From 59ac83677f72ea2cc25b5426e7df9589aa7a5384 Mon Sep 17 00:00:00 2001 From: Hartmut Rick Date: Thu, 23 Mar 2006 16:37:23 +0100 Subject: [PATCH] smsc47m192: New hwmon driver for SMSC LPC47M192/997 New driver (smsc47m192) which supports voltage and temperature measurement features of SMSC LPC47M192 and LPC47M997 chips. Signed-off-by: Hartmut Rick Signed-off-by: Jean Delvare Signed-off-by: Greg Kroah-Hartman --- drivers/hwmon/Makefile | 1 + 1 file changed, 1 insertion(+) (limited to 'drivers/hwmon/Makefile') diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile index fbdb8d911a72..d0904593c9ea 100644 --- a/drivers/hwmon/Makefile +++ b/drivers/hwmon/Makefile @@ -40,6 +40,7 @@ obj-$(CONFIG_SENSORS_PC87360) += pc87360.o obj-$(CONFIG_SENSORS_SIS5595) += sis5595.o obj-$(CONFIG_SENSORS_SMSC47B397)+= smsc47b397.o obj-$(CONFIG_SENSORS_SMSC47M1) += smsc47m1.o +obj-$(CONFIG_SENSORS_SMSC47M192)+= smsc47m192.o obj-$(CONFIG_SENSORS_VIA686A) += via686a.o obj-$(CONFIG_SENSORS_VT8231) += vt8231.o obj-$(CONFIG_SENSORS_W83627EHF) += w83627ehf.o -- cgit v1.2.3 From 9873964d6eb24bd0205394f9b791de9eddbcb855 Mon Sep 17 00:00:00 2001 From: Charles Spirakis Date: Tue, 25 Apr 2006 14:21:03 +0200 Subject: [PATCH] HWMON: w83791d: New hardware monitoring driver for the Winbond W83791D Add support for the w83791d sensor chip. The w83791d hardware is somewhere between the w83781d and the w83792d and this driver code is derived from the code that supports those chips. Signed-off-by: Charles Spirakis Signed-off-by: Jean Delvare Signed-off-by: Greg Kroah-Hartman --- Documentation/hwmon/w83791d | 113 ++++ drivers/hwmon/Kconfig | 10 + drivers/hwmon/Makefile | 1 + drivers/hwmon/w83791d.c | 1255 +++++++++++++++++++++++++++++++++++++++++++ 4 files changed, 1379 insertions(+) create mode 100644 Documentation/hwmon/w83791d create mode 100644 drivers/hwmon/w83791d.c (limited to 'drivers/hwmon/Makefile') diff --git a/Documentation/hwmon/w83791d b/Documentation/hwmon/w83791d new file mode 100644 index 000000000000..83a3836289c2 --- /dev/null +++ b/Documentation/hwmon/w83791d @@ -0,0 +1,113 @@ +Kernel driver w83791d +===================== + +Supported chips: + * Winbond W83791D + Prefix: 'w83791d' + Addresses scanned: I2C 0x2c - 0x2f + Datasheet: http://www.winbond-usa.com/products/winbond_products/pdfs/PCIC/W83791Da.pdf + +Author: Charles Spirakis + +This driver was derived from the w83781d.c and w83792d.c source files. + +Credits: + w83781d.c: + Frodo Looijaard , + Philip Edelbrock , + and Mark Studebaker + w83792d.c: + Chunhao Huang , + Rudolf Marek + +Module Parameters +----------------- + +* init boolean + (default 0) + Use 'init=1' to have the driver do extra software initializations. + The default behavior is to do the minimum initialization possible + and depend on the BIOS to properly setup the chip. If you know you + have a w83791d and you're having problems, try init=1 before trying + reset=1. + +* reset boolean + (default 0) + Use 'reset=1' to reset the chip (via index 0x40, bit 7). The default + behavior is no chip reset to preserve BIOS settings. + +* force_subclients=bus,caddr,saddr,saddr + This is used to force the i2c addresses for subclients of + a certain chip. Example usage is `force_subclients=0,0x2f,0x4a,0x4b' + to force the subclients of chip 0x2f on bus 0 to i2c addresses + 0x4a and 0x4b. + + +Description +----------- + +This driver implements support for the Winbond W83791D chip. + +Detection of the chip can sometimes be foiled because it can be in an +internal state that allows no clean access (Bank with ID register is not +currently selected). If you know the address of the chip, use a 'force' +parameter; this will put it into a more well-behaved state first. + +The driver implements three temperature sensors, five fan rotation speed +sensors, and ten voltage sensors. + +Temperatures are measured in degrees Celsius and measurement resolution is 1 +degC for temp1 and 0.5 degC for temp2 and temp3. An alarm is triggered when +the temperature gets higher than the Overtemperature Shutdown value; it stays +on until the temperature falls below the Hysteresis value. + +Fan rotation speeds are reported in RPM (rotations per minute). An alarm is +triggered if the rotation speed has dropped below a programmable limit. Fan +readings can be divided by a programmable divider (1, 2, 4, 8 for fan 1/2/3 +and 1, 2, 4, 8, 16, 32, 64 or 128 for fan 4/5) to give the readings more +range or accuracy. + +Voltage sensors (also known as IN sensors) report their values in millivolts. +An alarm is triggered if the voltage has crossed a programmable minimum +or maximum limit. + +Alarms are provided as output from a "realtime status register". The +following bits are defined: + +bit - alarm on: +0 - Vcore +1 - VINR0 +2 - +3.3VIN +3 - 5VDD +4 - temp1 +5 - temp2 +6 - fan1 +7 - fan2 +8 - +12VIN +9 - -12VIN +10 - -5VIN +11 - fan3 +12 - chassis +13 - temp3 +14 - VINR1 +15 - reserved +16 - tart1 +17 - tart2 +18 - tart3 +19 - VSB +20 - VBAT +21 - fan4 +22 - fan5 +23 - reserved + +When an alarm goes off, you can be warned by a beeping signal through your +computer speaker. It is possible to enable all beeping globally, or only +the beeping for some alarms. + +The driver only reads the chip values each 3 seconds; reading them more +often will do no harm, but will return 'old' values. + +W83791D TODO: +--------------- +Provide a patch for per-file alarms as discussed on the mailing list +Provide a patch for smart-fan control (still need appropriate motherboard/fans) diff --git a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig index 9cf3d9c5962f..9384b85b893b 100644 --- a/drivers/hwmon/Kconfig +++ b/drivers/hwmon/Kconfig @@ -406,6 +406,16 @@ config SENSORS_W83781D This driver can also be built as a module. If so, the module will be called w83781d. +config SENSORS_W83791D + tristate "Winbond W83791D" + depends on HWMON && I2C && EXPERIMENTAL + select HWMON_VID + help + If you say yes here you get support for the Winbond W83791D chip. + + This driver can also be built as a module. If so, the module + will be called w83791d. + config SENSORS_W83792D tristate "Winbond W83792D" depends on HWMON && I2C && EXPERIMENTAL diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile index d0904593c9ea..db72b1415e7f 100644 --- a/drivers/hwmon/Makefile +++ b/drivers/hwmon/Makefile @@ -10,6 +10,7 @@ obj-$(CONFIG_SENSORS_ASB100) += asb100.o obj-$(CONFIG_SENSORS_W83627HF) += w83627hf.o obj-$(CONFIG_SENSORS_W83792D) += w83792d.o obj-$(CONFIG_SENSORS_W83781D) += w83781d.o +obj-$(CONFIG_SENSORS_W83791D) += w83791d.o obj-$(CONFIG_SENSORS_ADM1021) += adm1021.o obj-$(CONFIG_SENSORS_ADM1025) += adm1025.o diff --git a/drivers/hwmon/w83791d.c b/drivers/hwmon/w83791d.c new file mode 100644 index 000000000000..eec43abd57fb --- /dev/null +++ b/drivers/hwmon/w83791d.c @@ -0,0 +1,1255 @@ +/* + w83791d.c - Part of lm_sensors, Linux kernel modules for hardware + monitoring + + Copyright (C) 2006 Charles Spirakis + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +/* + Supports following chips: + + Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA + w83791d 10 5 3 3 0x71 0x5ca3 yes no + + The w83791d chip appears to be part way between the 83781d and the + 83792d. Thus, this file is derived from both the w83792d.c and + w83781d.c files, but its output is more along the lines of the + 83781d (which means there are no changes to the user-mode sensors + program which treats the 83791d as an 83781d). +*/ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define NUMBER_OF_VIN 10 +#define NUMBER_OF_FANIN 5 +#define NUMBER_OF_TEMPIN 3 + +/* Addresses to scan */ +static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END }; + +/* Insmod parameters */ +I2C_CLIENT_INSMOD_1(w83791d); +I2C_CLIENT_MODULE_PARM(force_subclients, "List of subclient addresses: " + "{bus, clientaddr, subclientaddr1, subclientaddr2}"); + +static int reset; +module_param(reset, bool, 0); +MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset"); + +static int init; +module_param(init, bool, 0); +MODULE_PARM_DESC(init, "Set to one to force extra software initialization"); + +/* The W83791D registers */ +static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = { + 0x20, /* VCOREA in DataSheet */ + 0x21, /* VINR0 in DataSheet */ + 0x22, /* +3.3VIN in DataSheet */ + 0x23, /* VDD5V in DataSheet */ + 0x24, /* +12VIN in DataSheet */ + 0x25, /* -12VIN in DataSheet */ + 0x26, /* -5VIN in DataSheet */ + 0xB0, /* 5VSB in DataSheet */ + 0xB1, /* VBAT in DataSheet */ + 0xB2 /* VINR1 in DataSheet */ +}; + +static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = { + 0x2B, /* VCOREA High Limit in DataSheet */ + 0x2D, /* VINR0 High Limit in DataSheet */ + 0x2F, /* +3.3VIN High Limit in DataSheet */ + 0x31, /* VDD5V High Limit in DataSheet */ + 0x33, /* +12VIN High Limit in DataSheet */ + 0x35, /* -12VIN High Limit in DataSheet */ + 0x37, /* -5VIN High Limit in DataSheet */ + 0xB4, /* 5VSB High Limit in DataSheet */ + 0xB6, /* VBAT High Limit in DataSheet */ + 0xB8 /* VINR1 High Limit in DataSheet */ +}; +static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = { + 0x2C, /* VCOREA Low Limit in DataSheet */ + 0x2E, /* VINR0 Low Limit in DataSheet */ + 0x30, /* +3.3VIN Low Limit in DataSheet */ + 0x32, /* VDD5V Low Limit in DataSheet */ + 0x34, /* +12VIN Low Limit in DataSheet */ + 0x36, /* -12VIN Low Limit in DataSheet */ + 0x38, /* -5VIN Low Limit in DataSheet */ + 0xB5, /* 5VSB Low Limit in DataSheet */ + 0xB7, /* VBAT Low Limit in DataSheet */ + 0xB9 /* VINR1 Low Limit in DataSheet */ +}; +static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = { + 0x28, /* FAN 1 Count in DataSheet */ + 0x29, /* FAN 2 Count in DataSheet */ + 0x2A, /* FAN 3 Count in DataSheet */ + 0xBA, /* FAN 4 Count in DataSheet */ + 0xBB, /* FAN 5 Count in DataSheet */ +}; +static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = { + 0x3B, /* FAN 1 Count Low Limit in DataSheet */ + 0x3C, /* FAN 2 Count Low Limit in DataSheet */ + 0x3D, /* FAN 3 Count Low Limit in DataSheet */ + 0xBC, /* FAN 4 Count Low Limit in DataSheet */ + 0xBD, /* FAN 5 Count Low Limit in DataSheet */ +}; + +static const u8 W83791D_REG_FAN_CFG[2] = { + 0x84, /* FAN 1/2 configuration */ + 0x95, /* FAN 3 configuration */ +}; + +static const u8 W83791D_REG_FAN_DIV[3] = { + 0x47, /* contains FAN1 and FAN2 Divisor */ + 0x4b, /* contains FAN3 Divisor */ + 0x5C, /* contains FAN4 and FAN5 Divisor */ +}; + +#define W83791D_REG_BANK 0x4E +#define W83791D_REG_TEMP2_CONFIG 0xC2 +#define W83791D_REG_TEMP3_CONFIG 0xCA + +static const u8 W83791D_REG_TEMP1[3] = { + 0x27, /* TEMP 1 in DataSheet */ + 0x39, /* TEMP 1 Over in DataSheet */ + 0x3A, /* TEMP 1 Hyst in DataSheet */ +}; + +static const u8 W83791D_REG_TEMP_ADD[2][6] = { + {0xC0, /* TEMP 2 in DataSheet */ + 0xC1, /* TEMP 2(0.5 deg) in DataSheet */ + 0xC5, /* TEMP 2 Over High part in DataSheet */ + 0xC6, /* TEMP 2 Over Low part in DataSheet */ + 0xC3, /* TEMP 2 Thyst High part in DataSheet */ + 0xC4}, /* TEMP 2 Thyst Low part in DataSheet */ + {0xC8, /* TEMP 3 in DataSheet */ + 0xC9, /* TEMP 3(0.5 deg) in DataSheet */ + 0xCD, /* TEMP 3 Over High part in DataSheet */ + 0xCE, /* TEMP 3 Over Low part in DataSheet */ + 0xCB, /* TEMP 3 Thyst High part in DataSheet */ + 0xCC} /* TEMP 3 Thyst Low part in DataSheet */ +}; + +#define W83791D_REG_BEEP_CONFIG 0x4D + +static const u8 W83791D_REG_BEEP_CTRL[3] = { + 0x56, /* BEEP Control Register 1 */ + 0x57, /* BEEP Control Register 2 */ + 0xA3, /* BEEP Control Register 3 */ +}; + +#define W83791D_REG_CONFIG 0x40 +#define W83791D_REG_VID_FANDIV 0x47 +#define W83791D_REG_DID_VID4 0x49 +#define W83791D_REG_WCHIPID 0x58 +#define W83791D_REG_CHIPMAN 0x4F +#define W83791D_REG_PIN 0x4B +#define W83791D_REG_I2C_SUBADDR 0x4A + +#define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */ +#define W83791D_REG_ALARM2 0xAA /* realtime status register2 */ +#define W83791D_REG_ALARM3 0xAB /* realtime status register3 */ + +#define W83791D_REG_VBAT 0x5D +#define W83791D_REG_I2C_ADDR 0x48 + +/* The SMBus locks itself. The Winbond W83791D has a bank select register + (index 0x4e), but the driver only accesses registers in bank 0. Since + we don't switch banks, we don't need any special code to handle + locking access between bank switches */ +static inline int w83791d_read(struct i2c_client *client, u8 reg) +{ + return i2c_smbus_read_byte_data(client, reg); +} + +static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value) +{ + return i2c_smbus_write_byte_data(client, reg, value); +} + +/* The analog voltage inputs have 16mV LSB. Since the sysfs output is + in mV as would be measured on the chip input pin, need to just + multiply/divide by 16 to translate from/to register values. */ +#define IN_TO_REG(val) (SENSORS_LIMIT((((val) + 8) / 16), 0, 255)) +#define IN_FROM_REG(val) ((val) * 16) + +static u8 fan_to_reg(long rpm, int div) +{ + if (rpm == 0) + return 255; + rpm = SENSORS_LIMIT(rpm, 1, 1000000); + return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254); +} + +#define FAN_FROM_REG(val,div) ((val) == 0 ? -1 : \ + ((val) == 255 ? 0 : \ + 1350000 / ((val) * (div)))) + +/* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */ +#define TEMP1_FROM_REG(val) ((val) * 1000) +#define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \ + (val) >= 127000 ? 127 : \ + (val) < 0 ? ((val) - 500) / 1000 : \ + ((val) + 500) / 1000) + +/* for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius + Assumes the top 8 bits are the integral amount and the bottom 8 bits + are the fractional amount. Since we only have 0.5 degree resolution, + the bottom 7 bits will always be zero */ +#define TEMP23_FROM_REG(val) ((val) / 128 * 500) +#define TEMP23_TO_REG(val) ((val) <= -128000 ? 0x8000 : \ + (val) >= 127500 ? 0x7F80 : \ + (val) < 0 ? ((val) - 250) / 500 * 128 : \ + ((val) + 250) / 500 * 128) + + +#define BEEP_MASK_TO_REG(val) ((val) & 0xffffff) +#define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff) + +#define DIV_FROM_REG(val) (1 << (val)) + +static u8 div_to_reg(int nr, long val) +{ + int i; + int max; + + /* first three fan's divisor max out at 8, rest max out at 128 */ + max = (nr < 3) ? 8 : 128; + val = SENSORS_LIMIT(val, 1, max) >> 1; + for (i = 0; i < 7; i++) { + if (val == 0) + break; + val >>= 1; + } + return (u8) i; +} + +struct w83791d_data { + struct i2c_client client; + struct class_device *class_dev; + struct mutex update_lock; + + char valid; /* !