summaryrefslogtreecommitdiffstats
path: root/mm (follow)
Commit message (Collapse)AuthorAgeFilesLines
* oom: task->mm == NULL doesn't mean the memory was freedOleg Nesterov2011-08-021-1/+3
| | | | | | | | | | | | | | | | | | exit_mm() sets ->mm == NULL then it does mmput()->exit_mmap() which frees the memory. However select_bad_process() checks ->mm != NULL before TIF_MEMDIE, so it continues to kill other tasks even if we have the oom-killed task freeing its memory. Change select_bad_process() to check ->mm after TIF_MEMDIE, but skip the tasks which have already passed exit_notify() to ensure a zombie with TIF_MEMDIE set can't block oom-killer. Alternatively we could probably clear TIF_MEMDIE after exit_mmap(). Signed-off-by: Oleg Nesterov <oleg@redhat.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'for-linus' of ↵Linus Torvalds2011-07-311-3/+4
|\ | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6 * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6: slab: use NUMA_NO_NODE slab: remove one NR_CPUS dependency
| * slab: use NUMA_NO_NODEAndrew Morton2011-07-311-1/+1
| | | | | | | | | | | | | | | | Use the nice enumerated constant. Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slab: remove one NR_CPUS dependencyEric Dumazet2011-07-281-2/+3
| | | | | | | | | | | | | | | | | | Reduce high order allocations in do_tune_cpucache() for some setups. (NR_CPUS=4096 -> we need 64KB) Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
* | Merge branch 'slub/lockless' of ↵Linus Torvalds2011-07-301-252/+512
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6 * 'slub/lockless' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6: (21 commits) slub: When allocating a new slab also prep the first object slub: disable interrupts in cmpxchg_double_slab when falling back to pagelock Avoid duplicate _count variables in page_struct Revert "SLUB: Fix build breakage in linux/mm_types.h" SLUB: Fix build breakage in linux/mm_types.h slub: slabinfo update for cmpxchg handling slub: Not necessary to check for empty slab on load_freelist slub: fast release on full slab slub: Add statistics for the case that the current slab does not match the node slub: Get rid of the another_slab label slub: Avoid disabling interrupts in free slowpath slub: Disable interrupts in free_debug processing slub: Invert locking and avoid slab lock slub: Rework allocator fastpaths slub: Pass kmem_cache struct to lock and freeze slab slub: explicit list_lock taking slub: Add cmpxchg_double_slab() mm: Rearrange struct page slub: Move page->frozen handling near where the page->freelist handling occurs slub: Do not use frozen page flag but a bit in the page counters ...
| * slub: When allocating a new slab also prep the first objectChristoph Lameter2011-07-251-0/+3
| | | | | | | | | | | | | | | | | | We need to branch to the debug code for the first object if we allocate a new slab otherwise the first object will be marked wrongly as inactive. Tested-by: Rabin Vincent <rabin@rab.in> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: disable interrupts in cmpxchg_double_slab when falling back to pagelockChristoph Lameter2011-07-181-4/+45
| | | | | | | | | | | | | | | | | | | | | | | | | | Split cmpxchg_double_slab into two functions. One for the case where we know that interrupts are disabled (and therefore the fallback does not need to disable interrupts) and one for the other cases where fallback will also disable interrupts. This fixes the issue that __slab_free called cmpxchg_double_slab in some scenarios without disabling interrupts. Tested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: Not necessary to check for empty slab on load_freelistChristoph Lameter2011-07-021-3/+2
| | | | | | | | | | | | | | load_freelist is now only branched to only if there are objects available. So no need to check the object variable for NULL. Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: fast release on full slabChristoph Lameter2011-07-021-2/+19
| | | | | | | | | | | | | | | | | | Make deactivation occur implicitly while checking out the current freelist. This avoids one cmpxchg operation on a slab that is now fully in use. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: Add statistics for the case that the current slab does not match the nodeChristoph Lameter2011-07-021-0/+3
| | | | | | | | | | | | | | | | Slub reloads the per cpu slab if the page does not satisfy the NUMA condition. Track those reloads since doing so has a performance impact. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: Get rid of the another_slab labelChristoph Lameter2011-07-021-6/+5
| | | | | | | | | | | | | | | | We can avoid deactivate slab in special cases if we do the deactivation of slabs in each code flow that leads to new_slab. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: Avoid disabling interrupts in free slowpathChristoph Lameter2011-07-021-11/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | Disabling interrupts can be avoided now. However, list operation still require disabling interrupts since allocations can occur from interrupt contexts and there is no way to perform atomic list operations. The acquition of the list_lock therefore has to disable interrupts as well. Dropping interrupt handling significantly simplifies the slowpath. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: Disable interrupts in free_debug processingChristoph Lameter2011-07-021-4/+10
