summaryrefslogtreecommitdiffstats
path: root/net/sctp/sm_statefuns.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* sctp: remove the typedef sctp_init_chunk_tXin Long2017-07-011-14/+14
| | | | | | | | | This patch is to remove the typedef sctp_init_chunk_t, and replace with struct sctp_init_chunk in the places where it's using this typedef. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: remove the typedef sctp_inithdr_tXin Long2017-07-011-6/+6
| | | | | | | | | This patch is to remove the typedef sctp_inithdr_t, and replace with struct sctp_inithdr in the places where it's using this typedef. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: remove the typedef sctp_data_chunk_tXin Long2017-07-011-3/+3
| | | | | | | | | This patch is to remove the typedef sctp_data_chunk_t, and replace with struct sctp_data_chunk in the places where it's using this typedef. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: remove the typedef sctp_datahdr_tXin Long2017-07-011-5/+8
| | | | | | | | | | This patch is to remove the typedef sctp_datahdr_t, and replace with struct sctp_datahdr in the places where it's using this typedef. It is also to use izeof(variable) instead of sizeof(type). Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: remove the typedef sctp_paramhdr_tXin Long2017-07-011-3/+3
| | | | | | | | | | | | This patch is to remove the typedef sctp_paramhdr_t, and replace with struct sctp_paramhdr in the places where it's using this typedef. It is also to fix some indents and use sizeof(variable) instead of sizeof(type). Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: remove the typedef sctp_chunkhdr_tXin Long2017-07-011-33/+34
| | | | | | | | | | | | This patch is to remove the typedef sctp_chunkhdr_t, and replace with struct sctp_chunkhdr in the places where it's using this typedef. It is also to fix some indents and use sizeof(variable) instead of sizeof(type)., especially in sctp_new. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* networking: make skb_push & __skb_push return void pointersJohannes Berg2017-06-161-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It seems like a historic accident that these return unsigned char *, and in many places that means casts are required, more often than not. Make these functions return void * and remove all the casts across the tree, adding a (u8 *) cast only where the unsigned char pointer was used directly, all done with the following spatch: @@ expression SKB, LEN; typedef u8; identifier fn = { skb_push, __skb_push, skb_push_rcsum }; @@ - *(fn(SKB, LEN)) + *(u8 *)fn(SKB, LEN) @@ expression E, SKB, LEN; identifier fn = { skb_push, __skb_push, skb_push_rcsum }; type T; @@ - E = ((T *)(fn(SKB, LEN))) + E = fn(SKB, LEN) @@ expression SKB, LEN; identifier fn = { skb_push, __skb_push, skb_push_rcsum }; @@ - fn(SKB, LEN)[0] + *(u8 *)fn(SKB, LEN) Note that the last part there converts from push(...)[0] to the more idiomatic *(u8 *)push(...). Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: define the member stream as an object instead of pointer in asocXin Long2017-06-021-4/+4
| | | | | | | | | | | As Marcelo's suggestion, stream is a fixed size member of asoc and would not grow with more streams. To avoid an allocation for it, this patch is to define it as an object instead of pointer and update the places using it, also create sctp_stream_update() called in sctp_assoc_update() to migrate the stream info from one stream to another. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: set new_asoc temp when processing dupcookieXin Long2017-05-241-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | After sctp changed to use transport hashtable, a transport would be added into global hashtable when adding the peer to an asoc, then the asoc can be got by searching the transport in the hashtbale. The problem is when processing dupcookie in sctp_sf_do_5_2_4_dupcook, a new asoc would be created. A peer with the same addr and port as the one in the old asoc might be added into the new asoc, but fail to be added into the hashtable, as they also belong to the same sk. It causes that sctp's dupcookie processing can not really work. Since the new asoc will be freed after copying it's information to the old asoc, it's more like a temp asoc. So this patch is to fix it by setting it as a temp asoc to avoid adding it's any transport into the hashtable and also avoid allocing assoc_id. An extra thing it has to do is to also alloc stream info for any temp asoc, as sctp dupcookie process needs it to update old asoc. But I don't think it would hurt something, as a temp asoc would always be freed after finishing processing cookie echo packet. Reported-by: Jianwen Ji <jiji@redhat.com> Signed-off-by: Xin Long <lucien.xin@gmail.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller2017-04-061-3/+3
|\ | | | | | | | | | | | | Mostly simple cases of overlapping changes (adding code nearby, a function whose name changes, for example). Signed-off-by: David S. Miller <davem@davemloft.net>
| * sctp: use right in and out stream cntXin Long2017-04-021-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | Since sctp reconf was added in sctp, the real cnt of in/out stream have not been c.sinit_max_instreams and c.sinit_num_ostreams any more. This patch is to replace them with stream->in/outcnt. Signed-off-by: Xin Long <lucien.xin@gmail.com> Acked-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* | sctp: implement receiver-side procedures for the Reconf Response ParameterXin Long2017-03-131-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | This patch is to implement Receiver-Side Procedures for the Re-configuration Response Parameter in rfc6525 section 5.2.7. sctp_process_strreset_resp would process the response for any kind of reconf request, and the stream reconf is applied only when the response result is success. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* | sctp: implement receiver-side procedures for the Add Incoming Streams ↵Xin Long2017-03-131-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Request Parameter This patch is to implement Receiver-Side Procedures for the Add Incoming Streams Request Parameter described in rfc6525 section 5.2.6. It is also to fix that it shouldn't have add streams when sending addstrm in request, as the process in peer will handle it by sending a addstrm out request back. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* | sctp: implement receiver-side procedures for the Add Outgoing Streams ↵Xin Long2017-03-131-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | Request Parameter This patch is to add Receiver-Side Procedures for the Add Outgoing Streams Request Parameter described in section 5.2.5. It is also to improve sctp_chunk_lookup_strreset_param, so that it can be used for processing addstrm_out request. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* | sctp: implement receiver-side procedures for the SSN/TSN Reset Request ParameterXin Long2017-03-131-0/+3
|/ | | | | | | | | | | This patch is to implement Receiver-Side Procedures for the SSN/TSN Reset Request Parameter described in rfc6525 section 6.2.4. The process is kind of complicate, it's wonth having some comments from section 6.2.4 in the codes. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: add reconf chunk processXin Long2017-02-201-0/+54
| | | | | | | | | | | This patch is to add a function to process the incoming reconf chunk, in which it verifies the chunk, and traverses the param and process it with the right function one by one. sctp_sf_do_reconf would be the process function of reconf chunk event. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: process fwd tsn chunk only when prsctp is enabledXin Long2017-02-061-0/+6
