summaryrefslogtreecommitdiffstats
path: root/net/sched/Makefile (follow)
Commit message (Collapse)AuthorAgeFilesLines
* net sched ife action: Introduce skb tcindex metadata encap decapJamal Hadi Salim2016-09-201-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Sample use case of how this is encoded: user space via tuntap (or a connected VM/Machine/container) encodes the tcindex TLV. Sample use case of decoding: IFE action decodes it and the skb->tc_index is then used to classify. So something like this for encoded ICMP packets: .. first decode then reclassify... skb->tcindex will be set sudo $TC filter add dev $ETH parent ffff: prio 2 protocol 0xbeef \ u32 match u32 0 0 flowid 1:1 \ action ife decode reclassify ...next match the decode icmp packet... sudo $TC filter add dev $ETH parent ffff: prio 4 protocol ip \ u32 match ip protocol 1 0xff flowid 1:1 \ action continue ... last classify it using the tcindex classifier and do someaction.. sudo $TC filter add dev $ETH parent ffff: prio 5 protocol ip \ handle 0x11 tcindex classid 1:1 \ action blah.. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net_sched: Introduce skbmod actionJamal Hadi Salim2016-09-161-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This action is intended to be an upgrade from a usability perspective from pedit (as well as operational debugability). Compare this: sudo tc filter add dev $ETH parent 1: protocol ip prio 10 \ u32 match ip protocol 1 0xff flowid 1:2 \ action pedit munge offset -14 u8 set 0x02 \ munge offset -13 u8 set 0x15 \ munge offset -12 u8 set 0x15 \ munge offset -11 u8 set 0x15 \ munge offset -10 u16 set 0x1515 \ pipe to: sudo tc filter add dev $ETH parent 1: protocol ip prio 10 \ u32 match ip protocol 1 0xff flowid 1:2 \ action skbmod dmac 02:15:15:15:15:15 Also try to do a MAC address swap with pedit or worse try to debug a policy with destination mac, source mac and etherype. Then make few rules out of those and you'll get my point. In the future common use cases on pedit can be migrated to this action (as an example different fields in ip v4/6, transports like tcp/udp/sctp etc). For this first cut, this allows modifying basic ethernet header. The most important ethernet use case at the moment is when redirecting or mirroring packets to a remote machine. The dst mac address needs a re-write so that it doesnt get dropped or confuse an interconnecting (learning) switch or dropped by a target machine (which looks at the dst mac). And at times when flipping back the packet a swap of the MAC addresses is needed. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net/sched: Introduce act_tunnel_keyAmir Vadai2016-09-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This action could be used before redirecting packets to a shared tunnel device, or when redirecting packets arriving from a such a device. The action will release the metadata created by the tunnel device (decap), or set the metadata with the specified values for encap operation. For example, the following flower filter will forward all ICMP packets destined to 11.11.11.2 through the shared vxlan device 'vxlan0'. Before redirecting, a metadata for the vxlan tunnel is created using the tunnel_key action and it's arguments: $ tc filter add dev net0 protocol ip parent ffff: \ flower \ ip_proto 1 \ dst_ip 11.11.11.2 \ action tunnel_key set \ src_ip 11.11.0.1 \ dst_ip 11.11.0.2 \ id 11 \ action mirred egress redirect dev vxlan0 Signed-off-by: Amir Vadai <amir@vadai.me> Signed-off-by: Hadar Hen Zion <hadarh@mellanox.com> Reviewed-by: Shmulik Ladkani <shmulik.ladkani@gmail.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net/sched: introduce Match-all classifierJiri Pirko2016-07-251-0/+1
| | | | | | | | | | | The matchall classifier matches every packet and allows the user to apply actions on it. This filter is very useful in usecases where every packet should be matched, for example, packet mirroring (SPAN) can be setup very easily using that filter. Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: Yotam Gigi <yotamg@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* Support to encoding decoding skb prio on IFE actionJamal Hadi Salim2016-03-011-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Example usage: Set the skb priority using skbedit then allow it to be encoded sudo tc qdisc add dev $ETH root handle 1: prio sudo tc filter add dev $ETH parent 1: protocol ip prio 10 \ u32 match ip protocol 1 0xff flowid 1:2 \ action skbedit prio 17 \ action ife encode \ allow prio \ dst 02:15:15:15:15:15 Note: You dont need the skbedit action if you are already encoding the skb priority earlier. A zero skb priority will not be sent Alternative hard code static priority of decimal 33 (unlike skbedit) then mark of 0x12 every time the filter matches sudo $TC filter add dev $ETH parent 1: protocol ip prio 10 \ u32 match ip protocol 1 0xff flowid 1:2 \ action ife encode \ type 0xDEAD \ use prio 33 \ use mark 0x12 \ dst 02:15:15:15:15:15 Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* Support to encoding decoding skb mark on IFE actionJamal Hadi Salim2016-03-011-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Example usage: Set the skb using skbedit then allow it to be encoded sudo tc qdisc add dev $ETH root handle 1: prio sudo tc filter add dev $ETH parent 1: protocol ip prio 10 \ u32 match ip protocol 1 0xff flowid 1:2 \ action skbedit mark 17 \ action ife encode \ allow mark \ dst 02:15:15:15:15:15 Note: You dont need the skbedit action if you are already encoding the skb mark earlier. A zero skb