlock_migrate_page()? Not quite, it does still serve a purpose for
migrate_misplaced_transhuge_page(): where we could replace it by a test,
clear_page_mlock(), mlock_vma_page() sequence; but would that be an
improvement? mlock_migrate_page() is fairly lean, and let's make it
leaner by skipping the irq save/restore now clearly not needed.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|