| | | | | | | | | | | This patch is to check if asoc->peer.prsctp_capable is set before processing fwd tsn chunk, if not, it will return an ERROR to the peer, just as rfc3758 section 3.3.1 demands. Reported-by: Julian Cordes <julian.cordes@gmail.com> Signed-off-by: Xin Long <lucien.xin@gmail.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: add stream reconf primitiveXin Long2017-01-181-0/+13
| | | | | | | | | | | | This patch is to add a primitive based on sctp primitive frame for sending stream reconf request. It works as the other primitives, and create a SCTP_CMD_REPLY command to send the request chunk out. sctp_primitive_RECONF would be the api to send a reconf request chunk. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: add stream reconf timerXin Long2017-01-181-0/+28
| | | | | | | | | | | | | | | | | | | | This patch is to add a per transport timer based on sctp timer frame for stream reconf chunk retransmission. It would start after sending a reconf request chunk, and stop after receiving the response chunk. If the timer expires, besides retransmitting the reconf request chunk, it would also do the same thing with data RTO timer. like to increase the appropriate error counts, and perform threshold management, possibly destroying the asoc if sctp retransmission thresholds are exceeded, just as section 5.1.1 describes. This patch is also to add asoc strreset_chunk, it is used to save the reconf request chunk, so that it can be retransmitted, and to check if the response is really for this request by comparing the information inside with the response chunk as well. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: prepare asoc stream for stream reconfXin Long2017-01-071-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | sctp stream reconf, described in RFC 6525, needs a structure to save per stream information in assoc, like stream state. In the future, sctp stream scheduler also needs it to save some stream scheduler params and queues. This patchset is to prepare the stream array in assoc for stream reconf. It defines sctp_stream that includes stream arrays inside to replace ssnmap. Note that we use different structures for IN and OUT streams, as the members in per OUT stream will get more and more different from per IN stream. v1->v2: - put these patches into a smaller group. v2->v3: - define sctp_stream to contain stream arrays, and create stream.c to put stream-related functions. - merge 3 patches into 1, as new sctp_stream has the same name with before. Signed-off-by: Xin Long <lucien.xin@gmail.com> Reviewed-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: sctp_chunk_length_valid should return boolMarcelo Ricardo Leitner2016-12-281-8/+7
| | | | | Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: remove return value from sctp_packet_init/configMarcelo Ricardo Leitner2016-12-281-2/+3
| | | | | | | | There is no reason to use this cascading. It doesn't add anything. Let's remove it and simplify. Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: reduce indent level in sctp_sf_shut_8_4_5Marcelo Ricardo Leitner2016-12-281-30/+28
| | | | | Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: reduce indent level at sctp_sf_tabort_8_4_8Marcelo Ricardo Leitner2016-12-281-23/+21
| | | | | Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: validate chunk len before actually using itMarcelo Ricardo Leitner2016-10-291-6/+6
| | | | | | | | | | | | | | | | | | Andrey Konovalov reported that KASAN detected that SCTP was using a slab beyond the boundaries. It was caused because when handling out of the blue packets in function sctp_sf_ootb() it was checking the chunk len only after already processing the first chunk, validating only for the 2nd and subsequent ones. The fix is to just move the check upwards so it's also validated for the 1st chunk. Reported-by: Andrey Konovalov <andreyknvl@google.com> Tested-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Reviewed-by: Xin Long <lucien.xin@gmail.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: rename WORD_TRUNC/ROUND macrosMarcelo Ricardo Leitner2016-09-221-3/+3
| | | | | | | | | | | | | To something more meaningful these days, specially because this is working on packet headers or lengths and which are not tied to any CPU arch but to the protocol itself. So, WORD_TRUNC becomes SCTP_TRUNC4 and WORD_ROUND becomes SCTP_PAD4. Reported-by: David Laight <David.Laight@ACULAB.COM> Reported-by: David Miller <davem@davemloft.net> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: only check for ECN if peer is using itMarcelo Ricardo Leitner2016-07-141-3/+2
| | | | | | | | | | | | Currently only read-only checks are performed up to the point on where we check if peer is ECN capable, checks which we can avoid otherwise. The flag ecn_ce_done is only used to perform this check once per incoming packet, and nothing more. Thus this patch moves the peer check up. Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: avoid identifying address family many times for a chunkMarcelo Ricardo Leitner2016-07-141-5/+2
| | | | | | | | | | | | Identifying address family operations during rx path is not something expensive but it's ugly to the eye to have it done multiple times, specially when we already validated it during initial rx processing. This patch takes advantage of the now shared sctp_input_cb and make the pointer to the operations readily available. Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: allow GSO frags to access the chunk tooMarcelo Ricardo Leitner2016-07-141-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SCTP will try to access original IP headers on sctp_recvmsg in order to copy the addresses used. There are also other places that do similar access to IP or even SCTP headers. But after 90017accff61 ("sctp: Add GSO support") they aren't always there because they are only present in the header skb. SCTP handles the queueing of incoming data by cloning the incoming skb and limiting to only the relevant payload. This clone has its cb updated to something different and it's then queued on socket rx queue. Thus we need to fix this in two moments. For rx path, not related to socket queue yet, this patch uses a partially copied sctp_input_cb to such GSO frags. This restores the ability to access the headers for this part of the code. Regarding the socket rx queue, it removes iif member from sctp_event and also add a chunk pointer on it. With these changes we're always able to reach the headers again. The biggest change here is that now the sctp_chunk struct and the original skb are only freed after the application consumed the buffer. Note however that the original payload was already like this due to the skb cloning. For iif, SCTP's IPv4 code doesn't use it, so no change is necessary. IPv6 now can fetch it directly from original's IPv6 CB as the original skb is still accessible. In the future we probably can simplify sctp_v*_skb_iif() stuff, as sctp_v4_skb_iif() was called but it's return value not used, and now it's not even called, but such cleanup is out of scope for this change. Fixes: 90017accff61 ("sctp: Add GSO support") Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: fix use-after-free in pr_debug statementMarcelo Ricardo Leitner2016-01-111-13/+4
