summaryrefslogtreecommitdiffstats
path: root/security/keys/keyctl.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* task_work: s/task_work_cancel()/task_work_cancel_func()/Frederic Weisbecker2024-07-091-1/+1
| | | | | | | | | | | | A proper task_work_cancel() API that actually cancels a callback and not *any* callback pointing to a given function is going to be needed for perf events event freeing. Do the appropriate rename to prepare for that. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20240621091601.18227-2-frederic@kernel.org
* keys: update key quotas in key_put()Luis Henriques2024-05-091-5/+6
| | | | | | | | | | | | | | | | | | | Delaying key quotas update when key's refcount reaches 0 in key_put() has been causing some issues in fscrypt testing, specifically in fstest generic/581. This commit fixes this test flakiness by dealing with the quotas immediately, and leaving all the other clean-ups to the key garbage collector. This is done by moving the updates to the qnkeys and qnbytes fields in struct key_user from key_gc_unused_keys() into key_put(). Unfortunately, this also means that we need to switch to the irq-version of the spinlock that protects these fields and use spin_lock_{irqsave,irqrestore} in all the code that touches these fields. Signed-off-by: Luis Henriques <lhenriques@suse.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@kernel.org>
* iov_iter: replace import_single_range() with import_ubuf()Jens Axboe2023-12-051-2/+2
| | | | | | | | | | With the removal of the 'iov' argument to import_single_range(), the two functions are now fully identical. Convert the import_single_range() callers to import_ubuf(), and remove the former fully. Signed-off-by: Jens Axboe <axboe@kernel.dk> Link: https://lore.kernel.org/r/20231204174827.1258875-3-axboe@kernel.dk Signed-off-by: Christian Brauner <brauner@kernel.org>
* iov_iter: remove unused 'iov' argument from import_single_range()Jens Axboe2023-12-051-2/+1
| | | | | | | | It is entirely unused, just get rid of it. Signed-off-by: Jens Axboe <axboe@kernel.dk> Link: https://lore.kernel.org/r/20231204174827.1258875-2-axboe@kernel.dk Signed-off-by: Christian Brauner <brauner@kernel.org>
* security: keys: perform capable check only on privileged operationsChristian Göttsche2023-07-281-3/+8
| | | | | | | | | | | | | | If the current task fails the check for the queried capability via `capable(CAP_SYS_ADMIN)` LSMs like SELinux generate a denial message. Issuing such denial messages unnecessarily can lead to a policy author granting more privileges to a subject than needed to silence them. Reorder CAP_SYS_ADMIN checks after the check whether the operation is actually privileged. Signed-off-by: Christian Göttsche <cgzones@googlemail.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
* use less confusing names for iov_iter direction initializersAl Viro2022-11-251-2/+2
| | | | | | | | | | | | | READ/WRITE proved to be actively confusing - the meanings are "data destination, as used with read(2)" and "data source, as used with write(2)", but people keep interpreting those as "we read data from it" and "we write data to it", i.e. exactly the wrong way. Call them ITER_DEST and ITER_SOURCE - at least that is harder to misinterpret... Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* security: keys: delete repeated words in commentsRandy Dunlap2021-01-211-1/+1
| | | | | | | | | | | | | | Drop repeated words in comments. {to, will, the} Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: Ben Boeckel <mathstuf@gmail.com> Cc: keyrings@vger.kernel.org Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: linux-security-module@vger.kernel.org
* task_work: cleanup notification modesJens Axboe2020-10-171-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | A previous commit changed the notification mode from true/false to an int, allowing notify-no, notify-yes, or signal-notify. This was backwards compatible in the sense that any existing true/false user would translate to either 0 (on notification sent) or 1, the latter which mapped to TWA_RESUME. TWA_SIGNAL was assigned a value of 2. Clean this up properly, and define a proper enum for the notification mode. Now we have: - TWA_NONE. This is 0, same as before the original change, meaning no notification requested. - TWA_RESUME. This is 1, same as before the original change, meaning that we use TIF_NOTIFY_RESUME. - TWA_SIGNAL. This uses TIF_SIGPENDING/JOBCTL_TASK_WORK for the notification. Clean up all the callers, switching their 0/1/false/true to using the appropriate TWA_* mode for notifications. Fixes: e91b48162332 ("task_work: teach task_work_add() to do signal_wake_up()") Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
* security/keys: remove compat_keyctl_instantiate_key_iovChristoph Hellwig2020-10-031-1/+1
| | | | | | | | Now that import_iovec handles compat iovecs, the native version of keyctl_instantiate_key_iov can be used for the compat case as well. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* Merge tag 'notifications-20200601' of ↵Linus Torvalds2020-06-131-10/+105
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull notification queue from David Howells: "This adds a general notification queue concept and adds an event source for keys/keyrings, such as linking and unlinking keys and changing their attributes. Thanks to Debarshi Ray, we do have a pull request to use this to fix a problem with gnome-online-accounts - as mentioned last time: https://gitlab.gnome.org/GNOME/gnome-online-accounts/merge_requests/47 Without this, g-o-a has to constantly poll a keyring-based kerberos cache to find out if kinit has changed anything. [ There are other notification pending: mount/sb fsinfo notifications for libmount that Karel Zak and Ian Kent have been working on, and Christian Brauner would like to use them in lxc, but let's see how this one works first ] LSM hooks are included: - A set of hooks are provided that allow an LSM to rule on whether or not a watch may be set. Each of these hooks takes a different "watched object" parameter, so they're not really shareable. The LSM should use current's credentials. [Wanted by SELinux & Smack] - A hook is provided to allow an LSM to rule on whether or not a particular message may be posted to a particular queue. This is given the credentials from the event generator (which may be the system) and the watch setter. [Wanted by Smack] I've provided SELinux and Smack with implementations of some of these hooks. WHY === Key/keyring notifications are desirable because if you have your kerberos tickets in a file/directory, your Gnome desktop will monitor that using something like fanotify and tell you if your credentials cache changes. However, we also have the ability to cache your kerberos tickets in the session, user or persistent keyring so that it isn't left around on disk across a reboot or logout. Keyrings, however, cannot currently be monitored asynchronously, so the desktop has to poll for it - not so good on a laptop. This facility will allow the desktop to avoid the need to poll. DESIGN DECISIONS ================ - The notification queue is built on top of a standard pipe. Messages are effectively spliced in. The pipe is opened with a special flag: pipe2(fds, O_NOTIFICATION_PIPE); The special flag has the same value as O_EXCL (which doesn't seem like it will ever be applicable in this context)[?]