From f64e8084c94bb0449177364856d8117e2f14c4c0 Mon Sep 17 00:00:00 2001
From: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Date: Tue, 1 Mar 2016 12:59:20 +0530
Subject: powerpc/mm: Move hash related mmu-*.h headers to book3s/

No code changes.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
---
 arch/powerpc/include/asm/mmu-hash64.h | 616 ----------------------------------
 1 file changed, 616 deletions(-)
 delete mode 100644 arch/powerpc/include/asm/mmu-hash64.h

(limited to 'arch/powerpc/include/asm/mmu-hash64.h')

diff --git a/arch/powerpc/include/asm/mmu-hash64.h b/arch/powerpc/include/asm/mmu-hash64.h
deleted file mode 100644
index 0cea4807e26f..000000000000
--- a/arch/powerpc/include/asm/mmu-hash64.h
+++ /dev/null
@@ -1,616 +0,0 @@
-#ifndef _ASM_POWERPC_MMU_HASH64_H_
-#define _ASM_POWERPC_MMU_HASH64_H_
-/*
- * PowerPC64 memory management structures
- *
- * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
- *   PPC64 rework.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
-
-#include <asm/asm-compat.h>
-#include <asm/page.h>
-#include <asm/bug.h>
-
-/*
- * This is necessary to get the definition of PGTABLE_RANGE which we
- * need for various slices related matters. Note that this isn't the
- * complete pgtable.h but only a portion of it.
- */
-#include <asm/book3s/64/pgtable.h>
-#include <asm/bug.h>
-#include <asm/processor.h>
-
-/*
- * SLB
- */
-
-#define SLB_NUM_BOLTED		3
-#define SLB_CACHE_ENTRIES	8
-#define SLB_MIN_SIZE		32
-
-/* Bits in the SLB ESID word */
-#define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */
-
-/* Bits in the SLB VSID word */
-#define SLB_VSID_SHIFT		12
-#define SLB_VSID_SHIFT_1T	24
-#define SLB_VSID_SSIZE_SHIFT	62
-#define SLB_VSID_B		ASM_CONST(0xc000000000000000)
-#define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
-#define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
-#define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
-#define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
-#define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
-#define SLB_VSID_L		ASM_CONST(0x0000000000000100)
-#define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
-#define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
-#define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
-#define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
-#define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
-#define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
-#define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)
-
-#define SLB_VSID_KERNEL		(SLB_VSID_KP)
-#define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
-
-#define SLBIE_C			(0x08000000)
-#define SLBIE_SSIZE_SHIFT	25
-
-/*
- * Hash table
- */
-
-#define HPTES_PER_GROUP 8
-
-#define HPTE_V_SSIZE_SHIFT	62
-#define HPTE_V_AVPN_SHIFT	7
-#define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
-#define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
-#define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
-#define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
-#define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
-#define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
-#define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
-#define HPTE_V_VALID		ASM_CONST(0x0000000000000001)
-
-#define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
-#define HPTE_R_TS		ASM_CONST(0x4000000000000000)
-#define HPTE_R_KEY_HI		ASM_CONST(0x3000000000000000)
-#define HPTE_R_RPN_SHIFT	12
-#define HPTE_R_RPN		ASM_CONST(0x0ffffffffffff000)
-#define HPTE_R_PP		ASM_CONST(0x0000000000000003)
-#define HPTE_R_N		ASM_CONST(0x0000000000000004)
-#define HPTE_R_G		ASM_CONST(0x0000000000000008)
-#define HPTE_R_M		ASM_CONST(0x0000000000000010)
-#define HPTE_R_I		ASM_CONST(0x0000000000000020)
-#define HPTE_R_W		ASM_CONST(0x0000000000000040)
-#define HPTE_R_WIMG		ASM_CONST(0x0000000000000078)
-#define HPTE_R_C		ASM_CONST(0x0000000000000080)
-#define HPTE_R_R		ASM_CONST(0x0000000000000100)