| | | | | | | | | | | | | | | | | | | | We will be calling free_debug_processing with interrupts disabled in some case when the later patches are applied. Some of the functions called by free_debug_processing expect interrupts to be off. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: Invert locking and avoid slab lockChristoph Lameter2011-07-021-77/+52
| | | | | | | | | | | | | | | | | | | | | | | | Locking slabs is no longer necesary if the arch supports cmpxchg operations and if no debuggin features are used on a slab. If the arch does not support cmpxchg then we fallback to use the slab lock to do a cmpxchg like operation. The patch also changes the lock order. Slab locks are subsumed to the node lock now. With that approach slab_trylocking is no longer necessary. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: Rework allocator fastpathsChristoph Lameter2011-07-021-129/+280
| | | | | | | | | | | | | | | | Rework the allocation paths so that updates of the page freelist, frozen state and number of objects use cmpxchg_double_slab(). Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: Pass kmem_cache struct to lock and freeze slabChristoph Lameter2011-07-021-7/+8
| | | | | | | | | | | | | | | | We need more information about the slab for the cmpxchg implementation. Signed-off-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: explicit list_lock takingChristoph Lameter2011-07-021-40/+49
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The allocator fastpath rework does change the usage of the list_lock. Remove the list_lock processing from the functions that hide them from the critical sections and move them into those critical sections. This in turn simplifies the support functions (no __ variant needed anymore) and simplifies the lock handling on bootstrap. Inline add_partial since it becomes pretty simple. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: Add cmpxchg_double_slab()Christoph Lameter2011-07-021-5/+60
| | | | | | | | | | | | | | | | Add a function that operates on the second doubleword in the page struct and manipulates the object counters, the freelist and the frozen attribute. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: Move page->frozen handling near where the page->freelist handling occursChristoph Lameter2011-07-021-2/+6
| | | | | | | | | | | | | | | | | | This is necessary because the frozen bit has to be handled in the same cmpxchg_double with the freelist and the counters. Signed-off-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: Do not use frozen page flag but a bit in the page countersChristoph Lameter2011-07-021-6/+6
| | | | | | | | | | | | | | | | | | Do not use a page flag for the frozen bit. It needs to be part of the state that is handled with cmpxchg_double(). So use a bit in the counter struct in the page struct for that purpose. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
| * slub: Push irq disable into allocate_slab()Christoph Lameter2011-07-021-10/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | Do the irq handling in allocate_slab() instead of __slab_alloc(). __slab_alloc() is already cluttered and allocate_slab() is already fiddling around with gfp flags. v6->v7: Only increment ORDER_FALLBACK if we get a page during fallback Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
* | atomic: use <linux/atomic.h>Arun Sharma2011-07-274-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This allows us to move duplicated code in <asm/atomic.h> (atomic_inc_not_zero() for now) to <linux/atomic.h> Signed-off-by: Arun Sharma <asharma@fb.com> Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | fail_page_alloc: simplify debugfs initializationAkinobu Mita2011-07-271-31/+16
| | | | | | | | | | | | | | | | | | | | Now cleanup_fault_attr_dentries() recursively removes a directory, So we can simplify the error handling in the initialization code and no need to hold dentry structs for each debugfs file. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | failslab: simplify debugfs initializationAkinobu Mita2011-07-271-21/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | Now cleanup_fault_attr_dentries() recursively removes a directory, So we can simplify the error handling in the initialization code and no need to hold dentry structs for each debugfs file. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | fault-injection: use debugfs_remove_recursiveAkinobu Mita2011-07-272-2/+2