. It is given up front to make it a lot easier to prohibit splice&co from accessing the pipe. [?] Should this be done some other way? I'd rather not use up a new O_* flag if I can avoid it - should I add a pipe3() system call instead? The pipe is then configured:: ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, queue_depth); ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter); Messages are then read out of the pipe using read(). - It should be possible to allow write() to insert data into the notification pipes too, but this is currently disabled as the kernel has to be able to insert messages into the pipe *without* holding pipe->mutex and the code to make this work needs careful auditing. - sendfile(), splice() and vmsplice() are disabled on notification pipes because of the pipe->mutex issue and also because they sometimes want to revert what they just did - but one or more notification messages might've been interleaved in the ring. - The kernel inserts messages with the wait queue spinlock held. This means that pipe_read() and pipe_write() have to take the spinlock to update the queue pointers. - Records in the buffer are binary, typed and have a length so that they can be of varying size. This allows multiple heterogeneous sources to share a common buffer; there are 16 million types available, of which I've used just a few, so there is scope for others to be used. Tags may be specified when a watchpoint is created to help distinguish the sources. - Records are filterable as types have up to 256 subtypes that can be individually filtered. Other filtration is also available. - Notification pipes don't interfere with each other; each may be bound to a different set of watches. Any particular notification will be copied to all the queues that are currently watching for it - and only those that are watching for it. - When recording a notification, the kernel will not sleep, but will rather mark a queue as having lost a message if there's insufficient space. read() will fabricate a loss notification message at an appropriate point later. - The notification pipe is created and then watchpoints are attached to it, using one of: keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01); watch_mount(AT_FDCWD, "/", 0, fd, 0x02); watch_sb(AT_FDCWD, "/mnt", 0, fd, 0x03); where in both cases, fd indicates the queue and the number after is a tag between 0 and 255. - Watches are removed if either the notification pipe is destroyed or the watched object is destroyed. In the latter case, a message will be generated indicating the enforced watch removal. Things I want to avoid: - Introducing features that make the core VFS dependent on the network stack or networking namespaces (ie. usage of netlink). - Dumping all this stuff into dmesg and having a daemon that sits there parsing the output and distributing it as this then puts the responsibility for security into userspace and makes handling namespaces tricky. Further, dmesg might not exist or might be inaccessible inside a container. - Letting users see events they shouldn't be able to see. TESTING AND MANPAGES ==================== - The keyutils tree has a pipe-watch branch that has keyctl commands for making use of notifications. Proposed manual pages can also be found on this branch, though a couple of them really need to go to the main manpages repository instead. If the kernel supports the watching of keys, then running "make test" on that branch will cause the testing infrastructure to spawn a monitoring process on the side that monitors a notifications pipe for all the key/keyring changes induced by the tests and they'll all be checked off to make sure they happened. https://git.kernel.org/pub/scm/linux/kernel/git/dhowells/keyutils.git/log/?h=pipe-watch - A test program is provided (samples/watch_queue/watch_test) that can be used to monitor for keyrings, mount and superblock events. Information on the notifications is simply logged to stdout" * tag 'notifications-20200601' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: smack: Implement the watch_key and post_notification hooks selinux: Implement the watch_key security hook keys: Make the KEY_NEED_* perms an enum rather than a mask pipe: Add notification lossage handling pipe: Allow buffers to be marked read-whole-or-error for notifications Add sample notification program watch_queue: Add a key/keyring notification facility security: Add hooks to rule on setting a watch pipe: Add general notification queue support pipe: Add O_NOTIFICATION_PIPE security: Add a hook for the point of notification insertion uapi: General notification queue definitions
| * keys: Make the KEY_NEED_* perms an enum rather than a maskDavid Howells2020-05-191-7/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since the meaning of combining the KEY_NEED_* constants is undefined, make it so that you can't do that by turning them into an enum. The enum is also given some extra values to represent special circumstances, such as: (1) The '0' value is reserved and causes a warning to trap the parameter being unset. (2) The key is to be unlinked and we require no permissions on it, only the keyring, (this replaces the KEY_LOOKUP_FOR_UNLINK flag). (3) An override due to CAP_SYS_ADMIN. (4) An override due to an instantiation token being present. (5) The permissions check is being deferred to later key_permission() calls. The extra values give the opportunity for LSMs to audit these situations. [Note: This really needs overhauling so that lookup_user_key() tells key_task_permission() and the LSM what operation is being done and leaves it to those functions to decide how to map that onto the available permits. However, I don't really want to make these change in the middle of the notifications patchset.] Signed-off-by: David Howells <dhowells@redhat.com> cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> cc: Paul Moore <paul@paul-moore.com> cc: Stephen Smalley <stephen.smalley.work@gmail.com> cc: Casey Schaufler <casey@schaufler-ca.com> cc: keyrings@vger.kernel.org cc: selinux@vger.kernel.org
| * watch_queue: Add a key/keyring notification facilityDavid Howells2020-05-191-3/+96
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a key/keyring change notification facility whereby notifications about changes in key and keyring content and attributes can be received. Firstly, an event queue needs to be created: pipe2(fds, O_NOTIFICATION_PIPE); ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256); then a notification can be set up to report notifications via that queue: struct watch_notification_filter filter = { .nr_filters = 1, .filters = { [0] = { .type = WATCH_TYPE_KEY_NOTIFY, .subtype_filter[0] = UINT_MAX, }, }, }; ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter); keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01); After that, records will be placed into the queue when events occur in which keys are changed in some way. Records are of the following format: struct key_notification { struct watch_notification watch; __u32 key_id; __u32 aux; } *n; Where: n->watch.type will be WATCH_TYPE_KEY_NOTIFY. n->watch.subtype will indicate the type of event, such as NOTIFY_KEY_REVOKED. n->watch.info & WATCH_INFO_LENGTH will indicate the length of the record. n->watch.info & WATCH_INFO_ID will be the second argument to keyctl_watch_key(), shifted. n->key will be the ID of the affected key. n->aux will hold subtype-dependent information, such as the key being linked into the keyring specified by n->key in the case of NOTIFY_KEY_LINKED. Note that it is permissible for event records to be of variable length - or, at least, the length may be dependent on the subtype. Note also that the queue can be shared between multiple notifications of various types. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <jamorris@linux.microsoft.com>
* | mmap locking API: convert mmap_sem commentsMichel Lespinasse2020-06-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Convert comments that reference mmap_sem to reference mmap_lock instead. [akpm@linux-foundation.org: fix up linux-next leftovers] [akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil] [akpm@linux-foundation.org: more linux-next fixups, per Michel] Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: add kvfree_sensitive() for freeing sensitive data objectsWaiman Long2020-06-051-11/+5
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | For kvmalloc'ed data object that contains sensitive information like cryptographic keys, we need to make sure that the buffer is always cleared before freeing it. Using memset() alone for buffer clearing may not provide certainty as the compiler may compile it away. To be sure, the special memzero_explicit() has to be used. This patch introduces a new kvfree_sensitive() for freeing those sensitive data objects allocated by kvmalloc(). The relevant places where kvfree_sensitive() can be used are modified to use it. Fixes: 4f0882491a14 ("KEYS: Avoid false positive ENOMEM error on key read") Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Acked-by: David Howells <dhowells@redhat.com> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Uladzislau Rezki <urezki@gmail.com> Link: http://lkml.kernel.org/r/20200407200318.11711-1-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'keys-fixes-20200329' of ↵Linus Torvalds2020-04-041-17/+86