=0 if following fields are valid */ + unsigned long last_updated; /* In jiffies */ + + /* array of 2 pointers to subclients */ + struct i2c_client *lm75[2]; + + /* volts */ + u8 in[NUMBER_OF_VIN]; /* Register value */ + u8 in_max[NUMBER_OF_VIN]; /* Register value */ + u8 in_min[NUMBER_OF_VIN]; /* Register value */ + + /* fans */ + u8 fan[NUMBER_OF_FANIN]; /* Register value */ + u8 fan_min[NUMBER_OF_FANIN]; /* Register value */ + u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */ + + /* Temperature sensors */ + + s8 temp1[3]; /* current, over, thyst */ + s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the + integral part, bottom 8 bits are the + fractional part. We only use the top + 9 bits as the resolution is only + to the 0.5 degree C... + two sensors with three values + (cur, over, hyst) */ + + /* Misc */ + u32 alarms; /* realtime status register encoding,combined */ + u8 beep_enable; /* Global beep enable */ + u32 beep_mask; /* Mask off specific beeps */ + u8 vid; /* Register encoding, combined */ + u8 vrm; /* hwmon-vid */ +}; + +static int w83791d_attach_adapter(struct i2c_adapter *adapter); +static int w83791d_detect(struct i2c_adapter *adapter, int address, int kind); +static int w83791d_detach_client(struct i2c_client *client); + +static int w83791d_read(struct i2c_client *client, u8 register); +static int w83791d_write(struct i2c_client *client, u8 register, u8 value); +static struct w83791d_data *w83791d_update_device(struct device *dev); + +#ifdef DEBUG +static void w83791d_print_debug(struct w83791d_data *data, struct device *dev); +#endif + +static void w83791d_init_client(struct i2c_client *client); + +static struct i2c_driver w83791d_driver = { + .driver = { + .name = "w83791d", + }, + .attach_adapter = w83791d_attach_adapter, + .detach_client = w83791d_detach_client, +}; + +/* following are the sysfs callback functions */ +#define show_in_reg(reg) \ +static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ + char *buf) \ +{ \ + struct sensor_device_attribute *sensor_attr = \ + to_sensor_dev_attr(attr); \ + struct w83791d_data *data = w83791d_update_device(dev); \ + int nr = sensor_attr->index; \ + return sprintf(buf,"%d\n", IN_FROM_REG(data->reg[nr])); \ +} + +show_in_reg(in); +show_in_reg(in_min); +show_in_reg(in_max); + +#define store_in_reg(REG, reg) \ +static ssize_t store_in_##reg(struct device *dev, \ + struct device_attribute *attr, \ + const char *buf, size_t count) \ +{ \ + struct sensor_device_attribute *sensor_attr = \ + to_sensor_dev_attr(attr); \ + struct i2c_client *client = to_i2c_client(dev); \ + struct w83791d_data *data = i2c_get_clientdata(client); \ + unsigned long val = simple_strtoul(buf, NULL, 10); \ + int nr = sensor_attr->index; \ + \ + mutex_lock(&data->update_lock); \ + data->in_##reg[nr] = IN_TO_REG(val); \ + w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \ + mutex_unlock(&data->update_lock); \ + \ + return count; \ +} +store_in_reg(MIN, min); +store_in_reg(MAX, max); + +static struct sensor_device_attribute sda_in_input[] = { + SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0), + SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1), + SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2), + SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3), + SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4), + SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5), + SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6), + SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7), + SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8), + SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9), +}; + +static struct sensor_device_attribute sda_in_min[] = { + SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0), + SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1), + SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2), + SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3), + SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4), + SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5), + SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6), + SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7), + SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8), + SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9), +}; + +static struct sensor_device_attribute sda_in_max[] = { + SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0), + SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1), + SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2), + SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3), + SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4), + SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5), + SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6), + SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7), + SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8), + SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9), +}; + +#define show_fan_reg(reg) \ +static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ + char *buf) \ +{ \ + struct sensor_device_attribute *sensor_attr = \ + to_sensor_dev_attr(attr); \ + struct w83791d_data *data = w83791d_update_device(dev); \ + int nr = sensor_attr->index; \ + return sprintf(buf,"%d\n", \ + FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \ +} + +show_fan_reg(fan); +show_fan_reg(fan_min); + +static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr, + const char *buf, size_t count) +{ + struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); + struct i2c_client *client = to_i2c_client(dev); + struct w83791d_data *data = i2c_get_clientdata(client); + unsigned long val = simple_strtoul(buf, NULL, 10); + int nr = sensor_attr->index; + + mutex_lock(&data->update_lock); + data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr])); + w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); + mutex_unlock(&data->update_lock); + + return count; +} + +static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); + int nr = sensor_attr->index; + struct w83791d_data *data = w83791d_update_device(dev); + return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr])); +} + +/* Note: we save and restore the fan minimum here, because its value is + determined in part by the fan divisor. This follows the principle of + least suprise; the user doesn't expect the fan minimum to change just + because the divisor changed. */ +static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr, + const char *buf, size_t count) +{ + struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); + struct i2c_client *client = to_i2c_client(dev); + struct w83791d_data *data = i2c_get_clientdata(client); + int nr = sensor_attr->index; + unsigned long min; + u8 tmp_fan_div; + u8 fan_div_reg; + int indx = 0; + u8 keep_mask = 0; + u8 new_shift = 0; + + /* Save fan_min */ + min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); + + mutex_lock(&data->update_lock); + data->fan_div[nr] = div_to_reg(nr, simple_strtoul(buf, NULL, 10)); + + switch (nr) { + case 0: + indx = 0; + keep_mask = 0xcf; + new_shift = 4; + break; + case 1: + indx = 0; + keep_mask = 0x3f; + new_shift = 6; + break; + case 2: + indx = 1; + keep_mask = 0x3f; + new_shift = 6; + break; + case 3: + indx = 2; + keep_mask = 0xf8; + new_shift = 0; + break; + case 4: + indx = 2; + keep_mask = 0x8f; + new_shift = 4; + break; +#ifdef DEBUG + default: + dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr); + count = -EINVAL; + goto err_exit; +#endif + } + + fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx]) + & keep_mask; + tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask; + + w83791d_write(client, W83791D_REG_FAN_DIV[indx], + fan_div_reg | tmp_fan_div); + + /* Restore fan_min */ + data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr])); + w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); + +#ifdef DEBUG +err_exit: +#endif + mutex_unlock(&data->update_lock); + + return count; +} + +static struct sensor_device_attribute sda_fan_input[] = { + SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0), + SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1), + SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2), + SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3), + SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4), +}; + +static