mark, when seen, will not be encoded. Alternative hard code static mark of 0x12 every time the filter matches sudo $TC filter add dev $ETH parent 1: protocol ip prio 10 \ u32 match ip protocol 1 0xff flowid 1:2 \ action ife encode \ type 0xDEAD \ use mark 0x12 \ dst 02:15:15:15:15:15 Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* introduce IFE actionJamal Hadi Salim2016-03-011-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This action allows for a sending side to encapsulate arbitrary metadata which is decapsulated by the receiving end. The sender runs in encoding mode and the receiver in decode mode. Both sender and receiver must specify the same ethertype. At some point we hope to have a registered ethertype and we'll then provide a default so the user doesnt have to specify it. For now we enforce the user specify it. Lets show example usage where we encode icmp from a sender towards a receiver with an skbmark of 17; both sender and receiver use ethertype of 0xdead to interop. YYYY: Lets start with Receiver-side policy config: xxx: add an ingress qdisc sudo tc qdisc add dev $ETH ingress xxx: any packets with ethertype 0xdead will be subjected to ife decoding xxx: we then restart the classification so we can match on icmp at prio 3 sudo $TC filter add dev $ETH parent ffff: prio 2 protocol 0xdead \ u32 match u32 0 0 flowid 1:1 \ action ife decode reclassify xxx: on restarting the classification from above if it was an icmp xxx: packet, then match it here and continue to the next rule at prio 4 xxx: which will match based on skb mark of 17 sudo tc filter add dev $ETH parent ffff: prio 3 protocol ip \ u32 match ip protocol 1 0xff flowid 1:1 \ action continue xxx: match on skbmark of 0x11 (decimal 17) and accept sudo tc filter add dev $ETH parent ffff: prio 4 protocol ip \ handle 0x11 fw flowid 1:1 \ action ok xxx: Lets show the decoding policy sudo tc -s filter ls dev $ETH parent ffff: protocol 0xdead xxx: filter pref 2 u32 filter pref 2 u32 fh 800: ht divisor 1 filter pref 2 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:1 (rule hit 0 success 0) match 00000000/00000000 at 0 (success 0 ) action order 1: ife decode action reclassify index 1 ref 1 bind 1 installed 14 sec used 14 sec type: 0x0 Metadata: allow mark allow hash allow prio allow qmap Action statistics: Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 xxx: Observe that above lists all metadatum it can decode. Typically these submodules will already be compiled into a monolithic kernel or loaded as modules YYYY: Lets show the sender side now .. xxx: Add an egress qdisc on the sender netdev sudo tc qdisc add dev $ETH root handle 1: prio xxx: xxx: Match all icmp packets to 192.168.122.237/24, then xxx: tag the packet with skb mark of decimal 17, then xxx: Encode it with: xxx: ethertype 0xdead xxx: add skb->mark to whitelist of metadatum to send xxx: rewrite target dst MAC address to 02:15:15:15:15:15 xxx: sudo $TC filter add dev $ETH parent 1: protocol ip prio 10 u32 \ match ip dst 192.168.122.237/24 \ match ip protocol 1 0xff \ flowid 1:2 \ action skbedit mark 17 \ action ife encode \ type 0xDEAD \ allow mark \ dst 02:15:15:15:15:15 xxx: Lets show the encoding policy sudo tc -s filter ls dev $ETH parent 1: protocol ip xxx: filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:2 (rule hit 0 success 0) match c0a87aed/ffffffff at 16 (success 0 ) match 00010000/00ff0000 at 8 (success 0 ) action order 1: skbedit mark 17 index 6 ref 1 bind 1 Action statistics: Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 action order 2: ife encode action pipe index 3 ref 1 bind 1 dst MAC: 02:15:15:15:15:15 type: 0xDEAD Metadata: allow mark Action statistics: Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 xxx: test by sending ping from sender to destination Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* tc: introduce Flower classifierJiri Pirko2015-05-131-0/+1
| | | | | | | | | | | | | This patch introduces a flow-based filter. So far, the very essential packet fields are supported. This patch is only the first step. There is a lot of potential performance improvements possible to implement. Also a lot of features are missing now. They will be addressed in follow-up patches. Signed-off-by: Jiri Pirko <jiri@resnulli.us> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sched: Introduce connmark actionFelix Fietkau2015-01-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This tc action allows you to retrieve the connection tracking mark This action has been used heavily by openwrt for a few years now. There are known limitations currently: doesn't work for initial packets, since we only query the ct table. Fine given use case is for returning packets no implicit defrag. frags should be rare so fix later.. won't work for more complex tasks, e.g. lookup of other extensions since we have no means to store results we still have a 2nd lookup later on via normal conntrack path. This shouldn't break anything though since skb->nfct isn't altered. V2: remove unnecessary braces (Jiri) change the action identifier to 14 (Jiri) Fix some stylistic issues caught by checkpatch V3: Move module params to bottom (Cong) Get rid of tcf_hashinfo_init and friends and conform to newer API (Cong) Acked-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Felix Fietkau <nbd@openwrt.org> Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* tc: add BPF based actionJiri Pirko2015-01-181-0/+1
| | | | | | | This action provides a possibility to exec custom BPF code. Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