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull keyrings fixes from David Howells: "Here's a couple of patches that fix a circular dependency between holding key->sem and mm->mmap_sem when reading data from a key. One potential issue is that a filesystem looking to use a key inside, say, ->readpages() could deadlock if the key being read is the key that's required and the buffer the key is being read into is on a page that needs to be fetched. The case actually detected is a bit more involved - with a filesystem calling request_key() and locking the target keyring for write - which could be being read" * tag 'keys-fixes-20200329' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: KEYS: Avoid false positive ENOMEM error on key read KEYS: Don't write out to userspace while holding key semaphore
| * KEYS: Avoid false positive ENOMEM error on key readWaiman Long2020-03-291-15/+43
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | By allocating a kernel buffer with a user-supplied buffer length, it is possible that a false positive ENOMEM error may be returned because the user-supplied length is just too large even if the system do have enough memory to hold the actual key data. Moreover, if the buffer length is larger than the maximum amount of memory that can be returned by kmalloc() (2^(MAX_ORDER-1) number of pages), a warning message will also be printed. To reduce this possibility, we set a threshold (PAGE_SIZE) over which we do check the actual key length first before allocating a buffer of the right size to hold it. The threshold is arbitrary, it is just used to trigger a buffer length check. It does not limit the actual key length as long as there is enough memory to satisfy the memory request. To further avoid large buffer allocation failure due to page fragmentation, kvmalloc() is used to allocate the buffer so that vmapped pages can be used when there is not a large enough contiguous set of pages available for allocation. In the extremely unlikely scenario that the key keeps on being changed and made longer (still <= buflen) in between 2 __keyctl_read_key() calls, the __keyctl_read_key() calling loop in keyctl_read_key() may have to be iterated a large number of times, but definitely not infinite. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com>
| * KEYS: Don't write out to userspace while holding key semaphoreWaiman Long2020-03-291-16/+57
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A lockdep circular locking dependency report was seen when running a keyutils test: [12537.027242] ====================================================== [12537.059309] WARNING: possible circular locking dependency detected [12537.088148] 4.18.0-147.7.1.el8_1.x86_64+debug #1 Tainted: G OE --------- - - [12537.125253] ------------------------------------------------------ [12537.153189] keyctl/25598 is trying to acquire lock: [12537.175087] 000000007c39f96c (&mm->mmap_sem){++++}, at: __might_fault+0xc4/0x1b0 [12537.208365] [12537.208365] but task is already holding lock: [12537.234507] 000000003de5b58d (&type->lock_class){++++}, at: keyctl_read_key+0x15a/0x220 [12537.270476] [12537.270476] which lock already depends on the new lock. [12537.270476] [12537.307209] [12537.307209] the existing dependency chain (in reverse order) is: [12537.340754] [12537.340754] -> #3 (&type->lock_class){++++}: [12537.367434] down_write+0x4d/0x110 [12537.385202] __key_link_begin+0x87/0x280 [12537.405232] request_key_and_link+0x483/0xf70 [12537.427221] request_key+0x3c/0x80 [12537.444839] dns_query+0x1db/0x5a5 [dns_resolver] [12537.468445] dns_resolve_server_name_to_ip+0x1e1/0x4d0 [cifs] [12537.496731] cifs_reconnect+0xe04/0x2500 [cifs] [12537.519418] cifs_readv_from_socket+0x461/0x690 [cifs] [12537.546263] cifs_read_from_socket+0xa0/0xe0 [cifs] [12537.573551] cifs_demultiplex_thread+0x311/0x2db0 [cifs] [12537.601045] kthread+0x30c/0x3d0 [12537.617906] ret_from_fork+0x3a/0x50 [12537.636225] [12537.636225] -> #2 (root_key_user.cons_lock){+.+.}: [12537.664525] __mutex_lock+0x105/0x11f0 [12537.683734] request_key_and_link+0x35a/0xf70 [12537.705640] request_key+0x3c/0x80 [12537.723304] dns_query+0x1db/0x5a5 [dns_resolver] [12537.746773] dns_resolve_server_name_to_ip+0x1e1/0x4d0 [cifs] [12537.775607] cifs_reconnect+0xe04/0x2500 [cifs] [12537.798322] cifs_readv_from_socket+0x461/0x690 [cifs] [12537.823369] cifs_read_from_socket+0xa0/0xe0 [cifs] [12537.847262] cifs_demultiplex_thread+0x311/0x2db0 [cifs] [12537.873477] kthread+0x30c/0x3d0 [12537.890281] ret_from_fork+0x3a/0x50 [12537.908649] [12537.908649] -> #1 (&tcp_ses->srv_mutex){+.+.}: [12537.935225] __mutex_lock+0x105/0x11f0 [12537.954450] cifs_call_async+0x102/0x7f0 [cifs] [12537.977250] smb2_async_readv+0x6c3/0xc90 [cifs] [12538.000659] cifs_readpages+0x120a/0x1e50 [cifs] [12538.023920] read_pages+0xf5/0x560 [12538.041583] __do_page_cache_readahead+0x41d/0x4b0 [12538.067047] ondemand_readahead+0x44c/0xc10 [12538.092069] filemap_fault+0xec1/0x1830 [12538.111637] __do_fault+0x82/0x260 [12538.129216] do_fault+0x419/0xfb0 [12538.146390] __handle_mm_fault+0x862/0xdf0 [12538.167408] handle_mm_fault+0x154/0x550 [12538.187401] __do_page_fault+0x42f/0xa60 [12538.207395] do_page_fault+0x38/0x5e0 [12538.225777] page_fault+0x1e/0x30 [12538.243010] [12538.243010] -> #0 (&mm->mmap_sem){++++}: [12538.267875] lock_acquire+0x14c/0x420 [12538.286848] __might_fault+0x119/0x1b0 [12538.306006] keyring_read_iterator+0x7e/0x170 [12538.327936] assoc_array_subtree_iterate+0x97/0x280 [12538.352154] keyring_read+0xe9/0x110 [12538.370558] keyctl_read_key+0x1b9/0x220 [12538.391470] do_syscall_64+0xa5/0x4b0 [12538.410511] entry_SYSCALL_64_after_hwframe+0x6a/0xdf [12538.435535] [12538.435535] other info that might help us debug this: [12538.435535] [12538.472829] Chain exists of: [12538.472829] &mm->mmap_sem --> root_key_user.cons_lock --> &type->lock_class [12538.472829] [12538.524820] Possible unsafe locking scenario: [12538.524820] [12538.551431] CPU0 CPU1 [12538.572654] ---- ---- [12538.595865] lock(&type->lock_class); [12538.613737] lock(root_key_user.cons_lock); [12538.644234] lock(&type->lock_class); [12538.672410] lock(&mm->mmap_sem); [12538.687758] [12538.687758] *** DEADLOCK *** [12538.687758] [12538.714455] 1 lock held by keyctl/25598: [12538.732097] #0: 000000003de5b58d (&type->lock_class){++++}, at: keyctl_read_key+0x15a/0x220 [12538.770573] [12538.770573] stack backtrace: [12538.790136] CPU: 2 PID: 25598 Comm: keyctl Kdump: loaded Tainted: G [12538.844855] Hardware name: HP ProLiant DL360 Gen9/ProLiant DL360 Gen9, BIOS P89 12/27/2015 [12538.881963] Call Trace: [12538.892897] dump_stack+0x9a/0xf0 [12538.907908] print_circular_bug.isra.25.cold.50+0x1bc/0x279 [12538.932891] ? save_trace+0xd6/0x250 [12538.948979] check_prev_add.constprop.32+0xc36/0x14f0 [12538.971643] ? keyring_compare_object+0x104/0x190 [12538.992738] ? check_usage+0x550/0x550 [12539.009845] ? sched_clock+0x5/0x10 [12539.025484] ? sched_clock_cpu+0x18/0x1e0 [12539.043555] __lock_acquire+0x1f12/0x38d0 [12539.061551] ? trace_hardirqs_on+0x10/0x10 [12539.080554] lock_acquire+0x14c/0x420 [12539.100330] ? __might_fault+0xc4/0x1b0 [12539.119079] __might_fault+0x119/0x1b0 [12539.135869] ? __might_fault+0xc4/0x1b0 [12539.153234] keyring_read_iterator+0x7e/0x170 [12539.172787] ? keyring_read+0x110/0x110 [12539.190059] assoc_array_subtree_iterate+0x97/0x280 [12539.211526] keyring_read+0xe9/0x110 [12539.227561] ? keyring_gc_check_iterator+0xc0/0xc0 [12539.249076] keyctl_read_key+0x1b9/0x220 [12539.266660] do_syscall_64+0xa5/0x4b0 [12539.283091] entry_SYSCALL_64_after_hwframe+0x6a/0xdf One way to prevent this deadlock scenario from happening is to not allow writing to userspace while holding the key semaphore. Instead, an internal buffer is allocated for getting the keys out from the read method first before copying them out to userspace without holding the lock. That requires taking out the __user modifier from all the relevant read methods as well as additional changes to not use any userspace write helpers. That is, 1) The put_user() call is replaced by a direct copy. 2) The copy_to_user() call is replaced by memcpy(). 3) All the fault handling code is removed. Compiling on a x86-64 system, the size of the rxrpc_read() function is reduced from 3795 bytes to 2384 bytes with this patch. Fixes: ^1da177e4c3f4 ("Linux-2.6.12-rc2") Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com>
* | KEYS: reaching the keys quotas correctlyYang Xu2020-03-151-2/+2