-#define HPTE_R_KEY_LO		ASM_CONST(0x0000000000000e00)
-
-#define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
-#define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)
-
-/* Values for PP (assumes Ks=0, Kp=1) */
-#define PP_RWXX	0	/* Supervisor read/write, User none */
-#define PP_RWRX 1	/* Supervisor read/write, User read */
-#define PP_RWRW 2	/* Supervisor read/write, User read/write */
-#define PP_RXRX 3	/* Supervisor read,       User read */
-#define PP_RXXX	(HPTE_R_PP0 | 2)	/* Supervisor read, user none */
-
-/* Fields for tlbiel instruction in architecture 2.06 */
-#define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
-#define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
-#define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
-#define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
-#define TLBIEL_INVAL_SET_MASK	0xfff000	/* set number to inval. */
-#define TLBIEL_INVAL_SET_SHIFT	12
-
-#define POWER7_TLB_SETS		128	/* # sets in POWER7 TLB */
-#define POWER8_TLB_SETS		512	/* # sets in POWER8 TLB */
-#define POWER9_TLB_SETS_HASH	256	/* # sets in POWER9 TLB Hash mode */
-
-#ifndef __ASSEMBLY__
-
-struct hash_pte {
-	__be64 v;
-	__be64 r;
-};
-
-extern struct hash_pte *htab_address;
-extern unsigned long htab_size_bytes;
-extern unsigned long htab_hash_mask;
-
-/*
- * Page size definition
- *
- *    shift : is the "PAGE_SHIFT" value for that page size
- *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
- *            directly to a slbmte "vsid" value
- *    penc  : is the HPTE encoding mask for the "LP" field:
- *
- */
-struct mmu_psize_def
-{
-	unsigned int	shift;	/* number of bits */
-	int		penc[MMU_PAGE_COUNT];	/* HPTE encoding */
-	unsigned int	tlbiel;	/* tlbiel supported for that page size */
-	unsigned long	avpnm;	/* bits to mask out in AVPN in the HPTE */
-	unsigned long	sllp;	/* SLB L||LP (exact mask to use in slbmte) */
-};
-extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
-
-static inline int shift_to_mmu_psize(unsigned int shift)
-{
-	int psize;
-
-	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
-		if (mmu_psize_defs[psize].shift == shift)
-			return psize;
-	return -1;
-}
-
-static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
-{
-	if (mmu_psize_defs[mmu_psize].shift)
-		return mmu_psize_defs[mmu_psize].shift;
-	BUG();
-}
-
-#endif /* __ASSEMBLY__ */
-
-/*
- * Segment sizes.
- * These are the values used by hardware in the B field of
- * SLB entries and the first dword of MMU hashtable entries.
- * The B field is 2 bits; the values 2 and 3 are unused and reserved.
- */
-#define MMU_SEGSIZE_256M	0
-#define MMU_SEGSIZE_1T		1
-
-/*
- * encode page number shift.
- * in order to fit the 78 bit va in a 64 bit variable we shift the va by
- * 12 bits. This enable us to address upto 76 bit va.
- * For hpt hash from a va we can ignore the page size bits of va and for
- * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
- * we work in all cases including 4k page size.
- */
-#define VPN_SHIFT	12
-
-/*
- * HPTE Large Page (LP) details
- */
-#define LP_SHIFT	12
-#define LP_BITS		8
-#define LP_MASK(i)	((0xFF >> (i)) << LP_SHIFT)
-
-#ifndef __ASSEMBLY__
-
-static inline int slb_vsid_shift(int ssize)
-{
-	if (ssize == MMU_SEGSIZE_256M)
-		return SLB_VSID_SHIFT;
-	return SLB_VSID_SHIFT_1T;
-}
-
-static inline int segment_shift(int ssize)
-{
-	if (ssize == MMU_SEGSIZE_256M)
-		return SID_SHIFT;
-	return SID_SHIFT_1T;
-}
-
-/*
- * The current system page and segment sizes
- */
-extern int mmu_linear_psize;
-extern int mmu_virtual_psize;
-extern int mmu_vmalloc_psize;
-extern int mmu_vmemmap_psize;
-extern int mmu_io_psize;
-extern int mmu_kernel_ssize;
-extern int mmu_highuser_ssize;
-extern u16 mmu_slb_size;
-extern unsigned long tce_alloc_start, tce_alloc_end;
-
-/*
- * If the processor supports 64k normal pages but not 64k cache
- * inhibited pages, we have to be prepared to switch processes
- * to use 4k pages when they create cache-inhibited mappings.
- * If this is the case, mmu_ci_restrictions will be set to 1.