| | | | | | | | | | | | | | | | | | | | | | | Dmitry Vyukov reported a use-after-free in the code expanded by the macro debug_post_sfx, which is caused by the use of the asoc pointer after it was freed within sctp_side_effect() scope. This patch fixes it by allowing sctp_side_effect to clear that asoc pointer when the TCB is freed. As Vlad explained, we also have to cover the SCTP_DISPOSITION_ABORT case because it will trigger DELETE_TCB too on that same loop. Also, there were places issuing SCTP_CMD_INIT_FAILED and ASSOC_FAILED but returning SCTP_DISPOSITION_CONSUME, which would fool the scheme above. Fix it by returning SCTP_DISPOSITION_ABORT instead. The macro is already prepared to handle such NULL pointer. Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: sctp should release assoc when sctp_make_abort_user return NULL in ↵Xin Long2015-12-301-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | sctp_close In sctp_close, sctp_make_abort_user may return NULL because of memory allocation failure. If this happens, it will bypass any state change and never free the assoc. The assoc has no chance to be freed and it will be kept in memory with the state it had even after the socket is closed by sctp_close(). So if sctp_make_abort_user fails to allocate memory, we should abort the asoc via sctp_primitive_ABORT as well. Just like the annotation in sctp_sf_cookie_wait_prm_abort and sctp_sf_do_9_1_prm_abort said, "Even if we can't send the ABORT due to low memory delete the TCB. This is a departure from our typical NOMEM handling". But then the chunk is NULL (low memory) and the SCTP_CMD_REPLY cmd would dereference the chunk pointer, and system crash. So we should add SCTP_CMD_REPLY cmd only when the chunk is not NULL, just like other places where it adds SCTP_CMD_REPLY cmd. Signed-off-by: Xin Long <lucien.xin@gmail.com> Acked-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: start t5 timer only when peer rwnd is 0 and local state is ↵lucien2015-12-071-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | SHUTDOWN_PENDING when A sends a data to B, then A close() and enter into SHUTDOWN_PENDING state, if B neither claim his rwnd is 0 nor send SACK for this data, A will keep retransmitting this data until t5 timeout, Max.Retrans times can't work anymore, which is bad. if B's rwnd is not 0, it should send abort after Max.Retrans times, only when B's rwnd == 0 and A's retransmitting beyonds Max.Retrans times, A will start t5 timer, which is also commit f8d960524328 ("sctp: Enforce retransmission limit during shutdown") means, but it lacks the condition peer rwnd == 0. so fix it by adding a bit (zero_window_announced) in peer to record if the last rwnd is 0. If it was, zero_window_announced will be set. and use this bit to decide if start t5 timer when local.state is SHUTDOWN_PENDING. Fixes: commit f8d960524328 ("sctp: Enforce retransmission limit during shutdown") Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: avoid incorrect time_t useArnd Bergmann2015-10-051-1/+1
| | | | | | | | | | | | | | | | | We want to avoid using time_t in the kernel because of the y2038 overflow problem. The use in sctp is not for storing seconds at all, but instead uses microseconds and is passed as 32-bit on all machines. This patch changes the type to u32, which better fits the use. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Vlad Yasevich <vyasevich@gmail.com> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: linux-sctp@vger.kernel.org Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: fix cut and paste issue in commentMarcelo Ricardo Leitner2015-07-211-1/+1
| | | | | | | | Cookie ACK is always received by the association initiator, so fix the comment to avoid confusion. Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: fix remote memory pressure from excessive queueingDaniel Borkmann2014-10-141-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This scenario is not limited to ASCONF, just taken as one example triggering the issue. When receiving ASCONF probes in the form of ... -------------- INIT[ASCONF; ASCONF_ACK] -------------> <----------- INIT-ACK[ASCONF; ASCONF_ACK] ------------ -------------------- COOKIE-ECHO --------------------> <-------------------- COOKIE-ACK --------------------- ---- ASCONF_a; [ASCONF_b; ...; ASCONF_n;] JUNK ------> [...] ---- ASCONF_m; [ASCONF_o; ...; ASCONF_z;] JUNK ------> ... where ASCONF_a, ASCONF_b, ..., ASCONF_z are good-formed ASCONFs and have increasing serial numbers, we process such ASCONF chunk(s) marked with !end_of_packet and !singleton, since we have not yet reached the SCTP packet end. SCTP does only do verification on a chunk by chunk basis, as an SCTP packet is nothing more than just a container of a stream of chunks which it eats up one by one. We could run into the case that we receive a packet with a malformed tail, above marked as trailing JUNK. All previous chunks are here goodformed, so the stack will eat up all previous chunks up to this point. In case JUNK does not fit into a chunk header and there are no more other chunks in the input queue, or in case JUNK contains a garbage chunk header, but the encoded chunk length would exceed the skb tail, or we came here from an entirely different scenario and the chunk has pdiscard=1 mark (without having had a flush point), it will happen, that we will excessively queue up the association's output queue (a correct final chunk may then turn it into a response flood when flushing the queue ;)): I ran a simple script with incremental ASCONF serial numbers and could see the server side consuming excessive amount of RAM [before/after: up to 2GB and more]. The issue at heart is that the chunk train basically ends with !end_of_packet and !singleton markers and since commit 2e3216cd54b1 ("sctp: Follow security requirement of responding with 1 packet") therefore preventing an output queue flush point in sctp_do_sm() -> sctp_cmd_interpreter() on the input chunk (chunk = event_arg) even though local_cork is set, but its precedence has changed since then. In the normal case, the last chunk with end_of_packet=1 would trigger the queue flush to accommodate possible outgoing bundling. In the input queue, sctp_inq_pop() seems to do the right thing in terms of discarding invalid chunks. So, above JUNK will not enter the state machine and instead be released and exit the sctp_assoc_bh_rcv() chunk processing loop. It's simply the flush point being missing at loop exit. Adding a try-flush approach on the output queue might not work as the underlying infrastructure might be long gone at this point due to the side-effect interpreter run. One possibility, albeit a bit of a kludge, would be to defer invalid chunk freeing into the state machine in order to possibly trigger packet discards and thus indirectly a queue flush on error. It would surely be better to discard chunks as in the current, perhaps better controlled environment, but going back and forth, it's simply architecturally not possible. I tried various trailing JUNK attack cases and it seems to look good now. Joint work with Vlad Yasevich. Fixes: 2e3216cd54b1 ("sctp: Follow security requirement of responding with 1 packet") Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: fix skb_over_panic when receiving malformed ASCONF chunksDaniel Borkmann2014-10-141-16/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 6f4c618ddb0 ("SCTP : Add paramters validity check for ASCONF chunk") added basic verification of ASCONF chunks, however, it is still possible to remotely crash a server by sending a special crafted ASCONF chunk, even up to pre 2.6.12 kernels: skb_over_panic: text:ffffffffa01ea1c3 len:31056 put:30768 head:ffff88011bd81800 data:ffff88011bd81800 tail:0x7950 end:0x440 dev:<NULL> ------------[ cut here ]------------ kernel BUG at net/core/skbuff.c:129! [...] Call Trace: <IRQ> [<ffffffff8144fb1c>] skb_put+0x5c/0x70 [<ffffffffa01ea1c3>] sctp_addto_chunk+0x63/0xd0 [sctp] [<ffffffffa01eadaf>] sctp_process_asconf+0x1af/0x540 [sctp] [<ffffffff8152d025>] ? _read_unlock_bh+0x15/0x20 [<ffffffffa01e0038>] sctp_sf_do_asconf+0x168/0x240 [sctp] [<ffffffffa01e3751>] sctp_do_sm+0x71/0x1210 [sctp] [<ffffffff8147645d>] ? fib_rules_lookup+0xad/0xf0 [<ffffffffa01e6b22>] ? sctp_cmp_addr_exact+0x32/0x40 [sctp] [<ffffffffa01e8393>] sctp_assoc_bh_rcv+0xd3/0x180 [sctp] [<ffffffffa01ee986>] sctp_inq_push+0x56/0x80 [sctp] [<ffffffffa01fcc42>] sctp_rcv+0x982/0xa10 [sctp] [<ffffffffa01d5123>] ? ipt_local_in_hook+0x23/0x28 [iptable_filter] [<ffffffff8148bdc9>] ? nf_iterate+0x69/0xb0 [<ffffffff81496d10>] ? ip_local_deliver_finish+0x0/0x2d0 [<ffffffff8148bf86>] ? nf_hook_slow+0x76/0x120 [<ffffffff81496d10>] ? ip_local_deliver_finish+0x0/0x2d0 [<ffffffff81496ded>] ip_local_deliver_finish+0xdd/0x2d0 [<ffffffff81497078>] ip_local_deliver+0x98/0xa0 [<ffffffff8149653d>] ip_rcv_finish+0x12d/0x440 [<ffffffff81496ac5>] ip_rcv+0x275/0x350 [<ffffffff8145c88b>] __netif_receive_skb+0x4ab/0x750 [<ffffffff81460588>] netif_receive_skb+0x58/0x60 This can be triggered e.g., through a simple scripted nmap connection scan injecting the chunk after the handshake, for example, ... -------------- INIT[ASCONF; ASCONF_ACK] -------------> <----------- INIT-ACK[ASCONF; ASCONF_ACK] ------------ -------------------- COOKIE-ECHO --------------------> <-------------------- COOKIE-ACK --------------------- ------------------ ASCONF; UNKNOWN ------------------> ... where ASCONF chunk of length 280 contains 2 parameters ... 1) Add IP address parameter (param length: 16) 2) Add/del IP address parameter (param length: 255) ... followed by an UNKNOWN chunk of e.g. 4 bytes. Here, the Address Parameter in the ASCONF chunk is even missing, too. This is just an example and similarly-crafted ASCONF chunks could be used just as well. The ASCONF chunk passes through sctp_verify_asconf() as all parameters passed sanity checks, and after walking, we ended up successfully at the chunk end boundary, and thus may invoke sctp_process_asconf(). Parameter walking is done with WORD_ROUND() to take padding into account. In sctp_process_asconf()'s TLV processing, we may fail in sctp_process_asconf_param() e.g., due to removal of the IP address that is also the source address of the packet containing the ASCONF chunk, and thus we need to add all TLVs after the failure to our ASCONF response to remote via helper function sctp_add_asconf_response(), which basically invokes a sctp_addto_chunk() adding the error parameters to the given skb. When walking to the next parameter this time, we proceed with ... length = ntohs(asconf_param->param_hdr.length); asconf_param = (void *)asconf_param + length; ... instead of the WORD_ROUND()'ed length, thus resulting here in an off-by-one that leads to reading the follow-up garbage parameter length of 12336, and thus throwing an skb_over_panic for the reply when trying to sctp_addto_chunk() next time, which implicitly calls the skb_put() with that length. Fix it by using sctp_walk_params() [ which is also used in INIT parameter processing ] macro in the verification *and* in ASCONF processing: it will make sure we don't spill over, that we walk parameters WORD_ROUND()'ed. Moreover, we're being more defensive and guard against unknown parameter types and missized addresses. Joint work with Vlad Yasevich. Fixes: b896b82be4ae ("[SCTP] ADDIP: Support for processing incoming ASCONF_ACK chunks.") Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: handle association restarts when the socket is closed.Vlad Yasevich2014-10-061-3/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently association restarts do not take into consideration the state of the socket. When a restart happens, the current assocation simply transitions into established state. This creates a condition where a remote system, through a the restart procedure, may create a local association that is no way reachable by user. The conditions to trigger this are as follows: 1) Remote does not acknoledge some data causing data to remain outstanding. 2) Local application calls close() on the socket. Since data is still outstanding, the association is placed in SHUTDOWN_PENDING state. However, the socket is closed. 3) The remote tries to create a new association, triggering a restart on the local system. The association moves from SHUTDOWN_PENDING to ESTABLISHED. At this point, it is no longer reachable by any socket on the local system. This patch addresses the above situation by moving the newly ESTABLISHED association into SHUTDOWN-SENT state and bundling a SHUTDOWN after the COOKIE-ACK chunk. This way, the restarted associate immidiately enters the shutdown procedure and forces the termination of the unreachable association. Reported-by: David Laight <David.Laight@aculab.com> Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: remove unnecessary break after return/gotoFabian Frederick2014-07-161-4/+0
| | | | | Signed-off-by: Fabian Frederick <fabf@skynet.be> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: cache auth_enable per endpointVlad Yasevich2014-04-191-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, it is possible to create an SCTP socket, then switch auth_enable via sysctl setting to 1 and crash the system on connect: Oops[#1]: CPU: 0 PID: 0 Comm: swapper Not tainted 3.14.1-mipsgit-20140415 #1 task: ffffffff8056ce80 ti: ffffffff8055c000 task.ti: ffffffff8055c000 [...] Call Trace: [<ffffffff8043c4e8>] sctp_auth_asoc_set_default_hmac+0x68/0x80 [<ffffffff8042b300>] sctp_process_init+0x5e0/0x8a4 [<ffffffff8042188c>] sctp_sf_do_5_1B_init+0x234/0x34c [<ffffffff804228c8>] sctp_do_sm+0xb4/0x1e8 [<ffffffff80425a08>] sctp_endpoint_bh_rcv+0x1c4/0x214 [<ffffffff8043af68>] sctp_rcv+0x588/0x630 [<ffffffff8043e8e8>] sctp6_rcv+0x10/0x24 [<ffffffff803acb50>] ip6_input+0x2c0/0x440 [<ffffffff8030fc00>] __netif_receive_skb_core+0x4a8/0x564 [<ffffffff80310650>] process_backlog+0xb4/0x18c [<ffffffff80313cbc>] net_rx_action+0x12c/0x210 [<ffffffff80034254>] __do_softirq+0x17c/0x2ac [<ffffffff800345e0>] irq_exit+0x54/0xb0 [<ffffffff800075a4>] ret_from_irq+0x0/0x4 [<ffffffff800090ec>] rm7k_wait_irqoff+0x24/0x48 [<ffffffff8005e388>] cpu_startup_entry+0xc0/0x148 [<ffffffff805a88b0>] start_kernel+0x37c/0x398 Code: dd0900b8 000330f8 0126302d <dcc60000> 50c0fff1 0047182a a48306a0 03e00008 00000000 ---[ end trace b530b0551467f2fd ]--- Kernel panic - not syncing: Fatal exception in interrupt What happens while auth_enable=0 in that case is, that ep->auth_hmacs is initialized to NULL in sctp_auth_init_hmacs() when endpoint is being created. After that point, if an admin switches over to auth_enable=1, the machine can crash due to NULL pointer dereference during reception of an INIT chunk. When we enter sctp_process_init() via sctp_sf_do_5_1B_init() in order to respond to an INIT chunk, the INIT verification succeeds and while we walk and process all INIT params via sctp_process_param() we find that net->sctp.auth_enable is set, therefore do not fall through, but invoke sctp_auth_asoc_set_default_hmac() instead, and thus, dereference what we have set to NULL during endpoint initialization phase. The fix is to make auth_enable immutable by caching its value during endpoint initialization, so that its original value is being carried along until destruction. The bug seems to originate from the very first days. Fix in joint work with Daniel Borkmann. Reported-by: Joshua Kinard <kumba@gentoo.org> Signed-off-by: Vlad Yasevich <vyasevic@redhat.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Tested-by: Joshua Kinard <kumba@gentoo.