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, when we add a new user key, the calltrace as below: add_key() key_create_or_update() key_alloc() __key_instantiate_and_link generic_key_instantiate key_payload_reserve ...... Since commit a08bf91ce28e ("KEYS: allow reaching the keys quotas exactly"), we can reach max bytes/keys in key_alloc, but we forget to remove this limit when we reserver space for payload in key_payload_reserve. So we can only reach max keys but not max bytes when having delta between plen and type->def_datalen. Remove this limit when instantiating the key, so we can keep consistent with key_alloc. Also, fix the similar problem in keyctl_chown_key(). Fixes: 0b77f5bfb45c ("keys: make the keyring quotas controllable through /proc/sys") Fixes: a08bf91ce28e ("KEYS: allow reaching the keys quotas exactly") Cc: stable@vger.kernel.org # 5.0.x Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Yang Xu <xuyang2018.jy@cn.fujitsu.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
* Revert "Merge tag 'keys-acl-20190703' of ↵Linus Torvalds2019-07-111-72/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs" This reverts merge 0f75ef6a9cff49ff612f7ce0578bced9d0b38325 (and thus effectively commits 7a1ade847596 ("keys: Provide KEYCTL_GRANT_PERMISSION") 2e12256b9a76 ("keys: Replace uid/gid/perm permissions checking with an ACL") that the merge brought in). It turns out that it breaks booting with an encrypted volume, and Eric biggers reports that it also breaks the fscrypt tests [1] and loading of in-kernel X.509 certificates [2]. The root cause of all the breakage is likely the same, but David Howells is off email so rather than try to work it out it's getting reverted in order to not impact the rest of the merge window. [1] https://lore.kernel.org/lkml/20190710011559.GA7973@sol.localdomain/ [2] https://lore.kernel.org/lkml/20190710013225.GB7973@sol.localdomain/ Link: https://lore.kernel.org/lkml/CAHk-=wjxoeMJfeBahnWH=9zShKp2bsVy527vo3_y8HfOdhwAAw@mail.gmail.com/ Reported-by: Eric Biggers <ebiggers@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'keys-acl-20190703' of ↵Linus Torvalds2019-07-091-32/+72
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull keyring ACL support from David Howells: "This changes the permissions model used by keys and keyrings to be based on an internal ACL by the following means: - Replace the permissions mask internally with an ACL that contains a list of ACEs, each with a specific subject with a permissions mask. Potted default ACLs are available for new keys and keyrings. ACE subjects can be macroised to indicate the UID and GID specified on the key (which remain). Future commits will be able to add additional subject types, such as specific UIDs or domain tags/namespaces. Also split a number of permissions to give finer control. Examples include splitting the revocation permit from the change-attributes permit, thereby allowing someone to be granted permission to revoke a key without allowing them to change the owner; also the ability to join a keyring is split from the ability to link to it, thereby stopping a process accessing a keyring by joining it and thus acquiring use of possessor permits. - Provide a keyctl to allow the granting or denial of one or more permits to a specific subject. Direct access to the ACL is not granted, and the ACL cannot be viewed" * tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: keys: Provide KEYCTL_GRANT_PERMISSION keys: Replace uid/gid/perm permissions checking with an ACL
| * keys: Provide KEYCTL_GRANT_PERMISSIONDavid Howells2019-07-031-1/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Provide a keyctl() operation to grant/remove permissions. The grant operation, wrapped by libkeyutils, looks like: int ret = keyctl_grant_permission(key_serial_t key, enum key_ace_subject_type type, unsigned int subject, unsigned int perm); Where key is the key to be modified, type and subject represent the subject to which permission is to be granted (or removed) and perm is the set of permissions to be granted. 0 is returned on success. SET_SECURITY permission is required for this. The subject type currently must be KEY_ACE_SUBJ_STANDARD for the moment (other subject types will come along later). For subject type KEY_ACE_SUBJ_STANDARD, the following subject values are available: KEY_ACE_POSSESSOR The possessor of the key KEY_ACE_OWNER The owner of the key KEY_ACE_GROUP The key's group KEY_ACE_EVERYONE Everyone perm lists the permissions to be granted: KEY_ACE_VIEW Can view the key metadata KEY_ACE_READ Can read the key content KEY_ACE_WRITE Can update/modify the key content KEY_ACE_SEARCH Can find the key by searching/requesting KEY_ACE_LINK Can make a link to the key KEY_ACE_SET_SECURITY Can set security KEY_ACE_INVAL Can invalidate KEY_ACE_REVOKE Can revoke KEY_ACE_JOIN Can join this keyring KEY_ACE_CLEAR Can clear this keyring If an ACE already exists for the subject, then the permissions mask will be overwritten; if perm is 0, it will be deleted. Currently, the internal ACL is limited to a maximum of 16 entries. For example: int ret = keyctl_grant_permission(key, KEY_ACE_SUBJ_STANDARD, KEY_ACE_OWNER, KEY_ACE_VIEW | KEY_ACE_READ); Signed-off-by: David Howells <dhowells@redhat.com>
| * keys: Replace uid/gid/perm permissions checking with an ACLDavid Howells2019-06-281-31/+65
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Replace the uid/gid/perm permissions checking on a key with an ACL to allow the SETATTR and SEARCH permissions to be split. This will also allow a greater range of subjects to represented. ============ WHY DO THIS? ============ The problem is that SETATTR and SEARCH cover a slew of actions, not all of which should be grouped together. For SETATTR, this includes actions that are about controlling access to a key: (1) Changing a key's ownership. (2) Changing a key's security information. (3) Setting a keyring's restriction. And actions that are about managing a key's lifetime: (4) Setting an expiry time. (5) Revoking a key. and (proposed) managing a key as part of a cache: (6) Invalidating a key. Managing a key's lifetime doesn't really have anything to do with controlling access to that key. Expiry time is awkward since it's more about the lifetime of the content and so, in some ways goes better with WRITE permission. It can, however, be set unconditionally by a process with an appropriate authorisation token for instantiating a key, and can also be set by the key type driver when a key is instantiated, so lumping it with the access-controlling actions is probably okay. As for SEARCH permission, that currently covers: (1) Finding keys in a keyring tree during a search. (2) Permitting keyrings to be joined. (3) Invalidation. But these don't really belong together either, since these actions really need to be controlled separately. Finally, there are number of special cases to do with granting the administrator special rights to invalidate or clear keys that I would like to handle with the ACL rather than key flags and special checks. =============== WHAT IS CHANGED =============== The SETATTR permission is split to create two new permissions: (1) SET_SECURITY - which allows the key's owner, group and ACL to be changed and a restriction to be placed on a keyring. (2) REVOKE - which allows a key to be revoked. The SEARCH permission is split to create: (1) SEARCH - which allows a keyring to be search and a key to be found. (2) JOIN - which allows a keyring to be joined as a session keyring. (3) INVAL - which allows a key to be invalidated. The WRITE permission is also split to create: (1) WRITE - which allows a key's content to be altered and links to be added, removed and replaced in a keyring. (2) CLEAR - which allows a keyring to be cleared completely. This is split out to make it possible to give just this to an administrator. (3) REVOKE - see above. Keys acquire ACLs which consist of a series of ACEs, and all that apply are unioned together. An ACE specifies a subject, such as: (*) Possessor - permitted to anyone who 'possesses' a key (*) Owner - permitted to the key owner (*) Group - permitted to the key group (*) Everyone - permitted to everyone Note that 'Other' has been replaced with 'Everyone' on the assumption that you wouldn't grant a permit to 'Other' that you wouldn't also grant to everyone else. Further subjects may be made available by later patches. The ACE also specifies a permissions mask. The set of permissions is now: VIEW Can view the key metadata READ Can read the key content WRITE Can update/modify the key content SEARCH Can find the key by searching/requesting LINK Can make a link to the key SET_SECURITY Can change owner, ACL, expiry INVAL Can invalidate REVOKE Can revoke JOIN Can join this keyring CLEAR Can clear this keyring The KEYCTL_SETPERM function is then deprecated. The KEYCTL_SET_TIMEOUT function then is permitted if SET_SECURITY is set, or if the caller has a valid instantiation auth token. The KEYCTL_INVALIDATE function then requires INVAL. The KEYCTL_REVOKE