From afaef01c001537fa97a25092d7f54d764dc7d8c1 Mon Sep 17 00:00:00 2001 From: Alexander Popov Date: Fri, 17 Aug 2018 01:16:58 +0300 Subject: x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls The STACKLEAK feature (initially developed by PaX Team) has the following benefits: 1. Reduces the information that can be revealed through kernel stack leak bugs. The idea of erasing the thread stack at the end of syscalls is similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel crypto, which all comply with FDP_RIP.2 (Full Residual Information Protection) of the Common Criteria standard. 2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712, CVE-2010-2963). That kind of bugs should be killed by improving C compilers in future, which might take a long time. This commit introduces the code filling the used part of the kernel stack with a poison value before returning to userspace. Full STACKLEAK feature also contains the gcc plugin which comes in a separate commit. The STACKLEAK feature is ported from grsecurity/PaX. More information at: https://grsecurity.net/ https://pax.grsecurity.net/ This code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on our understanding of the code. Changes or omissions from the original code are ours and don't reflect the original grsecurity/PaX code. Performance impact: Hardware: Intel Core i7-4770, 16 GB RAM Test #1: building the Linux kernel on a single core 0.91% slowdown Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P 4.2% slowdown So the STACKLEAK description in Kconfig includes: "The tradeoff is the performance impact: on a single CPU system kernel compilation sees a 1% slowdown, other systems and workloads may vary and you are advised to test this feature on your expected workload before deploying it". Signed-off-by: Alexander Popov Acked-by: Thomas Gleixner Reviewed-by: Dave Hansen Acked-by: Ingo Molnar Signed-off-by: Kees Cook --- arch/x86/entry/calling.h | 14 ++++++++++++++ arch/x86/entry/entry_32.S | 7 +++++++ arch/x86/entry/entry_64.S | 3 +++ arch/x86/entry/entry_64_compat.S | 5 +++++ 4 files changed, 29 insertions(+) (limited to 'arch/x86/entry') diff --git a/arch/x86/entry/calling.h b/arch/x86/entry/calling.h index 352e70cd33e8..20d0885b00fb 100644 --- a/arch/x86/entry/calling.h +++ b/arch/x86/entry/calling.h @@ -329,8 +329,22 @@ For 32-bit we have the following conventions - kernel is built with #endif +.macro STACKLEAK_ERASE_NOCLOBBER +#ifdef CONFIG_GCC_PLUGIN_STACKLEAK + PUSH_AND_CLEAR_REGS + call stackleak_erase + POP_REGS +#endif +.endm + #endif /* CONFIG_X86_64 */ +.macro STACKLEAK_ERASE +#ifdef CONFIG_GCC_PLUGIN_STACKLEAK + call stackleak_erase +#endif +.endm + /* * This does 'call enter_from_user_mode' unless we can avoid it based on * kernel config or using the static jump infrastructure. diff --git a/arch/x86/entry/entry_32.S b/arch/x86/entry/entry_32.S index 2767c625a52c..dfb975b4c981 100644 --- a/arch/x86/entry/entry_32.S +++ b/arch/x86/entry/entry_32.S @@ -46,6 +46,8 @@ #include #include +#include "calling.h" + .section .entry.text, "ax" /* @@ -711,6 +713,7 @@ ENTRY(ret_from_fork) /* When we fork, we trace the syscall return in the child, too. */ movl %esp, %eax call syscall_return_slowpath + STACKLEAK_ERASE jmp restore_all /* kernel thread */ @@ -885,6 +888,8 @@ ENTRY(entry_SYSENTER_32) ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \ "jmp .Lsyscall_32_done", X86_FEATURE_XENPV + STACKLEAK_ERASE + /* Opportunistic SYSEXIT */ TRACE_IRQS_ON /* User mode traces as IRQs on. */ @@ -996,6 +1001,8 @@ ENTRY(entry_INT80_32) call do_int80_syscall_32 .Lsyscall_32_done: + STACKLEAK_ERASE + restore_all: TRACE_IRQS_IRET SWITCH_TO_ENTRY_STACK diff --git a/arch/x86/entry/entry_64.S b/arch/x86/entry/entry_64.S index 957dfb693ecc..a5dd28093020 100644 --- a/arch/x86/entry/entry_64.S +++ b/arch/x86/entry/entry_64.S @@ -329,6 +329,8 @@ syscall_return_via_sysret: * We are on the trampoline stack. All regs except RDI are live. * We can do future final exit work right here. */ + STACKLEAK_ERASE_NOCLOBBER + SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi popq %rdi @@ -688,6 +690,7 @@ GLOBAL(swapgs_restore_regs_and_return_to_usermode) * We are on the trampoline stack. All regs except RDI are live. * We can do future final exit work right here. */ + STACKLEAK_ERASE_NOCLOBBER SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi diff --git a/arch/x86/entry/entry_64_compat.S b/arch/x86/entry/entry_64_compat.S index 7d0df78db727..8eaf8952c408 100644 --- a/arch/x86/entry/entry_64_compat.S +++ b/arch/x86/entry/entry_64_compat.S @@ -261,6 +261,11 @@ GLOBAL(entry_SYSCALL_compat_after_hwframe) /* Opportunistic SYSRET */ sysret32_from_system_call: + /* + * We are not going to return to userspace from the trampoline + * stack. So let's erase the thread stack right now. + */ + STACKLEAK_ERASE TRACE_IRQS_ON /* User mode traces as IRQs on. */ movq RBX(%rsp), %rbx /* pt_regs->rbx */ movq RBP(%rsp), %rbp /* pt_regs->rbp */ -- cgit v1.2.3