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* Revert "net: sctp: Fix a_rwnd/rwnd management to reflect real state of the ↵Daniel Borkmann2014-04-141-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | receiver's buffer" This reverts commit ef2820a735f7 ("net: sctp: Fix a_rwnd/rwnd management to reflect real state of the receiver's buffer") as it introduced a serious performance regression on SCTP over IPv4 and IPv6, though a not as dramatic on the latter. Measurements are on 10Gbit/s with ixgbe NICs. Current state: [root@Lab200slot2 ~]# iperf3 --sctp -4 -c 192.168.241.3 -V -l 1452 -t 60 iperf version 3.0.1 (10 January 2014) Linux Lab200slot2 3.14.0 #1 SMP Thu Apr 3 23:18:29 EDT 2014 x86_64 Time: Fri, 11 Apr 2014 17:56:21 GMT Connecting to host 192.168.241.3, port 5201 Cookie: Lab200slot2.1397238981.812898.548918 [ 4] local 192.168.241.2 port 38616 connected to 192.168.241.3 port 5201 Starting Test: protocol: SCTP, 1 streams, 1452 byte blocks, omitting 0 seconds, 60 second test [ ID] Interval Transfer Bandwidth [ 4] 0.00-1.09 sec 20.8 MBytes 161 Mbits/sec [ 4] 1.09-2.13 sec 10.8 MBytes 86.8 Mbits/sec [ 4] 2.13-3.15 sec 3.57 MBytes 29.5 Mbits/sec [ 4] 3.15-4.16 sec 4.33 MBytes 35.7 Mbits/sec [ 4] 4.16-6.21 sec 10.4 MBytes 42.7 Mbits/sec [ 4] 6.21-6.21 sec 0.00 Bytes 0.00 bits/sec [ 4] 6.21-7.35 sec 34.6 MBytes 253 Mbits/sec [ 4] 7.35-11.45 sec 22.0 MBytes 45.0 Mbits/sec [ 4] 11.45-11.45 sec 0.00 Bytes 0.00 bits/sec [ 4] 11.45-11.45 sec 0.00 Bytes 0.00 bits/sec [ 4] 11.45-11.45 sec 0.00 Bytes 0.00 bits/sec [ 4] 11.45-12.51 sec 16.0 MBytes 126 Mbits/sec [ 4] 12.51-13.59 sec 20.3 MBytes 158 Mbits/sec [ 4] 13.59-14.65 sec 13.4 MBytes 107 Mbits/sec [ 4] 14.65-16.79 sec 33.3 MBytes 130 Mbits/sec [ 4] 16.79-16.79 sec 0.00 Bytes 0.00 bits/sec [ 4] 16.79-17.82 sec 5.94 MBytes 48.7 Mbits/sec (etc) [root@Lab200slot2 ~]# iperf3 --sctp -6 -c 2001:db8:0:f101::1 -V -l 1400 -t 60 iperf version 3.0.1 (10 January 2014) Linux Lab200slot2 3.14.0 #1 SMP Thu Apr 3 23:18:29 EDT 2014 x86_64 Time: Fri, 11 Apr 2014 19:08:41 GMT Connecting to host 2001:db8:0:f101::1, port 5201 Cookie: Lab200slot2.1397243321.714295.2b3f7c [ 4] local 2001:db8:0:f101::2 port 55804 connected to 2001:db8:0:f101::1 port 5201 Starting Test: protocol: SCTP, 1 streams, 1400 byte blocks, omitting 0 seconds, 60 second test [ ID] Interval Transfer Bandwidth [ 4] 0.00-1.00 sec 169 MBytes 1.42 Gbits/sec [ 4] 1.00-2.00 sec 201 MBytes 1.69 Gbits/sec [ 4] 2.00-3.00 sec 188 MBytes 1.58 Gbits/sec [ 4] 3.00-4.00 sec 174 MBytes 1.46 Gbits/sec [ 4] 4.00-5.00 sec 165 MBytes 1.39 Gbits/sec [ 4] 5.00-6.00 sec 199 MBytes 1.67 Gbits/sec [ 4] 6.00-7.00 sec 163 MBytes 1.36 Gbits/sec [ 4] 7.00-8.00 sec 174 MBytes 1.46 Gbits/sec [ 4] 8.00-9.00 sec 193 MBytes 1.62 Gbits/sec [ 4] 9.00-10.00 sec 196 MBytes 1.65 Gbits/sec [ 4] 10.00-11.00 sec 157 MBytes 1.31 Gbits/sec [ 4] 11.00-12.00 sec 175 MBytes 1.47 Gbits/sec [ 4] 12.00-13.00 sec 192 MBytes 1.61 Gbits/sec [ 4] 13.00-14.00 sec 199 MBytes 1.67 Gbits/sec (etc) After patch: [root@Lab200slot2 ~]# iperf3 --sctp -4 -c 192.168.240.3 -V -l 1452 -t 60 iperf version 3.0.1 (10 January 2014) Linux Lab200slot2 3.14.0+ #1 SMP Mon Apr 14 12:06:40 EDT 2014 x86_64 Time: Mon, 14 Apr 2014 16:40:48 GMT Connecting to host 192.168.240.3, port 5201 Cookie: Lab200slot2.1397493648.413274.65e131 [ 4] local 192.168.240.2 port 50548 connected to 192.168.240.3 port 5201 Starting Test: protocol: SCTP, 1 streams, 1452 byte blocks, omitting 0 seconds, 60 second test [ ID] Interval Transfer Bandwidth [ 4] 0.00-1.00 sec 240 MBytes 2.02 Gbits/sec [ 4] 1.00-2.00 sec 239 MBytes 2.01 Gbits/sec [ 4] 2.00-3.00 sec 240 MBytes 2.01 Gbits/sec [ 4] 3.00-4.00 sec 239 MBytes 2.00 Gbits/sec [ 4] 4.00-5.00 sec 245 MBytes 2.05 Gbits/sec [ 4] 5.00-6.00 sec 240 MBytes 2.01 Gbits/sec [ 4] 6.00-7.00 sec 240 MBytes 2.02 Gbits/sec [ 4] 7.00-8.00 sec 239 MBytes 2.01 Gbits/sec With the reverted patch applied, the SCTP/IPv4 performance is back to normal on latest upstream for IPv4 and IPv6 and has same throughput as 3.4.2 test kernel, steady and interval reports are smooth again. Fixes: ef2820a735f7 ("net: sctp: Fix a_rwnd/rwnd management to reflect real state of the receiver's buffer") Reported-by: Peter Butler <pbutler@sonusnet.com> Reported-by: Dongsheng Song <dongsheng.song@gmail.com> Reported-by: Fengguang Wu <fengguang.wu@intel.com> Tested-by: Peter Butler <pbutler@sonusnet.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Matija Glavinic Pecotic <matija.glavinic-pecotic.ext@nsn.com> Cc: Alexander Sverdlin <alexander.sverdlin@nsn.com> Cc: Vlad Yasevich <vyasevich@gmail.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: fix skb leakage in COOKIE ECHO path of chunk->auth_chunkDaniel Borkmann2014-03-061-5/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | While working on ec0223ec48a9 ("net: sctp: fix sctp_sf_do_5_1D_ce to verify if we/peer is AUTH capable"), we noticed that there's a skb memory leakage in the error path. Running the same reproducer as in ec0223ec48a9 and by unconditionally jumping to the error label (to simulate an error condition) in sctp_sf_do_5_1D_ce() receive path lets kmemleak detector bark about the unfreed chunk->auth_chunk skb clone: Unreferenced object 0xffff8800b8f3a000 (size 256): comm "softirq", pid 0, jiffies 4294769856 (age 110.757s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 89 ab 75 5e d4 01 58 13 00 00 00 00 00 00 00 00 ..u^..X......... backtrace: [<ffffffff816660be>] kmemleak_alloc+0x4e/0xb0 [<ffffffff8119f328>] kmem_cache_alloc+0xc8/0x210 [<ffffffff81566929>] skb_clone+0x49/0xb0 [<ffffffffa0467459>] sctp_endpoint_bh_rcv+0x1d9/0x230 [sctp] [<ffffffffa046fdbc>] sctp_inq_push+0x4c/0x70 [sctp] [<ffffffffa047e8de>] sctp_rcv+0x82e/0x9a0 [sctp] [<ffffffff815abd38>] ip_local_deliver_finish+0xa8/0x210 [<ffffffff815a64af>] nf_reinject+0xbf/0x180 [<ffffffffa04b4762>] nfqnl_recv_verdict+0x1d2/0x2b0 [nfnetlink_queue] [<ffffffffa04aa40b>] nfnetlink_rcv_msg+0x14b/0x250 [nfnetlink] [<ffffffff815a3269>] netlink_rcv_skb+0xa9/0xc0 [<ffffffffa04aa7cf>] nfnetlink_rcv+0x23f/0x408 [nfnetlink] [<ffffffff815a2bd8>] netlink_unicast+0x168/0x250 [<ffffffff815a2fa1>] netlink_sendmsg+0x2e1/0x3f0 [<ffffffff8155cc6b>] sock_sendmsg+0x8b/0xc0 [<ffffffff8155d449>] ___sys_sendmsg+0x369/0x380 What happens is that commit bbd0d59809f9 clones the skb containing the AUTH chunk in sctp_endpoint_bh_rcv() when having the edge case that an endpoint requires COOKIE-ECHO chunks to be authenticated: ---------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ----------> <------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] --------- ------------------ AUTH; COOKIE-ECHO ----------------> <-------------------- COOKIE-ACK --------------------- When we enter sctp_sf_do_5_1D_ce() and before we actually get to the point where we process (and subsequently free) a non-NULL chunk->auth_chunk, we could hit the "goto nomem_init" path from an error condition and thus leave the cloned skb around w/o freeing it. The fix is to centrally free such clones in sctp_chunk_destroy() handler that is invoked from sctp_chunk_free() after all refs have dropped; and also move both kfree_skb(chunk->auth_chunk) there, so that chunk->auth_chunk is either NULL (since sctp_chunkify() allocs new chunks through kmem_cache_zalloc()) or non-NULL with a valid skb pointer. chunk->skb and chunk->auth_chunk are the only skbs in the sctp_chunk structure that need to be handeled. While at it, we should use consume_skb() for both. It is the same as dev_kfree_skb() but more appropriately named as we are not a device but a protocol. Also, this effectively replaces the kfree_skb() from both invocations into consume_skb(). Functions are the same only that kfree_skb() assumes that the frame was being dropped after a failure (e.g. for tools like drop monitor), usage of consume_skb() seems more appropriate in function sctp_chunk_destroy() though. Fixes: bbd0d59809f9 ("[SCTP]: Implement the receive and verification of AUTH chunk") Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Vlad Yasevich <yasevich@gmail.com> Cc: Neil Horman <nhorman@tuxdriver.