| | | | | | | | | | | | | | | | | | Use debugfs_remove_recursive() to simplify initialization and deinitialization of fault injection debugfs files. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | cpusets: randomize node rotor used in cpuset_mem_spread_node()Michal Hocko2011-07-271-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ This patch has already been accepted as commit 0ac0c0d0f837 but later reverted (commit 35926ff5fba8) because it itroduced arch specific __node_random which was defined only for x86 code so it broke other archs. This is a followup without any arch specific code. Other than that there are no functional changes.] Some workloads that create a large number of small files tend to assign too many pages to node 0 (multi-node systems). Part of the reason is that the rotor (in cpuset_mem_spread_node()) used to assign nodes starts at node 0 for newly created tasks. This patch changes the rotor to be initialized to a random node number of the cpuset. [akpm@linux-foundation.org: fix layout] [Lee.Schermerhorn@hp.com: Define stub numa_random() for !NUMA configuration] [mhocko@suse.cz: Make it arch independent] [akpm@linux-foundation.org: fix CONFIG_NUMA=y, MAX_NUMNODES>1 build] Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Paul Menage <menage@google.com> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: David Rientjes <rientjes@google.com> Cc: Jack Steiner <steiner@sgi.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Paul Menage <menage@google.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | memcg: get rid of percpu_charge_mutex lockMichal Hocko2011-07-271-10/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | percpu_charge_mutex protects from multiple simultaneous per-cpu charge caches draining because we might end up having too many work items. At least this was the case until commit 26fe61684449 ("memcg: fix percpu cached charge draining frequency") when we introduced a more targeted draining for async mode. Now that also sync draining is targeted we can safely remove mutex because we will not send more work than the current number of CPUs. FLUSHING_CACHED_CHARGE protects from sending the same work multiple times and stock->nr_pages == 0 protects from pointless sending a work if there is obviously nothing to be done. This is of course racy but we can live with it as the race window is really small (we would have to see FLUSHING_CACHED_CHARGE cleared while nr_pages would be still non-zero). The only remaining place where we can race is synchronous mode when we rely on FLUSHING_CACHED_CHARGE test which might have been set by other drainer on the same group but we should wait in that case as well. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | memcg: add mem_cgroup_same_or_subtree() helperMichal Hocko2011-07-271-25/+26
| | | | | | | | | | | | | | | | | | | | | | | | We are checking whether a given two groups are same or at least in the same subtree of a hierarchy at several places. Let's make a helper for it to make code easier to read. Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | memcg: unify sync and async per-cpu charge cache drainingMichal Hocko2011-07-271-14/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently we have two ways how to drain per-CPU caches for charges. drain_all_stock_sync will synchronously drain all caches while drain_all_stock_async will asynchronously drain only those that refer to a given memory cgroup or its subtree in hierarchy. Targeted async draining has been introduced by 26fe6168 (memcg: fix percpu cached charge draining frequency) to reduce the cpu workers number. sync draining is currently triggered only from mem_cgroup_force_empty which is triggered only by userspace (mem_cgroup_force_empty_write) or when a cgroup is removed (mem_cgroup_pre_destroy). Although these are not usually frequent operations it still makes some sense to do targeted draining as well, especially if the box has many CPUs. This patch unifies both methods to use the single code (drain_all_stock) which relies on the original async implementation and just adds flush_work to wait on all caches that are still under work for the sync mode. We are using FLUSHING_CACHED_CHARGE bit check to prevent from waiting on a work that we haven't triggered. Please note that both sync and async functions are currently protected by percpu_charge_mutex so we cannot race with other drainers. Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | memcg: do not try to drain per-cpu caches without pagesMichal Hocko2011-07-271-6/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | drain_all_stock_async tries to optimize a work to be done on the work queue by excluding any work for the current CPU because it assumes that the context we are called from already tried to charge from that cache and it's failed so it must be empty already. While the assumption is correct we can optimize it even more by checking the current number of pages in the cache. This will also reduce a work on other CPUs with an empty stock. For the current CPU we can simply call drain_local_stock rather than deferring it to the work queue. [kamezawa.hiroyu@jp.fujitsu.com: use drain_local_stock for current CPU optimization] Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | memcg: add memory.vmscan_statKAMEZAWA Hiroyuki2011-07-272-11/+200