function then requires REVOKE. The KEYCTL_JOIN_SESSION_KEYRING function then requires JOIN to join an existing keyring. The JOIN permission is enabled by default for session keyrings and manually created keyrings only. ====================== BACKWARD COMPATIBILITY ====================== To maintain backward compatibility, KEYCTL_SETPERM will translate the permissions mask it is given into a new ACL for a key - unless KEYCTL_SET_ACL has been called on that key, in which case an error will be returned. It will convert possessor, owner, group and other permissions into separate ACEs, if each portion of the mask is non-zero. SETATTR permission turns on all of INVAL, REVOKE and SET_SECURITY. WRITE permission turns on WRITE, REVOKE and, if a keyring, CLEAR. JOIN is turned on if a keyring is being altered. The KEYCTL_DESCRIBE function translates the ACL back into a permissions mask to return depending on possessor, owner, group and everyone ACEs. It will make the following mappings: (1) INVAL, JOIN -> SEARCH (2) SET_SECURITY -> SETATTR (3) REVOKE -> WRITE if SETATTR isn't already set (4) CLEAR -> WRITE Note that the value subsequently returned by KEYCTL_DESCRIBE may not match the value set with KEYCTL_SETATTR. ======= TESTING ======= This passes the keyutils testsuite for all but a couple of tests: (1) tests/keyctl/dh_compute/badargs: The first wrong-key-type test now returns EOPNOTSUPP rather than ENOKEY as READ permission isn't removed if the type doesn't have ->read(). You still can't actually read the key. (2) tests/keyctl/permitting/valid: The view-other-permissions test doesn't work as Other has been replaced with Everyone in the ACL. Signed-off-by: David Howells <dhowells@redhat.com>
* | Merge tag 'keys-namespace-20190627' of ↵Linus Torvalds2019-07-091-3/+5
|\| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull keyring namespacing from David Howells: "These patches help make keys and keyrings more namespace aware. Firstly some miscellaneous patches to make the process easier: - Simplify key index_key handling so that the word-sized chunks assoc_array requires don't have to be shifted about, making it easier to add more bits into the key. - Cache the hash value in the key so that we don't have to calculate on every key we examine during a search (it involves a bunch of multiplications). - Allow keying_search() to search non-recursively. Then the main patches: - Make it so that keyring names are per-user_namespace from the point of view of KEYCTL_JOIN_SESSION_KEYRING so that they're not accessible cross-user_namespace. keyctl_capabilities() shows KEYCTL_CAPS1_NS_KEYRING_NAME for this. - Move the user and user-session keyrings to the user_namespace rather than the user_struct. This prevents them propagating directly across user_namespaces boundaries (ie. the KEY_SPEC_* flags will only pick from the current user_namespace). - Make it possible to include the target namespace in which the key shall operate in the index_key. This will allow the possibility of multiple keys with the same description, but different target domains to be held in the same keyring. keyctl_capabilities() shows KEYCTL_CAPS1_NS_KEY_TAG for this. - Make it so that keys are implicitly invalidated by removal of a domain tag, causing them to be garbage collected. - Institute a network namespace domain tag that allows keys to be differentiated by the network namespace in which they operate. New keys that are of a type marked 'KEY_TYPE_NET_DOMAIN' are assigned the network domain in force when they are created. - Make it so that the desired network namespace can be handed down into the request_key() mechanism. This allows AFS, NFS, etc. to request keys specific to the network namespace of the superblock. This also means that the keys in the DNS record cache are thenceforth namespaced, provided network filesystems pass the appropriate network namespace down into dns_query(). For DNS, AFS and NFS are good, whilst CIFS and Ceph are not. Other cache keyrings, such as idmapper keyrings, also need to set the domain tag - for which they need access to the network namespace of the superblock" * tag 'keys-namespace-20190627' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: keys: Pass the network namespace into request_key mechanism keys: Network namespace domain tag keys: Garbage collect keys for which the domain has been removed keys: Include target namespace in match criteria keys: Move the user and user-session keyrings to the user_namespace keys: Namespace keyring names keys: Add a 'recurse' flag for keyring searches keys: Cache the hash value to avoid lots of recalculation keys: Simplify key description management
| * keys: Pass the network namespace into request_key mechanismDavid Howells2019-06-281-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | Create a request_key_net() function and use it to pass the network namespace domain tag into DNS revolver keys and rxrpc/AFS keys so that keys for different domains can coexist in the same keyring. Signed-off-by: David Howells <dhowells@redhat.com> cc: netdev@vger.kernel.org cc: linux-nfs@vger.kernel.org cc: linux-cifs@vger.kernel.org cc: linux-afs@lists.infradead.org
| * keys: Include target namespace in match criteriaDavid Howells2019-06-261-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently a key has a standard matching criteria of { type, description } and this is used to only allow keys with unique criteria in a keyring. This means, however, that you cannot have keys with the same type and description but a different target namespace in the same keyring. This is a potential problem for a containerised environment where, say, a container is made up of some parts of its mount space involving netfs superblocks from two different network namespaces. This is also a problem for shared system management keyrings such as the DNS records keyring or the NFS idmapper keyring that might contain keys from different network namespaces. Fix this by including a namespace component in a key's matching criteria. Keyring types are marked to indicate which, if any, namespace is relevant to keys of that type, and that namespace is set when the key is created from the current task's namespace set. The capability bit KEYCTL_CAPS1_NS_KEY_TAG is set if the kernel is employing this feature. Signed-off-by: David Howells <dhowells@redhat.com>
| * keys: Namespace keyring namesDavid Howells2019-06-261-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Keyring names are held in a single global list that any process can pick from by means of keyctl_join_session_keyring (provided the keyring grants Search permission). This isn't very container friendly, however. Make the following changes: (1) Make default session, process and thread keyring names begin with a '.' instead of '_'. (2) Keyrings whose names begin with a '.' aren't added to the list. Such keyrings are system specials. (3) Replace the global list with per-user_namespace lists. A keyring adds its name to the list for the user_namespace that it is currently in. (4) When a user_namespace is deleted, it just removes itself from the keyring name list. The global keyring_name_lock is retained for accessing the name lists. This allows (4) to work. This can be tested by: # keyctl newring foo @s 995906392 # unshare -U $ keyctl show ... 995906392 --alswrv 65534 65534 \_ keyring: foo ... $ keyctl session foo Joined session keyring: 935622349 As can be seen, a new session keyring was created. The capability bit KEYCTL_CAPS1_NS_KEYRING_NAME is set if the kernel is employing this feature. Signed-off-by: David Howells <dhowells@redhat.com> cc: Eric W. Biederman <ebiederm@xmission.com>
| * keys: Add a 'recurse' flag for keyring searchesDavid Howells2019-06-261-1/+1
| | | | | | | | | | | | | | | | Add a 'recurse' flag for keyring searches so that the flag can be omitted and recursion disabled, thereby allowing just the nominated keyring to be searched and none of the children. Signed-off-by: David Howells <dhowells@redhat.com>
* | Merge tag 'keys-misc-20190619' of ↵Linus Torvalds2019-07-091-1/+89
