summaryrefslogtreecommitdiffstats
path: root/samples/livepatch (follow)
Commit message (Collapse)AuthorAgeFilesLines
* livepatch: allow removal of a disabled patchJosh Poimboeuf2017-03-081-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
* livepatch: change to a per-task consistency modelJosh Poimboeuf2017-03-081-0/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
* livepatch: reuse module loader code to write relocationsJessica Yu2016-04-011-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Reuse module loader code to write relocations, thereby eliminating the need for architecture specific relocation code in livepatch. Specifically, reuse the apply_relocate_add() function in the module loader to write relocations instead of duplicating functionality in livepatch's arch-dependent klp_write_module_reloc() function. In order to accomplish this, livepatch modules manage their own relocation sections (marked with the SHF_RELA_LIVEPATCH section flag) and livepatch-specific symbols (marked with SHN_LIVEPATCH symbol section index). To apply livepatch relocation sections, livepatch symbols referenced by relocs are resolved and then apply_relocate_add() is called to apply those relocations. In addition, remove x86 livepatch relocation code and the s390 klp_write_module_reloc() function stub. They are no longer needed since relocation work has been offloaded to module loader. Lastly, mark the module as a livepatch module so that the module loader canappropriately identify and initialize it. Signed-off-by: Jessica Yu <jeyu@redhat.com> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # for s390 changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
* livepatch: rename config to CONFIG_LIVEPATCHJosh Poimboeuf2015-02-041-1/+1
| | | | | | | | | Rename CONFIG_LIVE_PATCHING to CONFIG_LIVEPATCH to make the naming of the config and the code more consistent. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Jingoo Han <jg1.han@samsung.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
* livepatch: samples: fix usage example commentsJosh Poimboeuf2014-12-241-1/+5
| | | | | | | | | Fix a few typos in the livepatch-sample.c usage example comments and add some whitespace to make the comments a little more legible. Reported-by: Udo Seidel <udoseidel@gmx.de> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
* livepatch: samples: add sample live patching moduleSeth Jennings2014-12-222-0/+88
Add a sample live patching module. Signed-off-by: Seth Jennings <sjenning@redhat.com> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Reviewed-by: Petr Mladek <pmladek@suse.cz> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>