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The commit log of 0ae5e89c60c9 ("memcg: count the soft_limit reclaim in...") says it adds scanning stats to memory.stat file. But it doesn't because we considered we needed to make a concensus for such new APIs. This patch is a trial to add memory.scan_stat. This shows - the number of scanned pages(total, anon, file) - the number of rotated pages(total, anon, file) - the number of freed pages(total, anon, file) - the number of elaplsed time (including sleep/pause time) for both of direct/soft reclaim. The biggest difference with oringinal Ying's one is that this file can be reset by some write, as # echo 0 ...../memory.scan_stat Example of output is here. This is a result after make -j 6 kernel under 300M limit. [kamezawa@bluextal ~]$ cat /cgroup/memory/A/memory.scan_stat [kamezawa@bluextal ~]$ cat /cgroup/memory/A/memory.vmscan_stat scanned_pages_by_limit 9471864 scanned_anon_pages_by_limit 6640629 scanned_file_pages_by_limit 2831235 rotated_pages_by_limit 4243974 rotated_anon_pages_by_limit 3971968 rotated_file_pages_by_limit 272006 freed_pages_by_limit 2318492 freed_anon_pages_by_limit 962052 freed_file_pages_by_limit 1356440 elapsed_ns_by_limit 351386416101 scanned_pages_by_system 0 scanned_anon_pages_by_system 0 scanned_file_pages_by_system 0 rotated_pages_by_system 0 rotated_anon_pages_by_system 0 rotated_file_pages_by_system 0 freed_pages_by_system 0 freed_anon_pages_by_system 0 freed_file_pages_by_system 0 elapsed_ns_by_system 0 scanned_pages_by_limit_under_hierarchy 9471864 scanned_anon_pages_by_limit_under_hierarchy 6640629 scanned_file_pages_by_limit_under_hierarchy 2831235 rotated_pages_by_limit_under_hierarchy 4243974 rotated_anon_pages_by_limit_under_hierarchy 3971968 rotated_file_pages_by_limit_under_hierarchy 272006 freed_pages_by_limit_under_hierarchy 2318492 freed_anon_pages_by_limit_under_hierarchy 962052 freed_file_pages_by_limit_under_hierarchy 1356440 elapsed_ns_by_limit_under_hierarchy 351386416101 scanned_pages_by_system_under_hierarchy 0 scanned_anon_pages_by_system_under_hierarchy 0 scanned_file_pages_by_system_under_hierarchy 0 rotated_pages_by_system_under_hierarchy 0 rotated_anon_pages_by_system_under_hierarchy 0 rotated_file_pages_by_system_under_hierarchy 0 freed_pages_by_system_under_hierarchy 0 freed_anon_pages_by_system_under_hierarchy 0 freed_file_pages_by_system_under_hierarchy 0 elapsed_ns_by_system_under_hierarchy 0 total_xxxx is for hierarchy management. This will be useful for further memcg developments and need to be developped before we do some complicated rework on LRU/softlimit management. This patch adds a new struct memcg_scanrecord into scan_control struct. sc->nr_scanned at el is not designed for exporting information. For example, nr_scanned is reset frequentrly and incremented +2 at scanning mapped pages. To avoid complexity, I added a new param in scan_control which is for exporting scanning score. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: Andrew Bresticker <abrestic@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | memcg: fix behavior of mem_cgroup_resize_limit()Daisuke Nishimura2011-07-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 22a668d7c3ef ("memcg: fix behavior under memory.limit equals to memsw.limit") introduced "memsw_is_minimum" flag, which becomes true when mem_limit == memsw_limit. The flag is checked at the beginning of reclaim, and "noswap" is set if the flag is true, because using swap is meaningless in this case. This works well in most cases, but when we try to shrink mem_limit, which is the same as memsw_limit now, we might fail to shrink mem_limit because swap doesn't used. This patch fixes this behavior by: - check MEM_CGROUP_RECLAIM_SHRINK at the begining of reclaim - If it is set, don't set "noswap" flag even if memsw_is_minimum is true. Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | memcg: fix vmscan count in small memcgsKAMEZAWA Hiroyuki2011-07-271-6/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 246e87a93934 ("memcg: fix get_scan_count() for small targets") fixes the memcg/kswapd behavior against small targets and prevent vmscan priority too high. But the implementation is too naive and adds another problem to small memcg. It always force scan to 32 pages of file/anon and doesn't handle swappiness and other rotate_info. It makes vmscan to scan anon LRU regardless of swappiness and make reclaim bad. This patch fixes it by adjusting scanning count with regard to swappiness at el. At a test "cat 1G file under 300M limit." (swappiness=20) before patch scanned_pages_by_limit 360919 scanned_anon_pages_by_limit 180469 scanned_file_pages_by_limit 180450 rotated_pages_by_limit 31 rotated_anon_pages_by_limit 25 rotated_file_pages_by_limit 6 freed_pages_by_limit 180458 freed_anon_pages_by_limit 19 freed_file_pages_by_limit 180439 elapsed_ns_by_limit 429758872 after patch scanned_pages_by_limit 180674 scanned_anon_pages_by_limit 24 scanned_file_pages_by_limit 180650 rotated_pages_by_limit 35 rotated_anon_pages_by_limit 24 rotated_file_pages_by_limit 11 freed_pages_by_limit 180634 freed_anon_pages_by_limit 0 freed_file_pages_by_limit 180634 elapsed_ns_by_limit 367119089 scanned_pages_by_system 0 the numbers of scanning anon are decreased(as expected), and elapsed time reduced. By this patch, small memcgs will work better. (*) Because the amount of file-cache is much bigger than anon, recalaim_stat's rotate-scan counter make scanning files more. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | memcg: change memcg_oom_mutex to spinlockMichal Hocko2011-07-271-11/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | memcg_oom_mutex is used to protect memcg OOM path and eventfd interface for oom_control. None of the critical sections which it protects sleep (eventfd_signal works from atomic context and the rest are simple linked list resp. oom_lock atomic operations). Mutex is also too heavyweight for those code paths because it triggers a lot of scheduling. It also makes makes convoying effects more visible when we have a big number of oom killing because we take the lock mutliple times during mem_cgroup_handle_oom so we have multiple places where many processes can sleep. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | memcg: make oom_lock 0 and 1 based rather than counterMichal Hocko2011-07-271-16/+70
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 867578cb ("memcg: fix oom kill behavior") introduced a oom_lock counter which is incremented by mem_cgroup_oom_lock when we are about to handle memcg OOM situation. mem_cgroup_handle_oom falls back to a sleep if oom_lock > 1 to prevent from multiple oom kills at the same time. The counter is then decremented by mem_cgroup_oom_unlock called from the same function. This works correctly but it can lead to serious starvations when we have many processes triggering OOM and many CPUs available for them (I have tested with 16 CPUs). Consider a process (call it A) which gets the oom_lock (the first one that got to mem_cgroup_handle_oom and grabbed memcg_oom_mutex) and other processes that are blocked on the mutex. While A releases the mutex and calls mem_cgroup_out_of_memory others will wake up (one after another) and increase the counter and fall into sleep (memcg_oom_waitq). Once A finishes mem_cgroup_out_of_memory it takes the mutex again and decreases oom_lock and wakes other tasks (if releasing memory by somebody else - e.g. killed process - hasn't done it yet). A testcase would look like: Assume malloc XXX is a program allocating XXX Megabytes of memory which touches all allocated pages in a tight loop # swapoff SWAP_DEVICE # cgcreate -g memory:A # cgset -r memory.oom_control=0 A # cgset -r memory.limit_in_bytes= 200M # for i in `seq 100` # do # cgexec -g memory:A malloc 10 & # done The main problem here is that all processes still race for the mutex and there is no guarantee that we will get counter back to 0 for those that got back to mem_cgroup_handle_oom. In the end the whole convoy in/decreases the counter but we do not get to 1 that would enable killing so nothing useful can be done. The time is basically unbounded because it highly depends on scheduling and ordering on mutex (I have seen this taking hours...). This patch replaces the counter by a simple {un}lock semantic. As mem_cgroup_oom_{un}lock works on the a subtree of a hierarchy we have to make sure that nobody else races with us which is guaranteed by the memcg_oom_mutex. We have to be careful while locking subtrees because we can encounter a subtree which is already locked: hierarchy: A / \ B \ /\ \ C D E B - C - D tree might be already locked. While we want to enable locking E subtree because OOM situations cannot influence each other we definitely do not want to allow locking A. Therefore we have to refuse lock if any subtree is already locked and clear up the lock for all nodes that have been set up to the failure point. On the other hand we have to make sure that the rest of the world will recognize that a group is under OOM even though it doesn't have a lock. Therefore we have to introduce under_oom variable which is incremented and decremented for the whole subtree when we enter resp. leave mem_cgroup_handle_oom. under_oom, unlike oom_lock, doesn't need be updated under memcg_oom_mutex because its users only check a single group and they use atomic operations for that. This can be checked easily by the following test case: # cgcreate -g memory:A # cgset -r memory.use_hierarchy=1 A # cgset -r memory.oom_control=1 A # cgset -r memory.limit_in_bytes= 100M # cgset -r memory.memsw.limit_in_bytes= 100M # cgcreate -g memory:A/B # cgset -r memory.oom_control=1 A/B # cgset -r memory.limit_in_bytes=20M # cgset -r memory.memsw.limit_in_bytes=20M # cgexec -g memory:A/B malloc 30 & #->this will be blocked by OOM of group B # cgexec -g memory:A malloc 80 & #->this will be blocked by OOM of group A While B gets oom_lock A will not get it. Both of them go into sleep and wait for an external action. We can make the limit higher for A to enforce waking it up # cgset -r memory.memsw.limit_in_bytes=300M A # cgset -r memory.limit_in_bytes=300M A malloc in A has to wake up even though it doesn't have oom_lock. Finally, the unlock path is very easy because we always unlock only the subtree we have locked previously while we always decrement under_oom. Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | memcg: consolidate memory cgroup lru stat functionsKAMEZAWA Hiroyuki2011-07-272-128/+51