|\| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull misc keyring updates from David Howells: "These are some miscellaneous keyrings fixes and improvements: - Fix a bunch of warnings from sparse, including missing RCU bits and kdoc-function argument mismatches - Implement a keyctl to allow a key to be moved from one keyring to another, with the option of prohibiting key replacement in the destination keyring. - Grant Link permission to possessors of request_key_auth tokens so that upcall servicing daemons can more easily arrange things such that only the necessary auth key is passed to the actual service program, and not all the auth keys a daemon might possesss. - Improvement in lookup_user_key(). - Implement a keyctl to allow keyrings subsystem capabilities to be queried. The keyutils next branch has commits to make available, document and test the move-key and capabilities code: https://git.kernel.org/pub/scm/linux/kernel/git/dhowells/keyutils.git/log They're currently on the 'next' branch" * tag 'keys-misc-20190619' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: keys: Add capability-checking keyctl function keys: Reuse keyring_index_key::desc_len in lookup_user_key() keys: Grant Link permission to possessers of request_key auth keys keys: Add a keyctl to move a key between keyrings keys: Hoist locking out of __key_link_begin() keys: Break bits out of key_unlink() keys: Change keyring_serialise_link_sem to a mutex keys: sparse: Fix kdoc mismatches keys: sparse: Fix incorrect RCU accesses keys: sparse: Fix key_fs[ug]id_changed()
| * keys: Add capability-checking keyctl functionDavid Howells2019-06-191-0/+35
| | | | | | | | | | | | | | Add a keyctl function that requests a set of capability bits to find out what features are supported. Signed-off-by: David Howells <dhowells@redhat.com>
| * keys: Add a keyctl to move a key between keyringsDavid Howells2019-05-301-0/+52
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a keyctl to atomically move a link to a key from one keyring to another. The key must exist in "from" keyring and a flag can be given to cause the operation to fail if there's a matching key already in the "to" keyring. This can be done with: keyctl(KEYCTL_MOVE, key_serial_t key, key_serial_t from_keyring, key_serial_t to_keyring, unsigned int flags); The key being moved must grant Link permission and both keyrings must grant Write permission. flags should be 0 or KEYCTL_MOVE_EXCL, with the latter preventing displacement of a matching key from the "to" keyring. Signed-off-by: David Howells <dhowells@redhat.com>
| * keys: sparse: Fix incorrect RCU accessesDavid Howells2019-05-291-1/+2
| | | | | | | | | | | | | | | | | | | | | | Fix a pair of accesses that should be using RCU protection. rcu_dereference_protected() is needed to access task_struct::real_parent. current_cred() should be used to access current->cred. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <jamorris@linux.microsoft.com>
* | treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152Thomas Gleixner2019-05-301-5/+1
|/ | | | | | | | | | | | | | | | | | | | | Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 3029 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* Merge branch 'next-general' of ↵Linus Torvalds2019-03-071-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security Pull security subsystem updates from James Morris: - Extend LSM stacking to allow sharing of cred, file, ipc, inode, and task blobs. This paves the way for more full-featured LSMs to be merged, and is specifically aimed at LandLock and SARA LSMs. This work is from Casey and Kees. - There's a new LSM from Micah Morton: "SafeSetID gates the setid family of syscalls to restrict UID/GID transitions from a given UID/GID to only those approved by a system-wide whitelist." This feature is currently shipping in ChromeOS. * 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (62 commits) keys: fix missing __user in KEYCTL_PKEY_QUERY LSM: Update list of SECURITYFS users in Kconfig LSM: Ignore "security=" when "lsm=" is specified LSM: Update function documentation for cap_capable security: mark expected switch fall-throughs and add a missing break tomoyo: Bump version. LSM: fix return value check in safesetid_init_securityfs() LSM: SafeSetID: add selftest LSM: SafeSetID: remove unused include LSM: SafeSetID: 'depend' on CONFIG_SECURITY LSM: Add 'name' field for SafeSetID in DEFINE_LSM LSM: add SafeSetID module that gates setid calls LSM: add SafeSetID module that gates setid calls tomoyo: Allow multiple use_group lines. tomoyo: Coding style fix. tomoyo: Swicth from cred->security to task_struct->security. security: keys: annotate implicit fall throughs security: keys: annotate implicit fall throughs security: keys: annotate implicit fall through capabilities:: annotate implicit fall through ...
| * keys: fix missing __user in KEYCTL_PKEY_QUERYBen Dooks2019-03-051-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The arg5 of KEYCTL_PKEY_QUERY should have a __user pointer tag on it as it is a user pointer. This clears the following sparse warning for this: security/keys/keyctl.c:1755:43: warning: incorrect type in argument 3 (different address spaces) security/keys/keyctl.c:1755:43: expected struct keyctl_pkey_query [noderef] <asn:1>*<noident> security/keys/keyctl.c:1755:43: got struct keyctl_pkey_query *<noident> Signed-off-by: Ben Dooks <ben.dooks@codethink.co.uk> Acked-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: James Morris <james.morris@microsoft.com>
* | keys: Fix dependency loop between construction record and auth keyDavid Howells2019-02-151-0/+1
|/ | | | | | | | | | | | | | | | | | | | | | | | In the request_key() upcall mechanism there's a dependency loop by which if a key type driver overrides the ->request_key hook and the userspace side manages to lose the authorisation key, the auth key and the internal construction record (struct key_construction) can keep each other pinned. Fix this by the following changes: (1) Killing off the construction record and using the auth key instead. (2) Including the operation name in the auth key payload and making the payload available outside of security/keys/. (3) The ->request_key hook is given the authkey instead of the cons record and operation name. Changes (2) and (3) allow the auth key to naturally be cleaned up if the keyring it is in is destroyed or cleared or the auth key is unlinked. Fixes: 7ee02a316600 ("keys: Fix dependency loop between construction record and auth key") Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.morris@microsoft.com>
* security: audit and remove any unnecessary uses of module.hPaul Gortmaker2018-12-121-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Historically a lot of these existed because we did not have a distinction between what was modular code and what was providing support to modules via EXPORT_SYMBOL and friends. That changed when we forked out support for the latter into the export.h file. This means we should be able to reduce the usage of module.h in code that is obj-y Makefile or bool Kconfig. The advantage in removing such instances is that module.h itself sources about 15 other headers; adding significantly to what we feed cpp, and it can obscure what headers we are effectively using. Since module.h might have been the implicit source for init.h (for __init) and for export.h (for EXPORT_SYMBOL) we consider each instance for the presence of either and replace as needed. Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: John Johansen <john.johansen@canonical.com> Cc: Mimi Zohar <zohar@linux.ibm.com> Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com> Cc: David Howells <dhowells@redhat.com> Cc: linux-security-module@vger.kernel.org Cc: linux-integrity@vger.kernel.org Cc: keyrings@vger.kernel.org Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: James Morris <james.morris@microsoft.com>