* sched: introduce vlan actionJiri Pirko2014-11-211-0/+1
| | | | | | | | | This tc action allows to work with vlan tagged skbs. Two supported sub-actions are header pop and header push. Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: pkt_sched: PIE AQM schemeVijay Subramanian2014-01-061-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Proportional Integral controller Enhanced (PIE) is a scheduler to address the bufferbloat problem. >From the IETF draft below: " Bufferbloat is a phenomenon where excess buffers in the network cause high latency and jitter. As more and more interactive applications (e.g. voice over IP, real time video streaming and financial transactions) run in the Internet, high latency and jitter degrade application performance. There is a pressing need to design intelligent queue management schemes that can control latency and jitter; and hence provide desirable quality of service to users. We present here a lightweight design, PIE(Proportional Integral controller Enhanced) that can effectively control the average queueing latency to a target value. Simulation results, theoretical analysis and Linux testbed results have shown that PIE can ensure low latency and achieve high link utilization under various congestion situations. The design does not require per-packet timestamp, so it incurs very small overhead and is simple enough to implement in both hardware and software. " Many thanks to Dave Taht for extensive feedback, reviews, testing and suggestions. Thanks also to Stephen Hemminger and Eric Dumazet for reviews and suggestions. Naeem Khademi and Dave Taht independently contributed to ECN support. For more information, please see technical paper about PIE in the IEEE Conference on High Performance Switching and Routing 2013. A copy of the paper can be found at ftp://ftpeng.cisco.com/pie/. Please also refer to the IETF draft submission at http://tools.ietf.org/html/draft-pan-tsvwg-pie-00 All relevant code, documents and test scripts and results can be found at ftp://ftpeng.cisco.com/pie/. For problems with the iproute2/tc or Linux kernel code, please contact Vijay Subramanian (vijaynsu@cisco.com or subramanian.vijay@gmail.com) Mythili Prabhu (mysuryan@cisco.com) Signed-off-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: Mythili Prabhu <mysuryan@cisco.com> CC: Dave Taht <dave.taht@bufferbloat.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* net-qdisc-hhf: Heavy-Hitter Filter (HHF) qdiscTerry Lam2013-12-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements the first size-based qdisc that attempts to differentiate between small flows and heavy-hitters. The goal is to catch the heavy-hitters and move them to a separate queue with less priority so that bulk traffic does not affect the latency of critical traffic. Currently "less priority" means less weight (2:1 in particular) in a Weighted Deficit Round Robin (WDRR) scheduler. In essence, this patch addresses the "delay-bloat" problem due to bloated buffers. In some systems, large queues may be necessary for obtaining CPU efficiency, or due to the presence of unresponsive traffic like UDP, or just a large number of connections with each having a small amount of outstanding traffic. In these circumstances, HHF aims to reduce the HoL blocking for latency sensitive traffic, while not impacting the queues built up by bulk traffic. HHF can also be used in conjunction with other AQM mechanisms such as CoDel. To capture heavy-hitters, we implement the "multi-stage filter" design in the following paper: C. Estan and G. Varghese, "New Directions in Traffic Measurement and Accounting", in ACM SIGCOMM, 2002. Some configurable qdisc settings through 'tc': - hhf_reset_timeout: period to reset counter values in the multi-stage filter (default 40ms) - hhf_admit_bytes: threshold to classify heavy-hitters (default 128KB) - hhf_evict_timeout: threshold to evict idle heavy-hitters (default 1s) - hhf_non_hh_weight: Weighted Deficit Round Robin (WDRR) weight for non-heavy-hitters (default 2) - hh_flows_limit: max number of heavy-hitter flow entries (default 2048) Note that the ratio between hhf_admit_bytes and hhf_reset_timeout reflects the bandwidth of heavy-hitters that we attempt to capture (25Mbps with the above default settings). The false negative rate (heavy-hitter flows getting away unclassified) is zero by the design of the multi-stage filter algorithm. With 100 heavy-hitter flows, using four hashes and 4000 counters yields a false positive rate (non-heavy-hitters mistakenly classified as heavy-hitters) of less than 1e-4. Signed-off-by: Terry Lam <vtlam@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sched: cls_bpf: add BPF-based classifierDaniel Borkmann2013-10-291-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This work contains a lightweight BPF-based traffic classifier that can serve as a flexible alternative to ematch-based tree classification, i.e. now that BPF filter engine can also be JITed in the kernel. Naturally, tc actions and policies are supported as well with cls_bpf. Multiple BPF programs/filter can be attached for a class, or they can just as well be written within a single BPF program, that's really up to the user how he wishes to run/optimize the code, e.g. also for inversion of verdicts etc. The notion of a BPF program's return/exit codes is being kept as follows: 0: No match -1: Select classid given in "tc filter ..." command else: flowid, overwrite the default one As a minimal usage example with iproute2, we use a 3 band prio root qdisc on a router with sfq