struct sensor_device_attribute sda_fan_min[] = { + SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, + show_fan_min, store_fan_min, 0), + SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, + show_fan_min, store_fan_min, 1), + SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, + show_fan_min, store_fan_min, 2), + SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, + show_fan_min, store_fan_min, 3), + SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, + show_fan_min, store_fan_min, 4), +}; + +static struct sensor_device_attribute sda_fan_div[] = { + SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO, + show_fan_div, store_fan_div, 0), + SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO, + show_fan_div, store_fan_div, 1), + SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO, + show_fan_div, store_fan_div, 2), + SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO, + show_fan_div, store_fan_div, 3), + SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO, + show_fan_div, store_fan_div, 4), +}; + +/* read/write the temperature1, includes measured value and limits */ +static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr, + char *buf) +{ + struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); + struct w83791d_data *data = w83791d_update_device(dev); + return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index])); +} + +static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr, + const char *buf, size_t count) +{ + struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); + struct i2c_client *client = to_i2c_client(dev); + struct w83791d_data *data = i2c_get_clientdata(client); + long val = simple_strtol(buf, NULL, 10); + int nr = attr->index; + + mutex_lock(&data->update_lock); + data->temp1[nr] = TEMP1_TO_REG(val); + w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]); + mutex_unlock(&data->update_lock); + return count; +} + +/* read/write temperature2-3, includes measured value and limits */ +static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr, + char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct w83791d_data *data = w83791d_update_device(dev); + int nr = attr->nr; + int index = attr->index; + return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index])); +} + +static ssize_t store_temp23(struct device *dev, + struct device_attribute *devattr, + const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct i2c_client *client = to_i2c_client(dev); + struct w83791d_data *data = i2c_get_clientdata(client); + long val = simple_strtol(buf, NULL, 10); + int nr = attr->nr; + int index = attr->index; + + mutex_lock(&data->update_lock); + data->temp_add[nr][index] = TEMP23_TO_REG(val); + w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2], + data->temp_add[nr][index] >> 8); + w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1], + data->temp_add[nr][index] & 0x80); + mutex_unlock(&data->update_lock); + + return count; +} + +static struct sensor_device_attribute_2 sda_temp_input[] = { + SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0), + SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0), + SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0), +}; + +static struct sensor_device_attribute_2 sda_temp_max[] = { + SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR, + show_temp1, store_temp1, 0, 1), + SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR, + show_temp23, store_temp23, 0, 1), + SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR, + show_temp23, store_temp23, 1, 1), +}; + +static struct sensor_device_attribute_2 sda_temp_max_hyst[] = { + SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR, + show_temp1, store_temp1, 0, 2), + SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR, + show_temp23, store_temp23, 0, 2), + SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR, + show_temp23, store_temp23, 1, 2), +}; + + +/* get reatime status of all sensors items: voltage, temp, fan */ +static ssize_t show_alarms_reg(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct w83791d_data *data = w83791d_update_device(dev); + return sprintf(buf, "%u\n", data->alarms); +} + +static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL); + +/* Beep control */ + +#define GLOBAL_BEEP_ENABLE_SHIFT 15 +#define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT) + +static ssize_t show_beep_enable(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct w83791d_data *data = w83791d_update_device(dev); + return sprintf(buf, "%d\n", data->beep_enable); +} + +static ssize_t show_beep_mask(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct w83791d_data *data = w83791d_update_device(dev); + return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask)); +} + + +static ssize_t store_beep_mask(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct i2c_client *client = to_i2c_client(dev); + struct w83791d_data *data = i2c_get_clientdata(client); + long val = simple_strtol(buf, NULL, 10); + int i; + + mutex_lock(&data->update_lock); + + /* The beep_enable state overrides any enabling request from + the masks */ + data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK; + data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); + + val = data->beep_mask; + + for (i = 0; i < 3; i++) { + w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff)); + val >>= 8; + } + + mutex_unlock(&data->update_lock); + + return count; +} + +static ssize_t store_beep_enable(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct i2c_client *client = to_i2c_client(dev); + struct w83791d_data *data = i2c_get_clientdata(client); + long val = simple_strtol(buf, NULL, 10); + + mutex_lock(&data->update_lock); + + data->beep_enable = val ? 1 : 0; + + /* Keep the full mask value in sync with the current enable */ + data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK; + data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); + + /* The global control is in the second beep control register + so only need to update that register */ + val = (data->beep_mask >> 8) & 0xff; + + w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val); + + mutex_unlock(&data->update_lock); + + return count; +} + +static struct sensor_device_attribute sda_beep_ctrl[] = { + SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR, + show_beep_enable, store_beep_enable, 0), + SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR, + show_beep_mask, store_beep_mask, 1) +}; + +/* cpu voltage regulation information */ +static ssize_t show_vid_reg(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct w83791d_data *data = w83791d_update_device(dev); + return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); +} + +static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL); + +static ssize_t show_vrm_reg(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct w83791d_data *data = w83791d_update_device(dev); + return sprintf(buf, "%d\n", data->vrm); +} + +static ssize_t store_vrm_reg(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct i2c_client *client = to_i2c_client(dev); + struct w83791d_data *data = i2c_get_clientdata(client); + unsigned long val = simple_strtoul(buf, NULL, 10); + + /* No lock needed as vrm is internal to the driver + (not read from a chip register) and so is not + updated in w83791d_update_device() */ + data->vrm = val; + + return count; +} + +static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg); + +/* This function is called when: + * w83791d_driver is inserted (when this module is loaded), for each + available adapter + * when a new adapter is inserted (and w83791d_driver is still present) */ +static int w83791d_attach_adapter(struct i2c_adapter *adapter) +{ + if (!