- */
-extern int mmu_ci_restrictions;
-
-/*
- * This computes the AVPN and B fields of the first dword of a HPTE,
- * for use when we want to match an existing PTE.  The bottom 7 bits
- * of the returned value are zero.
- */
-static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
-					     int ssize)
-{
-	unsigned long v;
-	/*
-	 * The AVA field omits the low-order 23 bits of the 78 bits VA.
-	 * These bits are not needed in the PTE, because the
-	 * low-order b of these bits are part of the byte offset
-	 * into the virtual page and, if b < 23, the high-order
-	 * 23-b of these bits are always used in selecting the
-	 * PTEGs to be searched
-	 */
-	v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
-	v <<= HPTE_V_AVPN_SHIFT;
-	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
-	return v;
-}
-
-/*
- * This function sets the AVPN and L fields of the HPTE  appropriately
- * using the base page size and actual page size.
- */
-static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
-					  int actual_psize, int ssize)
-{
-	unsigned long v;
-	v = hpte_encode_avpn(vpn, base_psize, ssize);
-	if (actual_psize != MMU_PAGE_4K)
-		v |= HPTE_V_LARGE;
-	return v;
-}
-
-/*
- * This function sets the ARPN, and LP fields of the HPTE appropriately
- * for the page size. We assume the pa is already "clean" that is properly
- * aligned for the requested page size
- */
-static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
-					  int actual_psize)
-{
-	/* A 4K page needs no special encoding */
-	if (actual_psize == MMU_PAGE_4K)
-		return pa & HPTE_R_RPN;
-	else {
-		unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
-		unsigned int shift = mmu_psize_defs[actual_psize].shift;
-		return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
-	}
-}
-
-/*
- * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
- */
-static inline unsigned long hpt_vpn(unsigned long ea,
-				    unsigned long vsid, int ssize)
-{
-	unsigned long mask;
-	int s_shift = segment_shift(ssize);
-
-	mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
-	return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
-}
-
-/*
- * This hashes a virtual address
- */
-static inline unsigned long hpt_hash(unsigned long vpn,
-				     unsigned int shift, int ssize)
-{
-	int mask;
-	unsigned long hash, vsid;
-
-	/* VPN_SHIFT can be atmost 12 */
-	if (ssize == MMU_SEGSIZE_256M) {
-		mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
-		hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
-			((vpn & mask) >> (shift - VPN_SHIFT));
-	} else {
-		mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
-		vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
-		hash = vsid ^ (vsid << 25) ^
-			((vpn & mask) >> (shift - VPN_SHIFT)) ;
-	}
-	return hash & 0x7fffffffffUL;
-}
-
-#define HPTE_LOCAL_UPDATE	0x1
-#define HPTE_NOHPTE_UPDATE	0x2
-
-extern int __hash_page_4K(unsigned long ea, unsigned long access,
-			  unsigned long vsid, pte_t *ptep, unsigned long trap,
-			  unsigned long flags, int ssize, int subpage_prot);
-extern int __hash_page_64K(unsigned long ea, unsigned long access,
-			   unsigned long vsid, pte_t *ptep, unsigned long trap,
-			   unsigned long flags, int ssize);
-struct mm_struct;
-unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
-extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
-			unsigned long access, unsigned long trap,
-			unsigned long flags);
-extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
-		     unsigned long dsisr);
-int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
-		     pte_t *ptep, unsigned long trap, unsigned long flags,
-		     int ssize, unsigned int shift, unsigned int mmu_psize);
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
-extern int __hash_page_thp(unsigned long ea, unsigned long access,
-			   unsigned long vsid, pmd_t *pmdp, unsigned long trap,
-			   unsigned long flags, int ssize, unsigned int psize);
-#else
-static inline int __hash_page_thp(unsigned long ea, unsigned long access,
-				  unsigned long vsid, pmd_t *pmdp,
-				  unsigned long trap, unsigned long flags,
-				  int ssize, unsigned int psize)
-{
-	BUG();
-	return -1;
-}
-#endif
-extern void hash_failure_debug(unsigned long ea, unsigned long access,
-			       unsigned long vsid, unsigned long trap,
-			       int ssize, int psize, int lpsize,
-			       unsigned long pte);
-extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
-			     unsigned long pstart, unsigned long prot,
-			     int psize, int ssize);
-int htab_remove_mapping(unsigned long vstart, unsigned long vend,
-			int psize, int ssize);
-extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
-extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
-
-extern void hpte_init_native(void);
-extern void hpte_init_lpar(void);
-extern void hpte_init_beat(void);
-extern void hpte_init_beat_v3(void);
-
-extern void slb_initialize(void);
-extern void slb_flush_and_rebolt(void);
-
-extern void slb_vmalloc_update(void);
-extern void slb_set_size(u16 size);
-#endif /* __ASSEMBLY__ */
-
-/*
- * VSID allocation (256MB segment)
- *
- * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
- * from mmu context id and effective segment id of the address.