each as leave, and assign ssh and icmp bpf-based filters to band 1, http traffic to band 2 and the rest to band 3. For the first two bands we load the bytecode from a file, in the 2nd we load it inline as an example: echo 1 > /proc/sys/net/core/bpf_jit_enable tc qdisc del dev em1 root tc qdisc add dev em1 root handle 1: prio bands 3 priomap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 tc qdisc add dev em1 parent 1:1 sfq perturb 16 tc qdisc add dev em1 parent 1:2 sfq perturb 16 tc qdisc add dev em1 parent 1:3 sfq perturb 16 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/ssh.bpf flowid 1:1 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/icmp.bpf flowid 1:1 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/http.bpf flowid 1:2 tc filter add dev em1 parent 1: bpf run bytecode "`bpfc -f tc -i misc.ops`" flowid 1:3 BPF programs can be easily created and passed to tc, either as inline 'bytecode' or 'bytecode-file'. There are a couple of front-ends that can compile opcodes, for example: 1) People familiar with tcpdump-like filters: tcpdump -iem1 -ddd port 22 | tr '\n' ',' > /etc/tc/ssh.bpf 2) People that want to low-level program their filters or use BPF extensions that lack support by libpcap's compiler: bpfc -f tc -i ssh.ops > /etc/tc/ssh.bpf ssh.ops example code: ldh [12] jne #0x800, drop ldb [23] jneq #6, drop ldh [20] jset #0x1fff, drop ldxb 4 * ([14] & 0xf) ldh [%x + 14] jeq #0x16, pass ldh [%x + 16] jne #0x16, drop pass: ret #-1 drop: ret #0 It was chosen to load bytecode into tc, since the reverse operation, tc filter list dev em1, is then able to show the exact commands again. Possible follow-up work could also include a small expression compiler for iproute2. Tested with the help of bmon. This idea came up during the Netfilter Workshop 2013 in Copenhagen. Also thanks to feedback from Eric Dumazet! Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
* pkt_sched: fq: Fair Queue packet schedulerEric Dumazet2013-08-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Uses perfect flow match (not stochastic hash like SFQ/FQ_codel) - Uses the new_flow/old_flow separation from FQ_codel - New flows get an initial credit allowing IW10 without added delay. - Special FIFO queue for high prio packets (no need for PRIO + FQ) - Uses a hash table of RB trees to locate the flows at enqueue() time - Smart on demand gc (at enqueue() time, RB tree lookup evicts old unused flows) - Dynamic memory allocations. - Designed to allow millions of concurrent flows per Qdisc. - Small memory footprint : ~8K per Qdisc, and 104 bytes per flow. - Single high resolution timer for throttled flows (if any). - One RB tree to link throttled flows. - Ability to have a max rate per flow. We might add a socket option to add per socket limitation. Attempts have been made to add TCP pacing in TCP stack, but this seems to add complex code to an already complex stack. TCP pacing is welcomed for flows having idle times, as the cwnd permits TCP stack to queue a possibly large number of packets. This removes the 'slow start after idle' choice, hitting badly large BDP flows, and applications delivering chunks of data as video streams. Nicely spaced packets : Here interface is 10Gbit, but flow bottleneck is ~20Mbit cwin is big, yet FQ avoids the typical bursts generated by TCP (as in netperf TCP_RR -- -r 100000,100000) 15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115> 15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115> 15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115> 15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115> 15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115> 15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115> 15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115> 15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115> 15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115> 15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115> 15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115> 15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115> 15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115> 15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> TCP timestamps show that most packets from B were queued in the same ms timeframe (TSval 1159799{3,4}), but FQ managed to send them right in time to avoid a big burst. In slow start or steady state, very few packets are throttled [1] FQ gets a bunch of tunables as : limit : max number of packets on whole Qdisc (default 10000) flow_limit : max number of packets per flow (default 100) quantum : the credit per RR round (default is 2 MTU) initial_quantum : initial credit for new flows (default is 10 MTU) maxrate : max per flow rate (default : unlimited) buckets : number of RB trees (default : 1024) in hash table. (consumes 8 bytes per bucket) [no]pacing : disable/enable pacing (default is enable) All of them can be changed on a live qdisc. $ tc qd add dev eth0 root fq help Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ] [ quantum BYTES ] [ initial_quantum BYTES ] [ maxrate RATE ] [ buckets NUMBER ] [ [no]pacing ] $ tc -s -d qd qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140 Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14) backlog 0b 0p requeues 14 511 flows, 511 inactive, 0 throttled 110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit [1] Except if initial srtt is overestimated, as if using cached srtt in tcp metrics. We'll provide a fix for this issue. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sched: add ipset ematchFlorian Westphal2012-07-121-0/+1