(adapter->class & I2C_CLASS_HWMON)) + return 0; + return i2c_probe(adapter, &addr_data, w83791d_detect); +} + + +static int w83791d_create_subclient(struct i2c_adapter *adapter, + struct i2c_client *client, int addr, + struct i2c_client **sub_cli) +{ + int err; + struct i2c_client *sub_client; + + (*sub_cli) = sub_client = + kzalloc(sizeof(struct i2c_client), GFP_KERNEL); + if (!(sub_client)) { + return -ENOMEM; + } + sub_client->addr = 0x48 + addr; + i2c_set_clientdata(sub_client, NULL); + sub_client->adapter = adapter; + sub_client->driver = &w83791d_driver; + strlcpy(sub_client->name, "w83791d subclient", I2C_NAME_SIZE); + if ((err = i2c_attach_client(sub_client))) { + dev_err(&client->dev, "subclient registration " + "at address 0x%x failed\n", sub_client->addr); + kfree(sub_client); + return err; + } + return 0; +} + + +static int w83791d_detect_subclients(struct i2c_adapter *adapter, int address, + int kind, struct i2c_client *client) +{ + struct w83791d_data *data = i2c_get_clientdata(client); + int i, id, err; + u8 val; + + id = i2c_adapter_id(adapter); + if (force_subclients[0] == id && force_subclients[1] == address) { + for (i = 2; i <= 3; i++) { + if (force_subclients[i] < 0x48 || + force_subclients[i] > 0x4f) { + dev_err(&client->dev, + "invalid subclient " + "address %d; must be 0x48-0x4f\n", + force_subclients[i]); + err = -ENODEV; + goto error_sc_0; + } + } + w83791d_write(client, W83791D_REG_I2C_SUBADDR, + (force_subclients[2] & 0x07) | + ((force_subclients[3] & 0x07) << 4)); + } + + val = w83791d_read(client, W83791D_REG_I2C_SUBADDR); + if (!(val & 0x08)) { + err = w83791d_create_subclient(adapter, client, + val & 0x7, &data->lm75[0]); + if (err < 0) + goto error_sc_0; + } + if (!(val & 0x80)) { + if ((data->lm75[0] != NULL) && + ((val & 0x7) == ((val >> 4) & 0x7))) { + dev_err(&client->dev, + "duplicate addresses 0x%x, " + "use force_subclient\n", + data->lm75[0]->addr); + err = -ENODEV; + goto error_sc_1; + } + err = w83791d_create_subclient(adapter, client, + (val >> 4) & 0x7, &data->lm75[1]); + if (err < 0) + goto error_sc_1; + } + + return 0; + +/* Undo inits in case of errors */ + +error_sc_1: + if (data->lm75[0] != NULL) { + i2c_detach_client(data->lm75[0]); + kfree(data->lm75[0]); + } +error_sc_0: + return err; +} + + +static int w83791d_detect(struct i2c_adapter *adapter, int address, int kind) +{ + struct i2c_client *client; + struct device *dev; + struct w83791d_data *data; + int i, val1, val2; + int err = 0; + const char *client_name = ""; + + if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { + goto error0; + } + + /* OK. For now, we presume we have a valid client. We now create the + client structure, even though we cannot fill it completely yet. + But it allows us to access w83791d_{read,write}_value. */ + if (!(data = kzalloc(sizeof(struct w83791d_data), GFP_KERNEL))) { + err = -ENOMEM; + goto error0; + } + + client = &data->client; + dev = &client->dev; + i2c_set_clientdata(client, data); + client->addr = address; + client->adapter = adapter; + client->driver = &w83791d_driver; + mutex_init(&data->update_lock); + + /* Now, we do the remaining detection. */ + + /* The w83791d may be stuck in some other bank than bank 0. This may + make reading other information impossible. Specify a force=... + parameter, and the Winbond will be reset to the right bank. */ + if (kind < 0) { + if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80) { + dev_dbg(dev, "Detection failed at step 1\n"); + goto error1; + } + val1 = w83791d_read(client, W83791D_REG_BANK); + val2 = w83791d_read(client, W83791D_REG_CHIPMAN); + /* Check for Winbond ID if in bank 0 */ + if (!(val1 & 0x07)) { + /* yes it is Bank0 */ + if (((!(val1 & 0x80)) && (val2 != 0xa3)) || + ((val1 & 0x80) && (val2 != 0x5c))) { + dev_dbg(dev, "Detection failed at step 2\n"); + goto error1; + } + } + /* If Winbond chip, address of chip and W83791D_REG_I2C_ADDR + should match */ + if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address) { + dev_dbg(dev, "Detection failed at step 3\n"); + goto error1; + } + } + + /* We either have a force parameter or we have reason to + believe it is a Winbond chip. Either way, we want bank 0 and + Vendor ID high byte */ + val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78; + w83791d_write(client, W83791D_REG_BANK, val1 | 0x80); + + /* Verify it is a Winbond w83791d */ + if (kind <= 0) { + /* get vendor ID */ + val2 = w83791d_read(client, W83791D_REG_CHIPMAN); + if (val2 != 0x5c) { /* the vendor is NOT Winbond */ + dev_dbg(dev, "Detection failed at step 4\n"); + goto error1; + } + val1 = w83791d_read(client, W83791D_REG_WCHIPID); + if (val1 == 0x71) { + kind = w83791d; + } else { + if (kind == 0) + dev_warn(dev, + "w83791d: Ignoring 'force' parameter " + "for unknown chip at adapter %d, " + "address 0x%02x\n", + i2c_adapter_id(adapter), address); + goto error1; + } + } + + if (kind == w83791d) { + client_name = "w83791d"; + } else { + dev_err(dev, "w83791d: Internal error: unknown kind (%d)?!?", + kind); + goto error1; + } + +#ifdef DEBUG + val1 = w83791d_read(client, W83791D_REG_DID_VID4); + dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n", + (val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1); +#endif + + /* Fill in the remaining client fields and put into the global list */ + strlcpy(client->name, client_name, I2C_NAME_SIZE); + + /* Tell the I2C layer a new client has arrived */ + if ((err = i2c_attach_client(client))) + goto error1; + + if ((err = w83791d_detect_subclients(adapter, address, kind, client))) + goto error2; + + /* Initialize the chip */ + w83791d_init_client(client); + + /* If the fan_div is changed, make sure there is a rational + fan_min in place */ + for (i = 0; i < NUMBER_OF_FANIN; i++) { + data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]); + } + + /* Register sysfs hooks */ + data->class_dev = hwmon_device_register(dev); + if (IS_ERR(data->class_dev)) { + err = PTR_ERR(data->class_dev); + goto error3; + } + + for (i = 0; i < NUMBER_OF_VIN; i++) { + device_create_file(dev, &sda_in_input[i].dev_attr); + device_create_file(dev, &sda_in_min[i].dev_attr); + device_create_file(dev, &sda_in_max[i].dev_attr); + } + + for (i = 0; i < NUMBER_OF_FANIN; i++) { + device_create_file(dev, &sda_fan_input[i].dev_attr); + device_create_file(dev, &sda_fan_div[i].dev_attr); + device_create_file(dev, &sda_fan_min[i].dev_attr); + } + + for (i = 0; i < NUMBER_OF_TEMPIN; i++) { + device_create_file(dev, &sda_temp_input[i].dev_attr); + device_create_file(dev, &sda_temp_max[i].dev_attr); + device_create_file(dev, &sda_temp_max_hyst[i].dev_attr); + } + + device_create_file(dev, &dev_attr_alarms); + + for (i = 0; i < ARRAY_SIZE(sda_beep_ctrl); i++) { + device_create_file(dev, &sda_beep_ctrl[i].dev_attr); + } + + device_create_file(dev, &dev_attr_cpu0_vid); + device_create_file(dev, &dev_attr_vrm); + + return 0; + +error3: + if (data->lm75[0] != NULL) { + i2c_detach_client(data->lm75[0]); + kfree(data->lm75[0]); + } + if (data->lm75[1] != NULL) { + i2c_detach_client(data->lm75[1]); + kfree(data->lm75[1]); + } +error2: + i2c_detach_client(client); +error1: + kfree(data); +error0: + return err; +} + +static int w83791d_detach_client(struct i2c_client *client) +{ + struct w83791d_data *data = i2c_get_clientdata(client); + int err; + + /* main client */ + if (data) + hwmon_device_unregister(data->class_dev); + + if ((err = i2c_detach_client(client))) + return err; + + /* main