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: fix sctp_sf_do_5_1D_ce to verify if we/peer is AUTH capableDaniel Borkmann2014-03-031-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | RFC4895 introduced AUTH chunks for SCTP; during the SCTP handshake RANDOM; CHUNKS; HMAC-ALGO are negotiated (CHUNKS being optional though): ---------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ----------> <------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] --------- -------------------- COOKIE-ECHO --------------------> <-------------------- COOKIE-ACK --------------------- A special case is when an endpoint requires COOKIE-ECHO chunks to be authenticated: ---------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ----------> <------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] --------- ------------------ AUTH; COOKIE-ECHO ----------------> <-------------------- COOKIE-ACK --------------------- RFC4895, section 6.3. Receiving Authenticated Chunks says: The receiver MUST use the HMAC algorithm indicated in the HMAC Identifier field. If this algorithm was not specified by the receiver in the HMAC-ALGO parameter in the INIT or INIT-ACK chunk during association setup, the AUTH chunk and all the chunks after it MUST be discarded and an ERROR chunk SHOULD be sent with the error cause defined in Section 4.1. [...] If no endpoint pair shared key has been configured for that Shared Key Identifier, all authenticated chunks MUST be silently discarded. [...] When an endpoint requires COOKIE-ECHO chunks to be authenticated, some special procedures have to be followed because the reception of a COOKIE-ECHO chunk might result in the creation of an SCTP association. If a packet arrives containing an AUTH chunk as a first chunk, a COOKIE-ECHO chunk as the second chunk, and possibly more chunks after them, and the receiver does not have an STCB for that packet, then authentication is based on the contents of the COOKIE-ECHO chunk. In this situation, the receiver MUST authenticate the chunks in the packet by using the RANDOM parameters, CHUNKS parameters and HMAC_ALGO parameters obtained from the COOKIE-ECHO chunk, and possibly a local shared secret as inputs to the authentication procedure specified in Section 6.3. If authentication fails, then the packet is discarded. If the authentication is successful, the COOKIE-ECHO and all the chunks after the COOKIE-ECHO MUST be processed. If the receiver has an STCB, it MUST process the AUTH chunk as described above using the STCB from the existing association to authenticate the COOKIE-ECHO chunk and all the chunks after it. [...] Commit bbd0d59809f9 introduced the possibility to receive and verification of AUTH chunk, including the edge case for authenticated COOKIE-ECHO. On reception of COOKIE-ECHO, the function sctp_sf_do_5_1D_ce() handles processing, unpacks and creates a new association if it passed sanity checks and also tests for authentication chunks being present. After a new association has been processed, it invokes sctp_process_init() on the new association and walks through the parameter list it received from the INIT chunk. It checks SCTP_PARAM_RANDOM, SCTP_PARAM_HMAC_ALGO and SCTP_PARAM_CHUNKS, and copies them into asoc->peer meta data (peer_random, peer_hmacs, peer_chunks) in case sysctl -w net.sctp.auth_enable=1 is set. If in INIT's SCTP_PARAM_SUPPORTED_EXT parameter SCTP_CID_AUTH is set, peer_random != NULL and peer_hmacs != NULL the peer is to be assumed asoc->peer.auth_capable=1, in any other case asoc->peer.auth_capable=0. Now, if in sctp_sf_do_5_1D_ce() chunk->auth_chunk is available, we set up a fake auth chunk and pass that on to sctp_sf_authenticate(), which at latest in sctp_auth_calculate_hmac() reliably dereferences a NULL pointer at position 0..0008 when setting up the crypto key in crypto_hash_setkey() by using asoc->asoc_shared_key that is NULL as condition key_id == asoc->active_key_id is true if the AUTH chunk was injected correctly from remote. This happens no matter what net.sctp.auth_enable sysctl says. The fix is to check for net->sctp.auth_enable and for asoc->peer.auth_capable before doing any operations like sctp_sf_authenticate() as no key is activated in sctp_auth_asoc_init_active_key() for each case. Now as RFC4895 section 6.3 states that if the used HMAC-ALGO passed from the INIT chunk was not used in the AUTH chunk, we SHOULD send an error; however in this case it would be better to just silently discard such a maliciously prepared handshake as we didn't even receive a parameter at all. Also, as our endpoint has no shared key configured, section 6.3 says that MUST silently discard, which we are doing from now onwards. Before calling sctp_sf_pdiscard(), we need not only to free the association, but also the chunk->auth_chunk skb, as commit bbd0d59809f9 created a skb clone in that case. I have tested this locally by using netfilter's nfqueue and re-injecting packets into the local stack after maliciously modifying the INIT chunk (removing RANDOM; HMAC-ALGO param) and the SCTP packet containing the COOKIE_ECHO (injecting AUTH chunk before COOKIE_ECHO). Fixed with this patch applied. Fixes: bbd0d59809f9 ("[SCTP]: Implement the receive and verification of AUTH chunk") Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Vlad Yasevich <yasevich@gmail.com> Cc: Neil Horman <nhorman@tuxdriver.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: Fix a_rwnd/rwnd management to reflect real state of the ↵Matija Glavinic Pecotic2014-02-171-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | receiver's buffer Implementation of (a)rwnd calculation might lead to severe performance issues and associations completely stalling. These problems are described and solution is proposed which improves lksctp's robustness in congestion state. 1) Sudden drop of a_rwnd and incomplete window recovery afterwards Data accounted in sctp_assoc_rwnd_decrease takes only payload size (sctp data), but size of sk_buff, which is blamed against receiver buffer, is not accounted in rwnd. Theoretically, this should not be the problem as actual size of buffer is double the amount requested on the socket (SO_RECVBUF). Problem here is that this will have bad scaling for data which is less then sizeof sk_buff. E.g. in 4G (LTE) networks, link interfacing radio side will have a large portion of traffic of this size (less then 100B). An example of sudden drop and incomplete window recovery is given below. Node B exhibits problematic behavior. Node A initiates association and B is configured to advertise rwnd of 10000. A sends messages of size 43B (size of typical sctp message in 4G (LTE) network). On B data is left in buffer by not reading socket in userspace. Lets examine when we will hit pressure state and declare rwnd to be 0 for scenario with above stated parameters (rwnd == 10000, chunk size == 43, each chunk is sent in separate sctp packet) Logic is implemented in sctp_assoc_rwnd_decrease: socket_buffer (see below) is maximum size which can be held in socket buffer (sk_rcvbuf). current_alloced is amount of data currently allocated (rx_count) A simple expression is given for which it will be examined after how many packets for above stated parameters we enter pressure state: We start by condition which has to be met in order to enter pressure state: socket_buffer < currently_alloced; currently_alloced is represented as size of sctp packets received so far and not yet delivered to userspace. x is the number of chunks/packets (since there is no bundling, and each chunk is delivered in separate packet, we can observe each chunk also as sctp packet, and what is important here, having its own sk_buff): socket_buffer < x*each_sctp_packet; each_sctp_packet is sctp chunk size + sizeof(struct