| | | | | | | | | | | | | | Can be used to match packets against netfilter ip sets created via ipset(8). skb->sk_iif is used as 'incoming interface', skb->dev is 'outgoing interface'. Since ipset is usually called from netfilter, the ematch initializes a fake xt_action_param, pulls the ip header into the linear area and also sets skb->data to the IP header (otherwise matching Layer 4 set types doesn't work). Tested-by: Mr Dash Four <mr.dash.four@googlemail.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: em_canid: Ematch rule to match CAN frames according to their identifiersRostislav Lisovy2012-07-041-0/+1
| | | | | | | | | | | This ematch makes it possible to classify CAN frames (AF_CAN) according to their identifiers. This functionality can not be easily achieved with existing classifiers, such as u32, because CAN identifier is always stored in native endianness, whereas u32 expects Network byte order. Signed-off-by: Rostislav Lisovy <lisovy@gmail.com> Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
* fq_codel: Fair Queue Codel AQMEric Dumazet2012-05-121-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fair Queue Codel packet scheduler Principles : - Packets are classified (internal classifier or external) on flows. - This is a Stochastic model (as we use a hash, several flows might be hashed on same slot) - Each flow has a CoDel managed queue. - Flows are linked onto two (Round Robin) lists, so that new flows have priority on old ones. - For a given flow, packets are not reordered (CoDel uses a FIFO) - head drops only. - ECN capability is on by default. - Very low memory footprint (64 bytes per flow) tc qdisc ... fq_codel [ limit PACKETS ] [ flows number ] [ target TIME ] [ interval TIME ] [ noecn ] [ quantum BYTES ] defaults : 1024 flows, 10240 packets limit, quantum : device MTU target : 5ms (CoDel default) interval : 100ms (CoDel default) Impressive results on load : class htb 1:1 root leaf 10: prio 0 quantum 1514 rate 200000Kbit ceil 200000Kbit burst 1475b/8 mpu 0b overhead 0b cburst 1475b/8 mpu 0b overhead 0b level 0 Sent 43304920109 bytes 33063109 pkt (dropped 0, overlimits 0 requeues 0) rate 201691Kbit 28595pps backlog 0b 312p requeues 0 lended: 33063109 borrowed: 0 giants: 0 tokens: -912 ctokens: -912 class fq_codel 10:1735 parent 10: (dropped 1292, overlimits 0 requeues 0) backlog 15140b 10p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms class fq_codel 10:4524 parent 10: (dropped 1291, overlimits 0 requeues 0) backlog 16654b 11p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms class fq_codel 10:4e74 parent 10: (dropped 1290, overlimits 0 requeues 0) backlog 6056b 4p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 6.4ms dropping drop_next 92.0ms class fq_codel 10:628a parent 10: (dropped 1289, overlimits 0 requeues 0) backlog 7570b 5p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 5.4ms dropping drop_next 90.9ms class fq_codel 10:a4b3 parent 10: (dropped 302, overlimits 0 requeues 0) backlog 16654b 11p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms class fq_codel 10:c3c2 parent 10: (dropped 1284, overlimits 0 requeues 0) backlog 13626b 9p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 5.9ms class fq_codel 10:d331 parent 10: (dropped 299, overlimits 0 requeues 0) backlog 15140b 10p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.0ms class fq_codel 10:d526 parent 10: (dropped 12160, overlimits 0 requeues 0) backlog 35870b 211p requeues 0 deficit 1508 count 12160 lastcount 1 ldelay 15.3ms dropping drop_next 247us class fq_codel 10:e2c6 parent 10: (dropped 1288, overlimits 0 requeues 0) backlog 15140b 10p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms class fq_codel 10:eab5 parent 10: (dropped 1285, overlimits 0 requeues 0) backlog 16654b 11p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 5.9ms class fq_codel 10:f220 parent 10: (dropped 1289, overlimits 0 requeues 0) backlog 15140b 10p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms qdisc htb 1: root refcnt 6 r2q 10 default 1 direct_packets_stat 0 ver 3.17 Sent 43331086547 bytes 33092812 pkt (dropped 0, overlimits 66063544 requeues 71) rate 201697Kbit 28602pps backlog 0b 260p requeues 71 qdisc fq_codel 10: parent 1:1 limit 10240p flows 65536 target 5.0ms interval 100.0ms ecn Sent 43331086547 bytes 33092812 pkt (dropped 949359, overlimits 0 requeues 0) rate 201697Kbit 28602pps backlog 189352b 260p requeues 0 maxpacket 1514 drop_overlimit 0 new_flow_count 5582 ecn_mark 125593 new_flows_len 0 old_flows_len 11 PING 172.30.42.18 (172.30.42.18) 56(84) bytes of data. 64 bytes from 172.30.42.18: icmp_req=1 ttl=64 time=0.227 ms 64 bytes from 172.30.42.18: icmp_req=2 ttl=64 time=0.165 ms 64 bytes from 172.30.42.18: icmp_req=3 ttl=64 time=0.166 ms 64 bytes from 172.30.42.18: icmp_req=4 ttl=64 time=0.151 ms 64 bytes from 172.30.42.18: icmp_req=5 ttl=64 time=0.164 ms 64 bytes from 172.30.42.18: icmp_req=6 ttl=64 time=0.172 ms 64 bytes from 172.30.42.18: icmp_req=7 ttl=64 time=0.175 ms 64 bytes from 172.30.42.18: icmp_req=8 ttl=64 time=0.183 ms 64 bytes from 172.30.42.18: icmp_req=9 ttl=64 time=0.158 ms 64 bytes from 172.30.42.18: icmp_req=10 ttl=64 time=0.200 ms 10 packets transmitted, 10 received, 0% packet loss, time 8999ms rtt min/avg/max/mdev = 0.151/0.176/0.227/0.022 ms Much better than SFQ because of priority given to new flows, and fast path dirtying less cache lines. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* codel: Controlled Delay AQMEric Dumazet2012-05-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | An implementation of CoDel AQM, from Kathleen Nichols and Van Jacobson. http://queue.acm.org/detail.cfm?id=2209336 This AQM main input is no longer queue size in bytes or packets, but the delay packets stay in (FIFO) queue. As we don't have infinite memory, we still can drop packets in enqueue() in case of massive load, but mean of CoDel is to drop packets in dequeue(), using a control law based on two simple parameters : target : target sojourn time (default 5ms) interval : width of moving time window (default 100ms) Based on initial work from Dave Taht. Refactored to help future codel inclusion as a plugin for other linux qdisc (FQ_CODEL, ...), like RED. include/net/codel.h contains codel algorithm as close as possible than Kathleen reference. net/sched/sch_codel.c contains the linux qdisc specific glue. Separate structures permit a memory efficient implementation of fq_codel (to be sent as a separate work) : Each flow has its own struct codel_vars. timestamps are taken at enqueue() time with 1024 ns precision, allowing a range of 2199 seconds in queue, and 100Gb links support. iproute2 uses usec as base unit. Selected packets are dropped, unless ECN is enabled and packets can get ECN mark instead. Tested from 2Mb to 10Gb speeds with no particular problems, on ixgbe and tg3 drivers (BQL enabled). Usage: tc qdisc ... codel [ limit PACKETS ] [ target TIME ] [ interval TIME ] [ ecn ] qdisc codel 10: parent 1:1 limit 2000p target 3.0ms interval 60.0ms ecn Sent 13347099587 bytes 8815805 pkt (dropped 0, overlimits 0 requeues 0) rate 202365Kbit 16708pps backlog 113550b 75p requeues 0 count 116 lastcount 98 ldelay 4.3ms dropping drop_next 816us maxpacket 1514 ecn_mark 84399 drop_overlimit 0 CoDel must be seen as a base module, and should be used keeping in mind there is still a FIFO queue. So a typical setup will probably need a hierarchy of several qdiscs and packet classifiers to be able to meet whatever constraints a user might have. One possible example would be to use fq_codel, which combines Fair Queueing and CoDel, in replacement of sfq / sfq_red. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Dave Taht <dave.taht@bufferbloat.net> Cc: Kathleen Nichols <nichols@pollere.com> Cc: Van Jacobson <van@pollere.net> Cc: Tom Herbert <therbert@google.com> Cc: Matt Mathis <mattmathis@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net/sched: sch_plug - Queue traffic until an explicit release commandShriram Rajagopalan2012-02-071-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The qdisc supports two operations - plug and unplug. When the qdisc receives a plug command via netlink request, packets arriving henceforth are buffered until a corresponding unplug command is received. Depending on the type of unplug command, the queue can be unplugged indefinitely or selectively. This qdisc can be used to implement output buffering, an essential functionality required for consistent recovery in checkpoint based fault-tolerance systems. Output buffering enables speculative execution by allowing generated network traffic to be rolled back. It is used to provide network protection for Xen Guests in the Remus high availability project, available as part of Xen. This module is generic enough to be used by any other system that wishes to add speculative execution and output buffering to its applications. This module was originally available in the linux 2.6.32 PV-OPS tree, used as dom0 for Xen. For more information, please refer to http://nss.cs.ubc.ca/remus/ and http://wiki.xensource.com/xenwiki/Remus Changes in V3: * Removed debug output (printk) on queue overflow * Added TCQ_PLUG_RELEASE_INDEFINITE - that allows the user to use this qdisc, for simple plug/unplug operations. * Use of packet counts instead of pointers to keep track of the buffers in the queue. Signed-off-by: Shriram Rajagopalan <rshriram@cs.ubc.ca> Signed-off-by: Brendan Cully <brendan@cs.ubc.ca> [author of the code in the linux 2.6.32 pvops tree] Signed-off-by: David S. Miller <davem@davemloft.net>
* pkt_sched: QFQ - quick fair queue schedulerstephen hemminger2011-04-041-0/+1
| | | | | | | | | | | This is an implementation of the Quick Fair Queue scheduler developed by Fabio Checconi. The same algorithm is already implemented in ipfw in FreeBSD. Fabio had an earlier version developed on Linux, I just cleaned it up. Thanks to Eric Dumazet for testing this under load. Signed-off-by: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net_sched: SFB flow schedulerEric Dumazet2011-02-231-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the Stochastic Fair Blue scheduler, based on work from : W. Feng, D. Kandlur, D. Saha, K. Shin. Blue: A New Class of Active Queue Management Algorithms. U. Michigan CSE-TR-387-99, April 1999. http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf This implementation is based on work done by Juliusz Chroboczek General SFB algorithm can be found in figure 14, page 15: B[l][n] : L x N array of bins (L levels, N bins per level) enqueue() Calculate hash function values h{0}, h{1}, .. h{L-1} Update bins at each level for i = 0 to L - 1 if (B[i][h{i}].qlen > bin_size) B[i][h{i}].p_mark += p_increment; else if (B[i][h{i}].qlen == 0) B[i][h{i}].p_mark -= p_decrement; p_min = min(B[0][h{0}].p_mark ... B[L-1][h{L-1}].p_mark); if (p_min == 1.0) ratelimit(); else mark/drop with probabilty p_min; I did the adaptation of Juliusz code to meet current kernel standards, and various changes to address previous comments : http://thread.gmane.org/gmane.linux.network/90225 