- *
- * For user processes max context id is limited to ((1ul << 19) - 5)
- * for kernel space, we use the top 4 context ids to map address as below
- * NOTE: each context only support 64TB now.
- * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
- * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
- * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
- * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
- *
- * The proto-VSIDs are then scrambled into real VSIDs with the
- * multiplicative hash:
- *
- *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
- *
- * VSID_MULTIPLIER is prime, so in particular it is
- * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
- * Because the modulus is 2^n-1 we can compute it efficiently without
- * a divide or extra multiply (see below). The scramble function gives
- * robust scattering in the hash table (at least based on some initial
- * results).
- *
- * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
- * bad address. This enables us to consolidate bad address handling in
- * hash_page.
- *
- * We also need to avoid the last segment of the last context, because that
- * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
- * because of the modulo operation in vsid scramble. But the vmemmap
- * (which is what uses region 0xf) will never be close to 64TB in size
- * (it's 56 bytes per page of system memory).
- */
-
-#define CONTEXT_BITS		19
-#define ESID_BITS		18
-#define ESID_BITS_1T		6
-
-/*
- * 256MB segment
- * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
- * available for user + kernel mapping. The top 4 contexts are used for
- * kernel mapping. Each segment contains 2^28 bytes. Each
- * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
- * (19 == 37 + 28 - 46).
- */
-#define MAX_USER_CONTEXT	((ASM_CONST(1) << CONTEXT_BITS) - 5)
-
-/*
- * This should be computed such that protovosid * vsid_mulitplier
- * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
- */
-#define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
-#define VSID_BITS_256M		(CONTEXT_BITS + ESID_BITS)
-#define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
-
-#define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
-#define VSID_BITS_1T		(CONTEXT_BITS + ESID_BITS_1T)
-#define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)
-
-
-#define USER_VSID_RANGE	(1UL << (ESID_BITS + SID_SHIFT))
-
-/*
- * This macro generates asm code to compute the VSID scramble
- * function.  Used in slb_allocate() and do_stab_bolted.  The function
- * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
- *
- *	rt = register continaing the proto-VSID and into which the
- *		VSID will be stored
- *	rx = scratch register (clobbered)
- *
- * 	- rt and rx must be different registers
- * 	- The answer will end up in the low VSID_BITS bits of rt.  The higher
- * 	  bits may contain other garbage, so you may need to mask the
- * 	  result.
- */
-#define ASM_VSID_SCRAMBLE(rt, rx, size)					\
-	lis	rx,VSID_MULTIPLIER_##size@h;				\
-	ori	rx,rx,VSID_MULTIPLIER_##size@l;				\
-	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\
-									\
-	srdi	rx,rt,VSID_BITS_##size;					\
-	clrldi	rt,rt,(64-VSID_BITS_##size);				\
-	add	rt,rt,rx;		/* add high and low bits */	\
-	/* NOTE: explanation based on VSID_BITS_##size = 36		\
-	 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
-	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
-	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
-	 * the bit clear, r3 already has the answer we want, if it	\
-	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\
-	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
-	addi	rx,rt,1;						\
-	srdi	rx,rx,VSID_BITS_##size;	/* extract 2^VSID_BITS bit */	\
-	add	rt,rt,rx
-
-/* 4 bits per slice and we have one slice per 1TB */
-#define SLICE_ARRAY_SIZE  (PGTABLE_RANGE >> 41)
-
-#ifndef __ASSEMBLY__
-
-#ifdef CONFIG_PPC_SUBPAGE_PROT
-/*
- * For the sub-page protection option, we extend the PGD with one of
- * these.  Basically we have a 3-level tree, with the top level being
- * the protptrs array.  To optimize speed and memory consumption when
- * only addresses < 4GB are being protected, pointers to the first
- * four pages of sub-page protection words are stored in the low_prot
- * array.