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In mm/memcontrol.c, there are many lru stat functions as.. mem_cgroup_zone_nr_lru_pages mem_cgroup_node_nr_file_lru_pages mem_cgroup_nr_file_lru_pages mem_cgroup_node_nr_anon_lru_pages mem_cgroup_nr_anon_lru_pages mem_cgroup_node_nr_unevictable_lru_pages mem_cgroup_nr_unevictable_lru_pages mem_cgroup_node_nr_lru_pages mem_cgroup_nr_lru_pages mem_cgroup_get_local_zonestat Some of them are under #ifdef MAX_NUMNODES >1 and others are not. This seems bad. This patch consolidates all functions into mem_cgroup_zone_nr_lru_pages() mem_cgroup_node_nr_lru_pages() mem_cgroup_nr_lru_pages() For these functions, "which LRU?" information is passed by a mask. example: mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON)) And I added some macro as ALL_LRU, ALL_LRU_FILE, ALL_LRU_ANON. example: mem_cgroup_nr_lru_pages(mem, ALL_LRU) BTW, considering layout of NUMA memory placement of counters, this patch seems to be better. Now, when we gather all LRU information, we scan in following orer for_each_lru -> for_each_node -> for_each_zone. This means we'll touch cache lines in different node in turn. After patch, we'll scan for_each_node -> for_each_zone -> for_each_lru(mask) Then, we'll gather information in the same cacheline at once. [akpm@linux-foundation.org: fix warnigns, build error] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | memcg: export memory cgroup's swappiness with mem_cgroup_swappiness()KAMEZAWA Hiroyuki2011-07-272-21/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Each memory cgroup has a 'swappiness' value which can be accessed by get_swappiness(memcg). The major user is try_to_free_mem_cgroup_pages() and swappiness is passed by argument. It's propagated by scan_control. get_swappiness() is a static function but some planned updates will need to get swappiness from files other than memcontrol.c This patch exports get_swappiness() as mem_cgroup_swappiness(). With this, we can remove the argument of swapiness from try_to_free... and drop swappiness from scan_control. only memcg uses it. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge branch 'for-linus' of ↵Linus Torvalds2011-07-264-72/+300
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/wfg/writeback * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/writeback: (27 commits) mm: properly reflect task dirty limits in dirty_exceeded logic writeback: don't busy retry writeback on new/freeing inodes writeback: scale IO chunk size up to half device bandwidth writeback: trace global_dirty_state writeback: introduce max-pause and pass-good dirty limits writeback: introduce smoothed global dirty limit writeback: consolidate variable names in balance_dirty_pages() writeback: show bdi write bandwidth in debugfs writeback: bdi write bandwidth estimation writeback: account per-bdi accumulated written pages writeback: make writeback_control.nr_to_write straight writeback: skip tmpfs early in balance_dirty_pages_ratelimited_nr() writeback: trace event writeback_queue_io writeback: trace event writeback_single_inode writeback: remove .nonblocking and .encountered_congestion writeback: remove writeback_control.more_io writeback: skip balance_dirty_pages() for in-memory fs writeback: add bdi_dirty_limit() kernel-doc writeback: avoid extra sync work at enqueue time writeback: elevate queue_io() into wb_writeback() ... Fix up trivial conflicts in fs/fs-writeback.c and mm/filemap.c
| * | mm: properly reflect task dirty limits in dirty_exceeded logicJan Kara2011-07-241-6/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We set bdi->dirty_exceeded (and thus ratelimiting code starts to call balance_dirty_pages() every 8 pages) when a per-bdi limit is exceeded or global limit is exceeded. But per-bdi limit also depends on the task. Thus different tasks reach the limit on that bdi at different levels of dirty pages. The result is that with current code bdi->dirty_exceeded ping-ponged between 1 and 0 depending on which task just got into balance_dirty_pages(). We fix the issue by clearing bdi->dirty_exceeded only when per-bdi amount of dirty pages drops below the threshold (7/8 * bdi_dirty_limit) where task limits already do not have any influence. Impact: The end result is, the dirty pages are kept more tightly under control, with the average number slightly lowered than before. This reduces the risk to throttle light dirtiers and hence more responsive. However it may add overheads by enforcing balance_dirty_pages() calls on every 8 pages when there are 2+ heavy dirtiers. CC: Andrew Morton <akpm@linux-foundation.org> CC: Christoph Hellwig <hch@infradead.org> CC: Dave Chinner <david@fromorbit.com> CC: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: trace global_dirty_stateWu Fengguang2011-07-101-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | Add trace event balance_dirty_state for showing the global dirty page counts and thresholds at each global_dirty_limits() invocation. This will cover the callers throttle_vm_writeout(), over_bground_thresh() and each balance_dirty_pages() loop. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: introduce max-pause and pass-good dirty limitsWu Fengguang2011-07-101-0/+33