http://thread.gmane.org/gmane.linux.network/90375 Default flow classifier is the rxhash introduced by RPS in 2.6.35, but we can use an external flow classifier if wanted. tc qdisc add dev $DEV parent 1:11 handle 11: \ est 0.5sec 2sec sfb limit 128 tc filter add dev $DEV protocol ip parent 11: handle 3 \ flow hash keys dst divisor 1024 Notes: 1) SFB default child qdisc is pfifo_fast. It can be changed by another qdisc but a child qdisc MUST not drop a packet previously queued. This is because SFB needs to handle a dequeued packet in order to maintain its virtual queue states. pfifo_head_drop or CHOKe should not be used. 2) ECN is enabled by default, unlike RED/CHOKe/GRED With help from Patrick McHardy & Andi Kleen Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Juliusz Chroboczek <Juliusz.Chroboczek@pps.jussieu.fr> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Patrick McHardy <kaber@trash.net> CC: Andi Kleen <andi@firstfloor.org> CC: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sched: CHOKe flow schedulerstephen hemminger2011-02-031-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CHOKe ("CHOose and Kill" or "CHOose and Keep") is an alternative packet scheduler based on the Random Exponential Drop (RED) algorithm. The core idea is: For every packet arrival: Calculate Qave if (Qave < minth) Queue the new packet else Select randomly a packet from the queue if (both packets from same flow) then Drop both the packets else if (Qave > maxth) Drop packet else Admit packet with proability p (same as RED) See also: Rong Pan, Balaji Prabhakar, Konstantinos Psounis, "CHOKe: a stateless active queue management scheme for approximating fair bandwidth allocation", Proceeding of INFOCOM'2000, March 2000. Help from: Eric Dumazet <eric.dumazet@gmail.com> Patrick McHardy <kaber@trash.net> Signed-off-by: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net_sched: implement a root container qdisc sch_mqprioJohn Fastabend2011-01-201-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net/sched: add ACT_CSUM action to update packets checksumsGrégoire Baron2010-08-201-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | net/sched: add ACT_CSUM action to update packets checksums ACT_CSUM can be called just after ACT_PEDIT in order to re-compute some altered checksums in IPv4 and IPv6 packets. The following checksums are supported by this patch: - IPv4: IPv4 header, ICMP, IGMP, TCP, UDP & UDPLite - IPv6: ICMPv6, TCP, UDP & UDPLite It's possible to request in the same action to update different kind of checksums, if the packets flow mix TCP, UDP and UDPLite, ... An example of usage is done in the associated iproute2 patch. Version 3 changes: - remove useless goto instructions - improve IPv6 hop options decoding Version 2 changes: - coding style correction - remove useless arguments of some functions - use stack in tcf_csum_dump() - add tcf_csum_skb_nextlayer() to factor code Signed-off-by: Gregoire Baron <baronchon@n7mm.org> Acked-by: jamal <hadi@cyberus.ca> Signed-off-by: David S. Miller <davem@davemloft.net>
* net_sched: add classful multiqueue dummy schedulerDavid S. Miller2009-09-061-1/+1
| | | | | | | | | | | | | | | | | | | This patch adds a classful dummy scheduler which can be used as root qdisc for multiqueue devices and exposes each device queue as a child class. This allows to address queues individually and graft them similar to regular classes. Additionally it presents an accumulated view of the statistics of all real root qdiscs in the dummy root. Two new callbacks are added to the qdisc_ops and qdisc_class_ops: - cl_ops->select_queue selects the tx queue number for new child classes. - qdisc_ops->attach() overrides root qdisc device grafting to attach non-shared qdiscs to the queues. Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* pkt_sched: add DRR schedulerPatrick McHardy2008-11-201-0/+1
| | | | | | | | | | | | Add classful DRR scheduler as a more flexible replacement for SFQ. The main difference to the algorithm described in "Efficient Fair Queueing using Deficit Round Robin" is that this implementation doesn't drop packets from the longest queue on overrun because its classful and limits are handled by each individual child qdisc. Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* pkt_sched: Control group classifierThomas Graf2008-11-081-0/+1
| | | | | | | | | | | | | | | | | | | | The classifier should cover the most common use case and will work without any special configuration. The principle of the classifier is to directly access the task_struct via get_current(). In order for this to work, classification requests from softirqs must be ignored. This is not a problem because the vast majority of packets in softirq context are not assigned to a task anyway. For this to work, a mechanism is needed to trace softirq context. This repost goes back to the method of relying on the number of nested bh disable calls for the sake of not adding too much complexity and the option to come up with something more reliable if actually needed. Signed-off-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
* pkt_action: add new action skbeditAlexander Duyck2008-09-131-0/+1
| | | | | | | | | This new action will have the ability to change the priority and/or queue_mapping fields on an sk_buff. Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* pkt_sched: Add multiqueue scheduler supportAlexander Duyck2008-09-131-0/+1