* KEYS: Provide keyctls to drive the new key type ops for asymmetric keys [ver #2]David Howells2018-10-261-0/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Provide five keyctl functions that permit userspace to make use of the new key type ops for accessing and driving asymmetric keys. (*) Query an asymmetric key. long keyctl(KEYCTL_PKEY_QUERY, key_serial_t key, unsigned long reserved, struct keyctl_pkey_query *info); Get information about an asymmetric key. The information is returned in the keyctl_pkey_query struct: __u32 supported_ops; A bit mask of flags indicating which ops are supported. This is constructed from a bitwise-OR of: KEYCTL_SUPPORTS_{ENCRYPT,DECRYPT,SIGN,VERIFY} __u32 key_size; The size in bits of the key. __u16 max_data_size; __u16 max_sig_size; __u16 max_enc_size; __u16 max_dec_size; The maximum sizes in bytes of a blob of data to be signed, a signature blob, a blob to be encrypted and a blob to be decrypted. reserved must be set to 0. This is intended for future use to hand over one or more passphrases needed unlock a key. If successful, 0 is returned. If the key is not an asymmetric key, EOPNOTSUPP is returned. (*) Encrypt, decrypt, sign or verify a blob using an asymmetric key. long keyctl(KEYCTL_PKEY_ENCRYPT, const struct keyctl_pkey_params *params, const char *info, const void *in, void *out); long keyctl(KEYCTL_PKEY_DECRYPT, const struct keyctl_pkey_params *params, const char *info, const void *in, void *out); long keyctl(KEYCTL_PKEY_SIGN, const struct keyctl_pkey_params *params, const char *info, const void *in, void *out); long keyctl(KEYCTL_PKEY_VERIFY, const struct keyctl_pkey_params *params, const char *info, const void *in, const void *in2); Use an asymmetric key to perform a public-key cryptographic operation a blob of data. The parameter block pointed to by params contains a number of integer values: __s32 key_id; __u32 in_len; __u32 out_len; __u32 in2_len; For a given operation, the in and out buffers are used as follows: Operation ID in,in_len out,out_len in2,in2_len ======================= =============== =============== =========== KEYCTL_PKEY_ENCRYPT Raw data Encrypted data - KEYCTL_PKEY_DECRYPT Encrypted data Raw data - KEYCTL_PKEY_SIGN Raw data Signature - KEYCTL_PKEY_VERIFY Raw data - Signature info is a string of key=value pairs that supply supplementary information. The __spare space in the parameter block must be set to 0. This is intended, amongst other things, to allow the passing of passphrases required to unlock a key. If successful, encrypt, decrypt and sign all return the amount of data written into the output buffer. Verification returns 0 on success. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Marcel Holtmann <marcel@holtmann.org> Reviewed-by: Marcel Holtmann <marcel@holtmann.org> Reviewed-by: Denis Kenzior <denkenz@gmail.com> Tested-by: Denis Kenzior <denkenz@gmail.com> Signed-off-by: James Morris <james.morris@microsoft.com>
* KEYS: reject NULL restriction string when type is specifiedEric Biggers2017-12-081-14/+10
| | | | | | | | | | | | | | | | keyctl_restrict_keyring() allows through a NULL restriction when the "type" is non-NULL, which causes a NULL pointer dereference in asymmetric_lookup_restriction() when it calls strcmp() on the restriction string. But no key types actually use a "NULL restriction" to mean anything, so update keyctl_restrict_keyring() to reject it with EINVAL. Reported-by: syzbot <syzkaller@googlegroups.com> Fixes: 97d3aa0f3134 ("KEYS: Add a lookup_restriction function for the asymmetric key type") Cc: <stable@vger.kernel.org> # v4.12+ Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com>
* KEYS: Fix race between updating and finding a negative keyDavid Howells2017-10-181-5/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection error into one field such that: (1) The instantiation state can be modified/read atomically. (2) The error can be accessed atomically with the state. (3) The error isn't stored unioned with the payload pointers. This deals with the problem that the state is spread over three different objects (two bits and a separate variable) and reading or updating them atomically isn't practical, given that not only can uninstantiated keys change into instantiated or rejected keys, but rejected keys can also turn into instantiated keys - and someone accessing the key might not be using any locking. The main side effect of this problem is that what was held in the payload may change, depending on the state. For instance, you might observe the key to be in the rejected state. You then read the cached error, but if the key semaphore wasn't locked, the key might've become instantiated between the two reads - and you might now have something in hand that isn't actually an error code. The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error code if the key is negatively instantiated. The key_is_instantiated() function is replaced with key_is_positive() to avoid confusion as negative keys are also 'instantiated'. Additionally, barriering is included: (1) Order payload-set before state-set during instantiation. (2) Order state-read before payload-read when using the key. Further separate barriering is necessary if RCU is being used to access the payload content after reading the payload pointers. Fixes: 146aa8b1453b ("KEYS: Merge the type-specific data with the payload data") Cc: stable@vger.kernel.org # v4.4+ Reported-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Eric Biggers <ebiggers@google.com>
* KEYS: prevent KEYCTL_READ on negative keyEric Biggers2017-09-251-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Because keyctl_read_key() looks up the key with no permissions requested, it may find a negatively instantiated key. If the key is also possessed, we went ahead and called ->read() on the key. But the key payload will actually contain the ->reject_error rather than the normal payload. Thus, the kernel oopses trying to read the user_key_payload from memory address (int)-ENOKEY = 0x00000000ffffff82. Fortunately the payload data is stored inline, so it shouldn't be possible to abuse this as an arbitrary memory read primitive... Reproducer: keyctl new_session keyctl request2 user desc '' @s keyctl read $(keyctl show | awk '/user: desc/ {print $1}') It causes a crash like the following: BUG: unable to handle kernel paging request at 00000000ffffff92 IP: user_read+0x33/0xa0 PGD 36a54067 P4D 36a54067 PUD 0 Oops: 0000 [#1] SMP CPU: 0 PID: 211 Comm: keyctl Not tainted 4.14.0-rc1 #337 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014 task: ffff90aa3b74c3c0 task.stack: ffff9878c0478000 RIP: 0010:user_read+0x33/0xa0 RSP: 0018:ffff9878c047bee8 EFLAGS: 00010246 RAX: 0000000000000001 RBX: ffff90aa3d7da340 RCX: 0000000000000017 RDX: 0000000000000000 RSI: 00000000ffffff82 RDI: ffff90aa3d7da340 RBP: ffff9878c047bf00 R08: 00000024f95da94f R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f58ece69740(0000) GS:ffff90aa3e200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000ffffff92 CR3: 0000000036adc001 CR4: 00000000003606f0 Call Trace: keyctl_read_key+0xac/0xe0 SyS_keyctl+0x99/0x120 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x7f58ec787bb9 RSP: 002b:00007ffc8d401678 EFLAGS: 00000206 ORIG_RAX: 00000000000000fa RAX: ffffffffffffffda RBX: 00007ffc8d402800 RCX: 00007f58ec787bb9 RDX: 0000000000000000 RSI: 00000000174a63ac RDI: 000000000000000b RBP: 0000000000000004 R08: 00007ffc8d402809 R09: 0000000000000020 R10: 0000000000000000 R11: 0000000000000206 R12: 00007ffc8d402800 R13: 00007ffc8d4016e0 R14: 0000000000000000 R15: 0000000000000000 Code: e5 41 55 49 89 f5 41 54 49 89 d4 53 48 89 fb e8 a4 b4 ad ff 85 c0 74 09 80 3d b9 4c 96 00 00 74 43 48 8b b3 20 01 00 00 4d 85 ed <0f> b7 5e 10 74 29 4d 85 e4 74 24 4c 39 e3 4c 89 e2 4c 89 ef 48 RIP: user_read+0x33/0xa0 RSP: ffff9878c047bee8 CR2: 00000000ffffff92 Fixes: 61ea0c0ba904 ("KEYS: Skip key state checks when checking for possession") Cc: <stable@vger.kernel.org> [v3.13+] Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com>
* KEYS: fix key refcount leak in keyctl_read_key()Eric Biggers2017-09-251-1/+1
| | | | | | | | | | | | | | In keyctl_read_key(), if key_permission() were to return an error code other than EACCES, we would leak a the reference to the key. This can't actually happen currently because key_permission() can only return an error code other than EACCES if security_key_permission() does, only SELinux and Smack implement that hook, and neither can return an error code other than EACCES. But it should still be fixed, as it is a bug waiting to happen. Fixes: 29db91906340 ("[PATCH] Keys: Add LSM hooks for key management [try #3]") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com>
* KEYS: fix key refcount leak in keyctl_assume_authority()Eric Biggers2017-09-251-4/+2
| | | | | | | | | | | | | | | | | In keyctl_assume_authority(), if keyctl_change_reqkey_auth() were to fail, we would leak the reference to the 'authkey'. Currently this can only happen if prepare_creds() fails to allocate memory. But it still should be fixed, as it is a more severe bug waiting to happen. This patch also moves the read of 'authkey->serial' to before the reference to the authkey is dropped. Doing the read after dropping the reference is very fragile because it assumes we still hold another reference to the key. (Which we do, in current->cred->request_key_auth, but there's no reason not to write it in the "obviously correct" way.) Fixes: d84f4f992cbd ("CRED: Inaugurate COW credentials") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com>
* KEYS: sanitize add_key() and keyctl() key payloadsEric Biggers2017-06-091-3/+9