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The max-pause limit helps to keep the sleep time inside balance_dirty_pages() within MAX_PAUSE=200ms. The 200ms max sleep means per task rate limit of 8pages/200ms=160KB/s when dirty exceeded, which normally is enough to stop dirtiers from continue pushing the dirty pages high, unless there are a sufficient large number of slow dirtiers (eg. 500 tasks doing 160KB/s will still sum up to 80MB/s, exceeding the write bandwidth of a slow disk and hence accumulating more and more dirty pages). The pass-good limit helps to let go of the good bdi's in the presence of a blocked bdi (ie. NFS server not responding) or slow USB disk which for some reason build up a large number of initial dirty pages that refuse to go away anytime soon. For example, given two bdi's A and B and the initial state bdi_thresh_A = dirty_thresh / 2 bdi_thresh_B = dirty_thresh / 2 bdi_dirty_A = dirty_thresh / 2 bdi_dirty_B = dirty_thresh / 2 Then A get blocked, after a dozen seconds bdi_thresh_A = 0 bdi_thresh_B = dirty_thresh bdi_dirty_A = dirty_thresh / 2 bdi_dirty_B = dirty_thresh / 2 The (bdi_dirty_B < bdi_thresh_B) test is now useless and the dirty pages will be effectively throttled by condition (nr_dirty < dirty_thresh). This has two problems: (1) we lose the protections for light dirtiers (2) balance_dirty_pages() effectively becomes IO-less because the (bdi_nr_reclaimable > bdi_thresh) test won't be true. This is good for IO, but balance_dirty_pages() loses an important way to break out of the loop which leads to more spread out throttle delays. DIRTY_PASSGOOD_AREA can eliminate the above issues. The only problem is, DIRTY_PASSGOOD_AREA needs to be defined as 2 to fully cover the above example while this patch uses the more conservative value 8 so as not to surprise people with too many dirty pages than expected. The max-pause limit won't noticeably impact the speed dirty pages are knocked down when there is a sudden drop of global/bdi dirty thresholds. Because the heavy dirties will be throttled below 160KB/s which is slow enough. It does help to avoid long dirty throttle delays and especially will make light dirtiers more responsive. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: introduce smoothed global dirty limitWu Fengguang2011-07-101-2/+72
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The start of a heavy weight application (ie. KVM) may instantly knock down determine_dirtyable_memory() if the swap is not enabled or full. global_dirty_limits() and bdi_dirty_limit() will in turn get global/bdi dirty thresholds that are _much_ lower than the global/bdi dirty pages. balance_dirty_pages() will then heavily throttle all dirtiers including the light ones, until the dirty pages drop below the new dirty thresholds. During this _deep_ dirty-exceeded state, the system may appear rather unresponsive to the users. About "deep" dirty-exceeded: task_dirty_limit() assigns 1/8 lower dirty threshold to heavy dirtiers than light ones, and the dirty pages will be throttled around the heavy dirtiers' dirty threshold and reasonably below the light dirtiers' dirty threshold. In this state, only the heavy dirtiers will be throttled and the dirty pages are carefully controlled to not exceed the light dirtiers' dirty threshold. However if the threshold itself suddenly drops below the number of dirty pages, the light dirtiers will get heavily throttled. So introduce global_dirty_limit for tracking the global dirty threshold with policies - follow downwards slowly - follow up in one shot global_dirty_limit can effectively mask out the impact of sudden drop of dirtyable memory. It will be used in the next patch for two new type of dirty limits. Note that the new dirty limits are not going to avoid throttling the light dirtiers, but could limit their sleep time to 200ms. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: consolidate variable names in balance_dirty_pages()Wu Fengguang2011-07-101-10/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Introduce nr_dirty = NR_FILE_DIRTY + NR_WRITEBACK + NR_UNSTABLE_NFS in order to simplify many tests in the following patches. balance_dirty_pages() will eventually care only about the dirty sums besides nr_writeback. Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: show bdi write bandwidth in debugfsWu Fengguang2011-07-101-11/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a "BdiWriteBandwidth" entry and indent others in /debug/bdi/*/stats. btw, increase digital field width to 10, for keeping the possibly huge BdiWritten number aligned at least for desktop systems. Impact: this could break user space tools if they are dumb enough to depend on the number of white spaces. CC: Theodore Ts'o <tytso@mit.edu> CC: Jan Kara <jack@suse.cz> CC: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: bdi write bandwidth estimationWu Fengguang2011-07-102-0/+99