client */ + if (data) + kfree(data); + /* subclient */ + else + kfree(client); + + return 0; +} + +static void w83791d_init_client(struct i2c_client *client) +{ + struct w83791d_data *data = i2c_get_clientdata(client); + u8 tmp; + u8 old_beep; + + /* The difference between reset and init is that reset + does a hard reset of the chip via index 0x40, bit 7, + but init simply forces certain registers to have "sane" + values. The hope is that the BIOS has done the right + thing (which is why the default is reset=0, init=0), + but if not, reset is the hard hammer and init + is the soft mallet both of which are trying to whack + things into place... + NOTE: The data sheet makes a distinction between + "power on defaults" and "reset by MR". As far as I can tell, + the hard reset puts everything into a power-on state so I'm + not sure what "reset by MR" means or how it can happen. + */ + if (reset || init) { + /* keep some BIOS settings when we... */ + old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG); + + if (reset) { + /* ... reset the chip and ... */ + w83791d_write(client, W83791D_REG_CONFIG, 0x80); + } + + /* ... disable power-on abnormal beep */ + w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80); + + /* disable the global beep (not done by hard reset) */ + tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]); + w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef); + + if (init) { + /* Make sure monitoring is turned on for add-ons */ + tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG); + if (tmp & 1) { + w83791d_write(client, W83791D_REG_TEMP2_CONFIG, + tmp & 0xfe); + } + + tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG); + if (tmp & 1) { + w83791d_write(client, W83791D_REG_TEMP3_CONFIG, + tmp & 0xfe); + } + + /* Start monitoring */ + tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7; + w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01); + } + } + + data->vrm = vid_which_vrm(); +} + +static struct w83791d_data *w83791d_update_device(struct device *dev) +{ + struct i2c_client *client = to_i2c_client(dev); + struct w83791d_data *data = i2c_get_clientdata(client); + int i, j; + u8 reg_array_tmp[3]; + + mutex_lock(&data->update_lock); + + if (time_after(jiffies, data->last_updated + (HZ * 3)) + || !data->valid) { + dev_dbg(dev, "Starting w83791d device update\n"); + + /* Update the voltages measured value and limits */ + for (i = 0; i < NUMBER_OF_VIN; i++) { + data->in[i] = w83791d_read(client, + W83791D_REG_IN[i]); + data->in_max[i] = w83791d_read(client, + W83791D_REG_IN_MAX[i]); + data->in_min[i] = w83791d_read(client, + W83791D_REG_IN_MIN[i]); + } + + /* Update the fan counts and limits */ + for (i = 0; i < NUMBER_OF_FANIN; i++) { + /* Update the Fan measured value and limits */ + data->fan[i] = w83791d_read(client, + W83791D_REG_FAN[i]); + data->fan_min[i] = w83791d_read(client, + W83791D_REG_FAN_MIN[i]); + } + + /* Update the fan divisor */ + for (i = 0; i < 3; i++) { + reg_array_tmp[i] = w83791d_read(client, + W83791D_REG_FAN_DIV[i]); + } + data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03; + data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03; + data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03; + data->fan_div[3] = reg_array_tmp[2] & 0x07; + data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07; + + /* Update the first temperature sensor */ + for (i = 0; i < 3; i++) { + data->temp1[i] = w83791d_read(client, + W83791D_REG_TEMP1[i]); + } + + /* Update the rest of the temperature sensors */ + for (i = 0; i < 2; i++) { + for (j = 0; j < 3; j++) { + data->temp_add[i][j] = + (w83791d_read(client, + W83791D_REG_TEMP_ADD[i][j * 2]) << 8) | + w83791d_read(client, + W83791D_REG_TEMP_ADD[i][j * 2 + 1]); + } + } + + /* Update the realtime status */ + data->alarms = + w83791d_read(client, W83791D_REG_ALARM1) + + (w83791d_read(client, W83791D_REG_ALARM2) << 8) + + (w83791d_read(client, W83791D_REG_ALARM3) << 16); + + /* Update the beep configuration information */ + data->beep_mask = + w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) + + (w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) + + (w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16); + + data->beep_enable = + (data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01; + + /* Update the cpu voltage information */ + i = w83791d_read(client, W83791D_REG_VID_FANDIV); + data->vid = i & 0x0f; + data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01) + << 4; + + data->last_updated = jiffies; + data->valid = 1; + } + + mutex_unlock(&data->update_lock); + +#ifdef DEBUG + w83791d_print_debug(data, dev); +#endif + + return data; +} + +#ifdef DEBUG +static void w83791d_print_debug(struct w83791d_data *data, struct device *dev) +{ + int i = 0, j = 0; + + dev_dbg(dev, "======Start of w83791d debug values======\n"); + dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN); + for (i = 0; i < NUMBER_OF_VIN; i++) { + dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]); + dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]); + dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]); + } + dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN); + for (i = 0; i < NUMBER_OF_FANIN; i++) { + dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]); + dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]); + dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]); + } + + /* temperature math is signed, but only print out the + bits that matter */ + dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN); + for (i = 0; i < 3; i++) { + dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]); + } + for (i = 0; i < 2; i++) { + for (j = 0; j < 3; j++) { + dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j, + (u16) data->temp_add[i][j]); + } + } + + dev_dbg(dev, "Misc Information: ===>\n"); + dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms); + dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask); + dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable); + dev_dbg(dev, "vid is: 0x%02x\n", data->vid); + dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm); + dev_dbg(dev, "=======End of w83791d debug values========\n"); + dev_dbg(dev, "\n"); +} +#endif + +static int __init sensors_w83791d_init(void) +{ + return i2c_add_driver(&w83791d_driver); +} + +static void __exit sensors_w83791d_exit(void) +{ + i2c_del_driver(&w83791d_driver); +} + +MODULE_AUTHOR("Charles Spirakis "); +MODULE_DESCRIPTION("W83791D driver"); +MODULE_LICENSE("GPL"); + +module_init(sensors_w83791d_init); +module_exit(sensors_w83791d_exit); -- cgit v1.2.3 From f2b84bbcebfdbe4855bab532909eef6621999f9f Mon Sep 17 00:00:00 2001 From: Hans de Goede Date: Sun, 4 Jun 2006 20:22:24 +0200 Subject: [PATCH] abituguru: New hardware monitoring driver New hardware monitoring driver for the Abit uGuru Signed-off-by: Hans de Goede Signed-off-by: Jean Delvare Signed-off-by: Greg Kroah-Hartman --- Documentation/hwmon/abituguru | 59 ++ Documentation/hwmon/abituguru-datasheet | 312 +++++++ MAINTAINERS | 6 + drivers/hwmon/Kconfig | 12 + drivers/hwmon/Makefile | 1 + drivers/hwmon/abituguru.c | 1391 +++++++++++++++++++++++++++++++ 6 files changed, 1781 insertions(+) create mode 100644 Documentation/hwmon/abituguru create mode 100644 Documentation/hwmon/abituguru-datasheet create mode 100644 drivers/hwmon/abituguru.c (limited to 'drivers/hwmon/Makefile') diff --git a/Documentation/hwmon/abituguru b/Documentation/hwmon/abituguru new file mode 100644 index 000000000000..69cdb527d58f --- /dev/null +++ b/Documentation/hwmon/abituguru @@ -0,0 +1,59 @@ +Kernel driver abituguru +======================= + +Supported chips: + * Abit uGuru (Hardware Monitor part only) + Prefix: 'abituguru' + Addresses scanned: ISA 0x0E0 + Datasheet: Not available, this driver is based on reverse engineering. + A "Datasheet" has been written based on the reverse engineering it + should be available in the same dir as this file under the name + abituguru-datasheet. + +Authors: + Hans de Goede , + (Initial reverse engineering done by Olle Sandberg + ) + + +Module Parameters +----------------- + +* force: bool Force detection. Note this parameter only causes the + detection to be skipped, if the uGuru can't be read + the module initialization (insmod) will still fail. +* fan_sensors: int Tell the driver how many fan speed sensors there are + on your motherboard. Default: 0 (autodetect). +* pwms: int Tell the driver how many fan speed controls (fan + pwms) your motherboard has. Default: 0 (autodetect). +* verbose: int How verbose should the driver be? (0-3): + 0 normal output + 1 + verbose error reporting + 2 + sensors type probing info\n" + 3 + retryable error reporting + Default: 2 (the driver is still in the testing phase) + +Notice if you need any of the first three options above please insmod the +driver with verbose set to 3 and mail me the output of: +dmesg | grep abituguru + + +Description +----------- + +This driver supports the hardware monitoring features of the Abit uGuru chip +found on Abit uGuru featuring motherboards (most modern Abit motherboards). + +The uGuru chip in reality is a Winbond W83L950D in disguise (despite Abit +claiming it is "a new microprocessor designed by the ABIT Engineers"). +Unfortunatly this doesn't help since the W83L950D is a generic +microcontroller with a custom Abit application running on it. + +Despite Abit not releasing any information regarding the uGuru, Olle +Sandberg has managed to reverse engineer the sensor part +of the uGuru. Without his work this driver would not have been possible. + +Known Issues +------------ + +The voltage and frequency control parts of the Abit uGuru are not supported. diff --git a/Documentation/hwmon/abituguru-datasheet b/Documentation/hwmon/abituguru-datasheet new file mode 100644 index 000000000000..aef5a9b36846 --- /dev/null +++ b/Documentation/hwmon/abituguru-datasheet @@ -0,0 +1,312 @@ +uGuru datasheet +=============== + +First of all, what I know about uGuru is no fact based on any help, hints or +datasheet from Abit. The data I have got on uGuru have I assembled through +my weak knowledge in "backwards engineering". +And just for the record, you may have noticed uGuru isn't a chip developed by +Abit, as they claim it to be. It's realy just an microprocessor (uC) created by +Winbond (W83L950D). And no, reading the manual for this specific uC or +mailing Windbond for help won't give any usefull data about uGuru, as it is +the program inside the uC that is responding to calls. + +Olle Sandberg , 2005-05-25 + + +Original version by Olle Sandberg who did the heavy lifting of the initial +reverse engineering. This version has been almost fully rewritten for clarity +and extended with write support and info on more databanks, the write support +is once again reverse engineered by Olle the additional databanks have been +reverse engineered by me. I would like to express my thanks to Olle, this +document and the Linux driver could not have been written without his efforts. + +Note: because of the lack of specs only the sensors part of the uGuru is +described here and not the CPU / RAM / etc voltage & frequency control. + +Hans de Goede , 28-01-2006 + + +Detection +========= + +As far as known the uGuru is always placed at and using the (ISA) I/O-ports +0xE0 and 0xE4, so we don't have to scan any port-range, just check what the two +ports are holding for detection. We will refer to 0xE0 as CMD (command-port) +and 0xE4 as DATA because Abit refers to them with these names. + +If DATA holds 0x00 or 0x08 and CMD holds 0x00 or 0xAC an uGuru could be +present. We have to check for two different values at data-port, because +after a reboot uGuru will hold 0x00 here, but if the driver is removed and +later on attached again data-port will hold 0x08, more about this later. + +After wider testing of the Linux kernel driver some variants of the uGuru have +turned up which will hold 0x00 instead of 0xAC at the CMD port, thus we also +have to test CMD for two different values. On these uGuru's DATA will initally +hold 0x09 and will only hold 0x08 after reading CMD first, so CMD must be read +first! + +To be really sure an uGuru is present a test read of one or more register +sets should be done. + + +Reading / Writing +================= + +Addressing +---------- + +The uGuru has a number of different addressing levels. The first addressing +level we will call banks. A bank holds data for one or more sensors. The data +in a bank for a sensor is one or more bytes large. + +The number of bytes is fixed for a given bank, you should always read or write +that many bytes, reading / writing more will fail, the results when writing +less then the number of bytes for a given bank are undetermined. + +See below for all known bank addresses, numbers of sensors in that bank, +number of bytes data per sensor and contents/meaning of those bytes. + +Although both this document and the kernel driver have kept the sensor +terminoligy for the addressing within a bank this is not 100% correct, in +bank 0x24 for example the addressing within the bank selects a PWM output not +a sensor. + +Notice that some banks have both a read and a write address this is how the +uGuru determines if a read from or a write to the bank is taking place, thus +when reading you should always use the read address and when writing the +write address. The write address is always one (1) more then the read address. + + +uGuru ready +----------- + +Before you can read from or write to the uGuru you must first put the uGuru +in "ready" mode. + +To put the uGuru in ready mode first write 0x00 to DATA and then wait for DATA +to hold 0x09, DATA should read 0x09 within 250 read cycles. + +Next CMD _must_ be read and should hold 0xAC, usually CMD will hold 0xAC the +first read but sometimes it takes a while before CMD holds 0xAC and thus it +has to be read a number of times (max 50). + +After reading CMD, DATA should hold 0x08 which means that the uGuru is ready +for input. As above DATA will usually hold 0x08 the first read but not always. +This step can be skipped, but it is undetermined what happens if the uGuru has +not yet reported 0x08 at DATA and you proceed with writing a bank address. + + +Sending bank and sensor addresses to the uGuru +---------------------------------------------- + +First the uGuru must be in "ready" mode as described above, DATA should hold +0x08 indicating that the uGuru wants input, in this case the bank address. + +Next write the bank address to DATA. After the bank address has been written +wait for to DATA to hold 0x08 again indicating that it wants / is ready for +more input (max 250 reads). + +Once DATA holds 0x08 again write the sensor address to CMD. + + +Reading +------- + +First send the bank and sensor addresses as described above. +Then for each byte of data you want to read wait for DATA to hold 0x01 +which indicates that the uGuru is ready to be read (max 250 reads) and once +DATA holds 0x01 read the byte from CMD. + +Once all bytes have been read data will hold 0x09, but there is no reason to +test for this. Notice that the number of bytes is bank address dependent