| | | | | | | | | | | Before returning from add_key() or one of the keyctl() commands that takes in a key payload, zero the temporary buffer that was allocated to hold the key payload copied from userspace. This may contain sensitive key material that should not be kept around in the slab caches. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
* KEYS: fix dereferencing NULL payload with nonzero lengthEric Biggers2017-06-091-2/+2
| | | | | | | | | | | | | | | | | sys_add_key() and the KEYCTL_UPDATE operation of sys_keyctl() allowed a NULL payload with nonzero length to be passed to the key type's ->preparse(), ->instantiate(), and/or ->update() methods. Various key types including asymmetric, cifs.idmap, cifs.spnego, and pkcs7_test did not handle this case, allowing an unprivileged user to trivially cause a NULL pointer dereference (kernel oops) if one of these key types was present. Fix it by doing the copy_from_user() when 'plen' is nonzero rather than when '_payload' is non-NULL, causing the syscall to fail with EFAULT as expected when an invalid buffer is specified. Cc: stable@vger.kernel.org # 2.6.10+ Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
* treewide: use kv[mz]alloc* rather than opencoded variantsMichal Hocko2017-05-091-16/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are many code paths opencoding kvmalloc. Let's use the helper instead. The main difference to kvmalloc is that those users are usually not considering all the aspects of the memory allocator. E.g. allocation requests <= 32kB (with 4kB pages) are basically never failing and invoke OOM killer to satisfy the allocation. This sounds too disruptive for something that has a reasonable fallback - the vmalloc. On the other hand those requests might fallback to vmalloc even when the memory allocator would succeed after several more reclaim/compaction attempts previously. There is no guarantee something like that happens though. This patch converts many of those places to kv[mz]alloc* helpers because they are more conservative. Link: http://lkml.kernel.org/r/20170306103327.2766-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> # Xen bits Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Andreas Dilger <andreas.dilger@intel.com> # Lustre Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> # KVM/s390 Acked-by: Dan Williams <dan.j.williams@intel.com> # nvdim Acked-by: David Sterba <dsterba@suse.com> # btrfs Acked-by: Ilya Dryomov <idryomov@gmail.com> # Ceph Acked-by: Tariq Toukan <tariqt@mellanox.com> # mlx4 Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx5 Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Tony Luck <tony.luck@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Santosh Raspatur <santosh@chelsio.com> Cc: Hariprasad S <hariprasad@chelsio.com> Cc: Yishai Hadas <yishaih@mellanox.com> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: "Yan, Zheng" <zyan@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'next' of ↵Linus Torvalds2017-05-031-1/+59
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security Pull security subsystem updates from James Morris: "Highlights: IMA: - provide ">" and "<" operators for fowner/uid/euid rules KEYS: - add a system blacklist keyring - add KEYCTL_RESTRICT_KEYRING, exposes keyring link restriction functionality to userland via keyctl() LSM: - harden LSM API with __ro_after_init - add prlmit security hook, implement for SELinux - revive security_task_alloc hook TPM: - implement contextual TPM command 'spaces'" * 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (98 commits) tpm: Fix reference count to main device tpm_tis: convert to using locality callbacks tpm: fix handling of the TPM 2.0 event logs tpm_crb: remove a cruft constant keys: select CONFIG_CRYPTO when selecting DH / KDF apparmor: Make path_max parameter readonly apparmor: fix parameters so that the permission test is bypassed at boot apparmor: fix invalid reference to index variable of iterator line 836 apparmor: use SHASH_DESC_ON_STACK security/apparmor/lsm.c: set debug messages apparmor: fix boolreturn.cocci warnings Smack: Use GFP_KERNEL for smk_netlbl_mls(). smack: fix double free in smack_parse_opts_str() KEYS: add SP800-56A KDF support for DH KEYS: Keyring asymmetric key restrict method with chaining KEYS: Restrict asymmetric key linkage using a specific keychain KEYS: Add a lookup_restriction function for the asymmetric key type KEYS: Add KEYCTL_RESTRICT_KEYRING KEYS: Consistent ordering for __key_link_begin and restrict check KEYS: Add an optional lookup_restriction hook to key_type ...
| * KEYS: add SP800-56A KDF support for DHStephan Mueller2017-04-041-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SP800-56A defines the use of DH with key derivation function based on a counter. The input to the KDF is defined as (DH shared secret || other information). The value for the "other information" is to be provided by the caller. The KDF is implemented using the hash support from the kernel crypto API. The implementation uses the symmetric hash support as the input to the hash operation is usually very small. The caller is allowed to specify the hash name that he wants to use to derive the key material allowing the use of all supported hashes provided with the kernel crypto API. As the KDF implements the proper truncation of the DH shared secret to the requested size, this patch fills the caller buffer up to its size. The patch is tested with a new test added to the keyutils user space code which uses a CAVS test vector testing the compliance with SP800-56A. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: David Howells <dhowells@redhat.com>
| * KEYS: Add KEYCTL_RESTRICT_KEYRINGMat Martineau2017-04-041-0/+58
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Keyrings recently gained restrict_link capabilities that allow individual keys to be validated prior to linking. This functionality was only available using internal kernel APIs. With the KEYCTL_RESTRICT_KEYRING command existing keyrings can be configured to check the content of keys before they are linked, and then allow or disallow linkage of that key to the keyring. To restrict a keyring, call: keyctl(KEYCTL_RESTRICT_KEYRING, key_serial_t keyring, const char *type, const char *restriction) where 'type' is the name of a registered key type and 'restriction' is a string describing how key linkage is to be restricted. The restriction option syntax is specific to each key type. Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
* | KEYS: fix keyctl_set_reqkey_keyring() to not leak thread keyringsEric Biggers2017-04-181-7/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This fixes CVE-2017-7472. Running the following program as an unprivileged user exhausts kernel memory by leaking thread keyrings: #include <keyutils.h> int main() { for (;;) keyctl_set_reqkey_keyring(KEY_REQKEY_DEFL_THREAD_KEYRING); } Fix it by only creating a new thread keyring if there wasn't one before. To make things more consistent, make install_thread_keyring_to_cred() and install_process_keyring_to_cred() both return 0 if the corresponding keyring is already present. Fixes: d84f4f992cbd ("CRED: Inaugurate COW credentials") Cc: stable@vger.kernel.org # 2.6.29+ Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com>
* | KEYS: Disallow keyrings beginning with '.' to be joined as session keyringsDavid Howells2017-04-181-2/+7
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This fixes CVE-2016-9604. Keyrings whose name begin with a '.' are special internal keyrings and so userspace isn't allowed to create keyrings by this name to prevent shadowing. However, the patch that added the guard didn't fix KEYCTL_JOIN_SESSION_KEYRING. Not only can that create dot-named keyrings, it can also subscribe to them as a session keyring if they grant SEARCH permission to the user. This, for example, allows a root process to set .builtin_trusted_keys as its session keyring, at which point it has full access because now the possessor permissions are added. This permits root to add extra public keys, thereby bypassing module verification. This also affects kexec and IMA. This can be tested by (as root): keyctl session .builtin_trusted_keys keyctl add user a a @s keyctl list @s which on my test box gives me: 2 keys in keyring: 180010936: ---lswrv 0 0 asymmetric: Build time autogenerated kernel key: ae3d4a31b82daa8e1a75b49dc2bba949fd992a05 801382539: --alswrv 0 0 user: a Fix this by rejecting names beginning with a '.' in the keyctl. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com> cc: linux-ima-devel@lists.sourceforge.net cc: stable@vger.kernel.org