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The estimation value will start from 100MB/s and adapt to the real bandwidth in seconds. It tries to update the bandwidth only when disk is fully utilized. Any inactive period of more than one second will be skipped. The estimated bandwidth will be reflecting how fast the device can writeout when _fully utilized_, and won't drop to 0 when it goes idle. The value will remain constant at disk idle time. At busy write time, if not considering fluctuations, it will also remain high unless be knocked down by possible concurrent reads that compete for the disk time and bandwidth with async writes. The estimation is not done purely in the flusher because there is no guarantee for write_cache_pages() to return timely to update bandwidth. The bdi->avg_write_bandwidth smoothing is very effective for filtering out sudden spikes, however may be a little biased in long term. The overheads are low because the bdi bandwidth update only occurs at 200ms intervals. The 200ms update interval is suitable, because it's not possible to get the real bandwidth for the instance at all, due to large fluctuations. The NFS commits can be as large as seconds worth of data. One XFS completion may be as large as half second worth of data if we are going to increase the write chunk to half second worth of data. In ext4, fluctuations with time period of around 5 seconds is observed. And there is another pattern of irregular periods of up to 20 seconds on SSD tests. That's why we are not only doing the estimation at 200ms intervals, but also averaging them over a period of 3 seconds and then go further to do another level of smoothing in avg_write_bandwidth. CC: Li Shaohua <shaohua.li@intel.com> CC: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: account per-bdi accumulated written pagesJan Kara2011-07-102-2/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Introduce the BDI_WRITTEN counter. It will be used for estimating the bdi's write bandwidth. Peter Zijlstra <a.p.zijlstra@chello.nl>: Move BDI_WRITTEN accounting into __bdi_writeout_inc(). This will cover and fix fuse, which only calls bdi_writeout_inc(). CC: Michael Rubin <mrubin@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: make writeback_control.nr_to_write straightWu Fengguang2011-07-102-26/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pass struct wb_writeback_work all the way down to writeback_sb_inodes(), and initialize the struct writeback_control there. struct writeback_control is basically designed to control writeback of a single file, but we keep abuse it for writing multiple files in writeback_sb_inodes() and its callers. It immediately clean things up, e.g. suddenly wbc.nr_to_write vs work->nr_pages starts to make sense, and instead of saving and restoring pages_skipped in writeback_sb_inodes it can always start with a clean zero value. It also makes a neat IO pattern change: large dirty files are now written in the full 4MB writeback chunk size, rather than whatever remained quota in wbc->nr_to_write. Acked-by: Jan Kara <jack@suse.cz> Proposed-by: Christoph Hellwig <hch@infradead.org> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: skip tmpfs early in balance_dirty_pages_ratelimited_nr()Wu Fengguang2011-06-191-3/+4
| | | | | | | | | | | | | | | | | | | | | This helps prevent tmpfs dirtiers from skewing the per-cpu bdp_ratelimits. Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: skip balance_dirty_pages() for in-memory fsWu Fengguang2011-06-081-6/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This avoids unnecessary checks and dirty throttling on tmpfs/ramfs. Notes about the tmpfs/ramfs behavior changes: As for 2.6.36 and older kernels, the tmpfs writes will sleep inside balance_dirty_pages() as long as we are over the (dirty+background)/2 global throttle threshold. This is because both the dirty pages and threshold will be 0 for tmpfs/ramfs. Hence this test will always evaluate to TRUE: dirty_exceeded = (bdi_nr_reclaimable + bdi_nr_writeback >= bdi_thresh) || (nr_reclaimable + nr_writeback >= dirty_thresh); For 2.6.37, someone complained that the current logic does not allow the users to set vm.dirty_ratio=0. So commit 4cbec4c8b9 changed the test to dirty_exceeded = (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh) || (nr_reclaimable + nr_writeback > dirty_thresh); So 2.6.37 will behave differently for tmpfs/ramfs: it will never get throttled unless the global dirty threshold is exceeded (which is very unlikely to happen; once happen, will block many tasks). I'd say that the 2.6.36 behavior is very bad for tmpfs/ramfs. It means for a busy writing server, tmpfs write()s may get livelocked! The "inadvertent" throttling can hardly bring help to any workload because of its "either no throttling, or get throttled to death" property. So based on 2.6.37, this patch won't bring more noticeable changes. CC: Hugh Dickins <hughd@google.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
| * | writeback: add bdi_dirty_limit() kernel-docWu Fengguang2011-06-081-2/+9
| | | | | | | | | | | | | | | | | | | | | | | | Clarify the bdi_dirty_limit() comment. Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>