- * Each page of sub-page protection words protects 1GB (4 bytes
- * protects 64k).  For the 3-level tree, each page of pointers then
- * protects 8TB.
- */
-struct subpage_prot_table {
-	unsigned long maxaddr;	/* only addresses < this are protected */
-	unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
-	unsigned int *low_prot[4];
-};
-
-#define SBP_L1_BITS		(PAGE_SHIFT - 2)
-#define SBP_L2_BITS		(PAGE_SHIFT - 3)
-#define SBP_L1_COUNT		(1 << SBP_L1_BITS)
-#define SBP_L2_COUNT		(1 << SBP_L2_BITS)
-#define SBP_L2_SHIFT		(PAGE_SHIFT + SBP_L1_BITS)
-#define SBP_L3_SHIFT		(SBP_L2_SHIFT + SBP_L2_BITS)
-
-extern void subpage_prot_free(struct mm_struct *mm);
-extern void subpage_prot_init_new_context(struct mm_struct *mm);
-#else
-static inline void subpage_prot_free(struct mm_struct *mm) {}
-static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
-#endif /* CONFIG_PPC_SUBPAGE_PROT */
-
-typedef unsigned long mm_context_id_t;
-struct spinlock;
-
-typedef struct {
-	mm_context_id_t id;
-	u16 user_psize;		/* page size index */
-
-#ifdef CONFIG_PPC_MM_SLICES
-	u64 low_slices_psize;	/* SLB page size encodings */
-	unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
-#else
-	u16 sllp;		/* SLB page size encoding */
-#endif
-	unsigned long vdso_base;
-#ifdef CONFIG_PPC_SUBPAGE_PROT
-	struct subpage_prot_table spt;
-#endif /* CONFIG_PPC_SUBPAGE_PROT */
-#ifdef CONFIG_PPC_ICSWX
-	struct spinlock *cop_lockp; /* guard acop and cop_pid */
-	unsigned long acop;	/* mask of enabled coprocessor types */
-	unsigned int cop_pid;	/* pid value used with coprocessors */
-#endif /* CONFIG_PPC_ICSWX */
-#ifdef CONFIG_PPC_64K_PAGES
-	/* for 4K PTE fragment support */
-	void *pte_frag;
-#endif
-#ifdef CONFIG_SPAPR_TCE_IOMMU
-	struct list_head iommu_group_mem_list;
-#endif
-} mm_context_t;
-
-
-#if 0
-/*
- * The code below is equivalent to this function for arguments
- * < 2^VSID_BITS, which is all this should ever be called
- * with.  However gcc is not clever enough to compute the
- * modulus (2^n-1) without a second multiply.
- */
-#define vsid_scramble(protovsid, size) \
-	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
-
-#else /* 1 */
-#define vsid_scramble(protovsid, size) \
-	({								 \
-		unsigned long x;					 \
-		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
-		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
-		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
-	})
-#endif /* 1 */
-
-/* Returns the segment size indicator for a user address */
-static inline int user_segment_size(unsigned long addr)
-{
-	/* Use 1T segments if possible for addresses >= 1T */
-	if (addr >= (1UL << SID_SHIFT_1T))
-		return mmu_highuser_ssize;
-	return MMU_SEGSIZE_256M;
-}
-
-static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
-				     int ssize)
-{
-	/*
-	 * Bad address. We return VSID 0 for that
-	 */
-	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
-		return 0;
-
-	if (ssize == MMU_SEGSIZE_256M)
-		return vsid_scramble((context << ESID_BITS)
-				     | (ea >> SID_SHIFT), 256M);
-	return vsid_scramble((context << ESID_BITS_1T)
-			     | (ea >> SID_SHIFT_1T), 1T);
-}
-
-/*
- * This is only valid for addresses >= PAGE_OFFSET
- *
- * For kernel space, we use the top 4 context ids to map address as below
- * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
- * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
- * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
- * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
- */
-static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
-{
-	unsigned long context;
-
-	/*
-	 * kernel take the top 4 context from the available range
-	 */
-	context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
-	return get_vsid(context, ea, ssize);
-}
-
-unsigned htab_shift_for_mem_size(unsigned long mem_size);
-
-#endif /* __ASSEMBLY__ */
-
-#endif /* _ASM_POWERPC_MMU_HASH64_H_ */
-- 
cgit v1.2.3