sk_buff). socket_buffer is twice the amount of initially requested size of socket buffer, which is in case of sctp, twice the a_rwnd requested: 2*rwnd < x*(payload+sizeof(struc sk_buff)); sizeof(struct sk_buff) is 190 (3.13.0-rc4+). Above is stated that rwnd is 10000 and each payload size is 43 20000 < x(43+190); x > 20000/233; x ~> 84; After ~84 messages, pressure state is entered and 0 rwnd is advertised while received 84*43B ~= 3612B sctp data. This is why external observer notices sudden drop from 6474 to 0, as it will be now shown in example: IP A.34340 > B.12345: sctp (1) [INIT] [init tag: 1875509148] [rwnd: 81920] [OS: 10] [MIS: 65535] [init TSN: 1096057017] IP B.12345 > A.34340: sctp (1) [INIT ACK] [init tag: 3198966556] [rwnd: 10000] [OS: 10] [MIS: 10] [init TSN: 902132839] IP A.34340 > B.12345: sctp (1) [COOKIE ECHO] IP B.12345 > A.34340: sctp (1) [COOKIE ACK] IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057017] [SID: 0] [SSEQ 0] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057017] [a_rwnd 9957] [#gap acks 0] [#dup tsns 0] IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057018] [SID: 0] [SSEQ 1] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057018] [a_rwnd 9957] [#gap acks 0] [#dup tsns 0] IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057019] [SID: 0] [SSEQ 2] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057019] [a_rwnd 9914] [#gap acks 0] [#dup tsns 0] <...> IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057098] [SID: 0] [SSEQ 81] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057098] [a_rwnd 6517] [#gap acks 0] [#dup tsns 0] IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057099] [SID: 0] [SSEQ 82] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057099] [a_rwnd 6474] [#gap acks 0] [#dup tsns 0] IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057100] [SID: 0] [SSEQ 83] [PPID 0x18] --> Sudden drop IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057100] [a_rwnd 0] [#gap acks 0] [#dup tsns 0] At this point, rwnd_press stores current rwnd value so it can be later restored in sctp_assoc_rwnd_increase. This however doesn't happen as condition to start slowly increasing rwnd until rwnd_press is returned to rwnd is never met. This condition is not met since rwnd, after it hit 0, must first reach rwnd_press by adding amount which is read from userspace. Let us observe values in above example. Initial a_rwnd is 10000, pressure was hit when rwnd was ~6500 and the amount of actual sctp data currently waiting to be delivered to userspace is ~3500. When userspace starts to read, sctp_assoc_rwnd_increase will be blamed only for sctp data, which is ~3500. Condition is never met, and when userspace reads all data, rwnd stays on 3569. IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057100] [a_rwnd 1505] [#gap acks 0] [#dup tsns 0] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057100] [a_rwnd 3010] [#gap acks 0] [#dup tsns 0] IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057101] [SID: 0] [SSEQ 84] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057101] [a_rwnd 3569] [#gap acks 0] [#dup tsns 0] --> At this point userspace read everything, rwnd recovered only to 3569 IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057102] [SID: 0] [SSEQ 85] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057102] [a_rwnd 3569] [#gap acks 0] [#dup tsns 0] Reproduction is straight forward, it is enough for sender to send packets of size less then sizeof(struct sk_buff) and receiver keeping them in its buffers. 2) Minute size window for associations sharing the same socket buffer In case multiple associations share the same socket, and same socket buffer (sctp.rcvbuf_policy == 0), different scenarios exist in which congestion on one of the associations can permanently drop rwnd of other association(s). Situation will be typically observed as one association suddenly having rwnd dropped to size of last packet received and never recovering beyond that point. Different scenarios will lead to it, but all have in common that one of the associations (let it be association from 1)) nearly depleted socket buffer, and the other association blames socket buffer just for the amount enough to start the pressure. This association will enter pressure state, set rwnd_press and announce 0 rwnd. When data is read by userspace, similar situation as in 1) will occur, rwnd will increase just for the size read by userspace but rwnd_press will be high enough so that association doesn't have enough credit to reach rwnd_press and restore to previous state. This case is special case of 1), being worse as there is, in the worst case, only one packet in buffer for which size rwnd will be increased. Consequence is association which has very low maximum rwnd ('minute size', in our case down to 43B - size of packet which caused pressure) and as such unusable. Scenario happened in the field and labs frequently after congestion state (link breaks, different probabilities of packet drop, packet reordering) and with scenario 1) preceding. Here is given a deterministic scenario for reproduction: >From node A establish two associations on the same socket, with rcvbuf_policy being set to share one common buffer (sctp.rcvbuf_policy == 0). On association 1 repeat scenario from 1), that is, bring it down to 0 and restore up. Observe scenario 1). Use small payload size (here we use 43). Once rwnd is 'recovered', bring it down close to 0, as in just one more packet would close it. This has as a consequence that association number 2 is able to receive (at least) one more packet which will bring it in pressure state. E.g. if association 2 had rwnd of 10000, packet received was 43, and we enter at this point into pressure, rwnd_press will have 9957. Once payload is delivered to userspace, rwnd will increase for 43, but conditions to restore rwnd to original state, just as in 1), will never be satisfied. --> Association 1, between A.y and B.12345 IP A.55915 > B.12345: sctp (1) [INIT] [init tag: 836880897] [rwnd: 10000] [OS: 10] [MIS: 65535] [init TSN: 4032536569] IP B.12345 > A.55915: sctp (1) [INIT ACK] [init tag: 2873310749] [rwnd: 81920] [OS: 10] [MIS: 10] [init TSN: 3799315613] IP A.55915 > B.12345: sctp (1) [COOKIE ECHO] IP B.12345 > A.55915: sctp (1) [COOKIE ACK] --> Association 2, between A.z and B.12346 IP A.55915 > B.12346: sctp (1) [INIT] [init tag: 534798321] [rwnd: 10000] [OS: 10] [MIS: 65535] [init TSN: 2099285173] IP B.12346 > A.55915: sctp (1) [INIT ACK] [init tag: 516668823] [rwnd: 81920] [OS: 10] [MIS: 10] [init TSN: 3676403240] IP A.55915 > B.12346: sctp (1) [COOKIE ECHO] IP B.12346 > A.55915: sctp (1) [COOKIE ACK] --> Deplete socket buffer by sending messages of size 43B over association 1 IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315613] [SID: 0] [SSEQ 0] [PPID 0x18] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315613] [a_rwnd 9957] [#gap acks 0] [#dup tsns 0] <...> IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315696] [a_rwnd 6388] [#gap acks 0] [#dup tsns 0] IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315697] [SID: 0] [SSEQ 84] [PPID 0x18] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315697] [a_rwnd 6345] [#gap acks 0] [#dup tsns 0] --> Sudden drop on 1 IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315698] [SID: 0] [SSEQ 85] [PPID 0x18] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315698] [a_rwnd 0] [#gap acks 0] [#dup tsns 0] --> Here userspace read, rwnd 'recovered' to 3698, now deplete again using association 1 so there is place in buffer for only one more packet IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315799] [SID: 0] [SSEQ 186] [PPID 0x18] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315799] [a_rwnd 86] [#gap acks 0] [#dup tsns 0] IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315800] [SID: 0] [SSEQ 187] [PPID 0x18] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315800] [a_rwnd 43] [#gap acks 0] [#dup tsns 0] --> Socket buffer is almost depleted, but there is space for one more packet, send them over association 2, size 43B IP B.12346 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3676403240] [SID: 0] [SSEQ 0] [PPID 0x18] IP A.55915 > B.12346: sctp (1) [SACK] [cum ack 3676403240] [a_rwnd 0] [#gap acks 0] [#dup tsns 0] --> Immediate drop IP A.60995 > B.12346: sctp (1) [SACK] [cum ack 387491510] [a_rwnd 0] [#gap acks 0] [#dup tsns 0] --> Read everything from the socket, both association recover up to maximum rwnd they are capable of reaching, note that association 1 recovered up to 3698, and association 2 recovered only to 43 IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315800] [a_rwnd 1548] [#gap acks 0] [#dup tsns 0] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315800] [a_rwnd 3053] [#gap acks 0] [#dup tsns 0] IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315801] [SID: 0] [SSEQ 188] [PPID 0x18] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315801] [a_rwnd 3698] [#gap acks 0] [#dup tsns 0] IP B.12346 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3676403241] [SID: 0] [SSEQ 1] [PPID 0x18] IP A.55915 > B.12346: sctp (1) [SACK] [cum ack 3676403241] [a_rwnd 43] [#gap acks 0] [#dup tsns 0] A careful reader might wonder why it is necessary to reproduce 1) prior reproduction of 2). It is simply easier to observe when to send packet over association 2 which will push association into the pressure state. Proposed solution: Both problems share the same root cause, and that is improper scaling of socket buffer with rwnd. Solution in which sizeof(sk_buff) is taken into concern while calculating rwnd is not possible due to fact that there is no linear relationship between amount of data blamed in increase/decrease with IP packet in which payload arrived. Even in case such solution would be followed, complexity of the code would increase. Due to nature of current rwnd handling, slow increase (in sctp_assoc_rwnd_increase) of rwnd after pressure state is entered is rationale, but it gives false representation to the sender of current buffer space. Furthermore, it implements additional congestion control mechanism which is defined on implementation, and not on standard basis. Proposed solution simplifies whole algorithm having on mind definition from rfc: o Receiver Window (rwnd): This gives the sender an indication of the space available in the receiver's inbound buffer. Core of the proposed solution is given with these lines: sctp_assoc_rwnd_update: if ((asoc->base.sk->sk_rcvbuf - rx_count) > 0) asoc->rwnd = (asoc->base.sk->sk_rcvbuf - rx_count) >> 1; else asoc->rwnd = 0; We advertise to sender (half of) actual space we have. Half is in the braces depending whether you would like to observe size of socket buffer as SO_RECVBUF or twice the amount, i.e. size is the one visible from userspace, that is, from kernelspace. In this way sender is given with good approximation of our buffer space, regardless of the buffer policy - we always advertise what we have. Proposed solution fixes described problems and removes necessity for rwnd restoration algorithm. Finally, as proposed solution is simplification, some lines of code, along with some bytes in struct sctp_association are saved. Version 2 of the patch addressed comments from Vlad. Name of the function is set to be more descriptive, and two parts of code are changed, in one removing the superfluous call to sctp_assoc_rwnd_update since call would not result in update of rwnd, and the other being reordering of the code in a way that call to sctp_assoc_rwnd_update updates rwnd. Version 3 corrected change introduced in v2 in a way that existing function is not reordered/copied in line, but it is correctly called. Thanks Vlad for suggesting. Signed-off-by: Matija Glavinic Pecotic <matija.glavinic-pecotic.ext@nsn.com> Reviewed-by: Alexander Sverdlin <alexander.sverdlin@nsn.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: fix checkpatch errors with indentwangweidong2013-12-261-3/+2
| | | | | | | | | | fix checkpatch errors below: ERROR: switch and case should be at the same inden ERROR: code indent should use tabs where possible Acked-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: Wang Weidong <wangweidong1@huawei.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: fix checkpatch errors with (foo*)|foo * bar|foo* barwangweidong2013-12-261-1/+1
| | | | | | | | | | fix checkpatch errors below: ERROR: "(foo*)" should be "(foo *)" ERROR: "foo * bar" should be "foo *bar" ERROR: "foo* bar" should be "foo *bar" Signed-off-by: Wang Weidong <wangweidong1@huawei.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: fix checkpatch errors with space required or prohibitedwangweidong2013-12-261-10/+10
| | | | | | | | | fix checkpatch errors while the space is required or prohibited to the "=,()++..." Acked-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: Wang Weidong <wangweidong1@huawei.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller2013-12-181-6/+6
|\ | | | | | | | | | | | | | | | | | | Conflicts: drivers/net/ethernet/intel/i40e/i40e_main.c drivers/net/macvtap.c Both minor merge hassles, simple overlapping changes. Signed-off-by: David S. Miller <davem@davemloft.net>
| * sctp: properly latch and use autoclose value from sock to associationNeil Horman2013-12-111-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, sctp associations latch a sockets autoclose value to an association at association init time, subject to capping constraints from the max_autoclose sysctl value. This leads to an odd situation where an application may set a socket level autoclose timeout, but sliently sctp will limit the autoclose timeout to something less than that. Fix this by modifying the autoclose setsockopt function to check the limit, cap it and warn the user via syslog that the timeout is capped. This will allow getsockopt to return valid autoclose timeout values that reflect what subsequent associations actually use. While were at it, also elimintate the assoc->autoclose variable, it duplicates whats in the timeout array, which leads to multiple sources for the same information, that may differ (as the former isn't subject to any capping). This gives us the timeout information in a canonical place and saves some space in the association structure as well. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> CC: Wang Weidong <wangweidong1@huawei.com> CC: David Miller <davem@davemloft.net> CC: Vlad Yasevich <vyasevich@gmail.com> CC: netdev@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
* | sctp: Fix FSF address in file headersJeff Kirsher2013-12-061-3/+2
|/ | | | | | | | | | | | Several files refer to an old address for the Free Software Foundation in the file header comment. Resolve by replacing the address with the URL <http://www.gnu.org/licenses/> so that we do not have to keep updating the header comments anytime the address changes. CC: Vlad Yasevich <vyasevich@gmail.com> CC: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: trivial: update bug report in header commentDaniel Borkmann2013-08-091-6/+0
| | | | | | | | | | | | With the restructuring of the lksctp.org site, we only allow bug reports through the SCTP mailing list linux-sctp@vger.kernel.org, not via SF, as SF is only used for web hosting and nothing more. While at it, also remove the obvious statement that bugs will be fixed and incooperated into the kernel. Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>