| | | | | | | | | | | | | | | This patch is intended to add a qdisc to support the new tx multiqueue architecture by providing a band for each hardware queue. By doing this it is possible to support a different qdisc per physical hardware queue. This qdisc uses the skb->queue_mapping to select which band to place the traffic onto. It then uses a round robin w/ a check to see if the subqueue is stopped to determine which band to dequeue the packet from. Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [NET_SCHED]: Add flow classifierPatrick McHardy2008-02-011-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add new "flow" classifier, which is meant to extend the SFQ hashing capabilities without hard-coding new hash functions and also allows deterministic mappings of keys to classes, replacing some out of tree iptables patches like IPCLASSIFY (maps IPs to classes), IPMARK (maps IPs to marks, with fw filters to classes), ... Some examples: - Classic SFQ hash: tc filter add ... flow hash \ keys src,dst,proto,proto-src,proto-dst divisor 1024 - Classic SFQ hash, but using information from conntrack to work properly in combination with NAT: tc filter add ... flow hash \ keys nfct-src,nfct-dst,proto,nfct-proto-src,nfct-proto-dst divisor 1024 - Map destination IPs of 192.168.0.0/24 to classids 1-257: tc filter add ... flow map \ key dst addend -192.168.0.0 divisor 256 - alternatively: tc filter add ... flow map \ key dst and 0xff - similar, but reverse ordered: tc filter add ... flow map \ key dst and 0xff xor 0xff Perturbation is currently not supported because we can't reliable kill the timer on destruction. Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PKT_SCHED]: Add stateless NATHerbert Xu2007-10-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Stateless NAT is useful in controlled environments where restrictions are placed on through traffic such that we don't need connection tracking to correctly NAT protocol-specific data. In particular, this is of interest when the number of flows or the number of addresses being NATed is large, or if connection tracking information has to be replicated and where it is not practical to do so. Previously we had stateless NAT functionality which was integrated into the IPv4 routing subsystem. This was a great solution as long as the NAT worked on a subnet to subnet basis such that the number of NAT rules was relatively small. The reason is that for SNAT the routing based system had to perform a linear scan through the rules. If the number of rules is large then major renovations would have take place in the routing subsystem to make this practical. For the time being, the least intrusive way of achieving this is to use the u32 classifier written by Alexey Kuznetsov along with the actions infrastructure implemented by Jamal Hadi Salim. The following patch is an attempt at this problem by creating a new nat action that can be invoked from u32 hash tables which would allow large number of stateless NAT rules that can be used/updated in constant time. The actual NAT code is mostly based on the previous stateless NAT code written by Alexey. In future we might be able to utilise the protocol NAT code from netfilter to improve support for other protocols. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
* [NET_SCHED]: Kill CONFIG_NET_CLS_POLICEPatrick McHardy2007-07-151-1/+0
| | | | | | | | | | The NET_CLS_ACT option is now a full replacement for NET_CLS_POLICE, remove the old code. The config option will be kept around to select the equivalent NET_CLS_ACT options for a short time to allow easier upgrades. Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* [NET]: Remove dead net/sched/Makefile entry for sch_hpfq.o.Robert P. J. Day2007-03-271-1/+0
| | | | | | | | Remove the worthless net/sched/Makefile entry for the non-existent source file sch_hpfq.c. Signed-off-by: Robert P. J. Day <rpjday@mindspring.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PKT_SCHED]: Make sch_fifo.o available when CONFIG_NET_SCHED is not set.David Kimdon2006-12-031-1/+2
| | | | | | | | | | | | | | | Based on patch by Patrick McHardy. Add a new option, NET_SCH_FIFO, which provides a simple fifo qdisc without requiring CONFIG_NET_SCHED. The d80211 stack needs a generic fifo qdisc for WME. At present it uses net/d80211/fifo_qdisc.c which is functionally equivalent to sch_fifo.c. This patch will allow the d80211 stack to remove net/d80211/fifo_qdisc.c and use sch_fifo.c instead. Signed-off-by: David Kimdon <david.kimdon@devicescape.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PKT_SCHED]: Prefix tc actions with act_Patrick McHardy2006-01-091-7/+7
| | | | | | | Clean up the net/sched directory a bit by prefix all actions with act_. Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PKT_SCHED]: Blackhole queueing disciplineThomas Graf2005-07-061-1/+1
| | | | | | | | | | | | Useful in combination with classful qdiscs to drop or temporary disable certain flows, e.g. one could block specific ds flows with dsmark. Unlike the noop qdisc it can be controlled by the user and statistic accounting is done. Signed-off-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PKT_SCHED]: Packet classification based on textsearch (ematch)Thomas Graf2005-06-241-0/+1
| | | | | Signed-off-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PKT_SCHED]: Introduce simple actions.Jamal Hadi Salim2005-04-251-5/+6
| | | | | | | | And provide an example simply action in order to demonstrate usage. Signed-off-by: Jamal Hadi Salim <hadi@cyberus.ca> Signed-off-by: David S. Miller <davem@davemloft.net>
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-171-0/+41
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!