see +above and below. + +After completing a successfull read it is advised to put the uGuru back in +ready mode, so that it is ready for the next read / write cycle. This way +if your program / driver is unloaded and later loaded again the detection +algorithm described above will still work. + + + +Writing +------- + +First send the bank and sensor addresses as described above. +Then for each byte of data you want to write wait for DATA to hold 0x00 +which indicates that the uGuru is ready to be written (max 250 reads) and +once DATA holds 0x00 write the byte to CMD. + +Once all bytes have been written wait for DATA to hold 0x01 (max 250 reads) +don't ask why this is the way it is. + +Once DATA holds 0x01 read CMD it should hold 0xAC now. + +After completing a successfull write it is advised to put the uGuru back in +ready mode, so that it is ready for the next read / write cycle. This way +if your program / driver is unloaded and later loaded again the detection +algorithm described above will still work. + + +Gotchas +------- + +After wider testing of the Linux kernel driver some variants of the uGuru have +turned up which do not hold 0x08 at DATA within 250 reads after writing the +bank address. With these versions this happens quite frequent, using larger +timeouts doesn't help, they just go offline for a second or 2, doing some +internal callibration or whatever. Your code should be prepared to handle +this and in case of no response in this specific case just goto sleep for a +while and then retry. + + +Address Map +=========== + +Bank 0x20 Alarms (R) +-------------------- +This bank contains 0 sensors, iow the sensor address is ignored (but must be +written) just use 0. Bank 0x20 contains 3 bytes: + +Byte 0: +This byte holds the alarm flags for sensor 0-7 of Sensor Bank1, with bit 0 +corresponding to sensor 0, 1 to 1, etc. + +Byte 1: +This byte holds the alarm flags for sensor 8-15 of Sensor Bank1, with bit 0 +corresponding to sensor 8, 1 to 9, etc. + +Byte 2: +This byte holds the alarm flags for sensor 0-5 of Sensor Bank2, with bit 0 +corresponding to sensor 0, 1 to 1, etc. + + +Bank 0x21 Sensor Bank1 Values / Readings (R) +-------------------------------------------- +This bank contains 16 sensors, for each sensor it contains 1 byte. +So far the following sensors are known to be available on all motherboards: +Sensor 0 CPU temp +Sensor 1 SYS temp +Sensor 3 CPU core volt +Sensor 4 DDR volt +Sensor 10 DDR Vtt volt +Sensor 15 PWM temp + +Byte 0: +This byte holds the reading from the sensor. Sensors in Bank1 can be both +volt and temp sensors, this is motherboard specific. The uGuru however does +seem to know (be programmed with) what kindoff sensor is attached see Sensor +Bank1 Settings description. + +Volt sensors use a linear scale, a reading 0 corresponds with 0 volt and a +reading of 255 with 3494 mV. The sensors for higher voltages however are +connected through a division circuit. The currently known division circuits +in use result in ranges of: 0-4361mV, 0-6248mV or 0-14510mV. 3.3 volt sources +use the 0-4361mV range, 5 volt the 0-6248mV and 12 volt the 0-14510mV . + +Temp sensors also use a linear scale, a reading of 0 corresponds with 0 degree +Celsius and a reading of 255 with a reading of 255 degrees Celsius. + + +Bank 0x22 Sensor Bank1 Settings (R) +Bank 0x23 Sensor Bank1 Settings (W) +----------------------------------- + +This bank contains 16 sensors, for each sensor it contains 3 bytes. Each +set of 3 bytes contains the settings for the sensor with the same sensor +address in Bank 0x21 . + +Byte 0: +Alarm behaviour for the selected sensor. A 1 enables the described behaviour. +Bit 0: Give an alarm if measured temp is over the warning threshold (RW) * +Bit 1: Give an alarm if measured volt is over the max threshold (RW) ** +Bit 2: Give an alarm if measured volt is under the min threshold (RW) ** +Bit 3: Beep if alarm (RW) +Bit 4: 1 if alarm cause measured temp is over the warning threshold (R) +Bit 5: 1 if alarm cause measured volt is over the max threshold (R) +Bit 6: 1 if alarm cause measured volt is under the min threshold (R) +Bit 7: Volt sensor: Shutdown if alarm persist for more then 4 seconds (RW) + Temp sensor: Shutdown if temp is over the shutdown threshold (RW) + +* This bit is only honored/used by the uGuru if a temp sensor is connected +** This bit is only honored/used by the uGuru if a volt sensor is connected +Note with some trickery this can be used to find out what kinda sensor is +detected see the Linux kernel driver for an example with many comments on +how todo this. + +Byte 1: +Temp sensor: warning threshold (scale as bank 0x21) +Volt sensor: min threshold (scale as bank 0x21) + +Byte 2: +Temp sensor: shutdown threshold (scale as bank 0x21) +Volt sensor: max threshold (scale as bank 0x21) + + +Bank 0x24 PWM outputs for FAN's (R) +Bank 0x25 PWM outputs for FAN's (W) +----------------------------------- + +This bank contains 3 "sensors", for each sensor it contains 5 bytes. +Sensor 0 usually controls the CPU fan +Sensor 1 usually controls the NB (or chipset for single chip) fan +Sensor 2 usually controls the System fan + +Byte 0: +Flag 0x80 to enable control, Fan runs at 100% when disabled. +low nibble (temp)sensor address at bank 0x21 used for control. + +Byte 1: +0-255 = 0-12v (linear), specify voltage at which fan will rotate when under +low threshold temp (specified in byte 3) + +Byte 2: +0-255 = 0-12v (linear), specify voltage at which fan will rotate when above +high threshold temp (specified in byte 4) + +Byte 3: +Low threshold temp (scale as bank 0x21) + +byte 4: +High threshold temp (scale as bank 0x21) + + +Bank 0x26 Sensors Bank2 Values / Readings (R) +--------------------------------------------- + +This bank contains 6 sensors (AFAIK), for each sensor it contains 1 byte. +So far the following sensors are known to be available on all motherboards: +Sensor 0: CPU fan speed +Sensor 1: NB (or chipset for single chip) fan speed +Sensor 2: SYS fan speed + +Byte 0: +This byte holds the reading from the sensor. 0-255 = 0-15300 (linear) + + +Bank 0x27 Sensors Bank2 Settings (R) +Bank 0x28 Sensors Bank2 Settings (W) +------------------------------------ + +This bank contains 6 sensors (AFAIK), for each sensor it contains 2 bytes. + +Byte 0: +Alarm behaviour for the selected sensor. A 1 enables the described behaviour. +Bit 0: Give an alarm if measured rpm is under the min threshold (RW) +Bit 3: Beep if alarm (RW) +Bit 7: Shutdown if alarm persist for more then 4 seconds (RW) + +Byte 1: +min threshold (scale as bank 0x26) + + +Warning for the adventerous +=========================== + +A word of caution to those who want to experiment and see if they can figure +the voltage / clock programming out, I tried reading and only reading banks +0-0x30 with the reading code used for the sensor banks (0x20-0x28) and this +resulted in a _permanent_ reprogramming of the voltages, luckily I had the +sensors part configured so that it would shutdown my system on any out of spec +voltages which proprably safed my computer (after a reboot I managed to +immediatly enter the bios and reload the defaults). This probably means that +the read/write cycle for the non sensor part is different from the sensor part. diff --git a/MAINTAINERS b/MAINTAINERS index 58d181d050c4..7e3a38eeccbf 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -181,6 +181,12 @@ M: bcrl@kvack.org L: linux-aio@kvack.org S: Supported +ABIT UGURU HARDWARE MONITOR DRIVER +P: Hans de Goede +M: j.w.r.degoede@hhs.nl +L: lm-sensors@lm-sensors.org +S: Maintained + ACENIC DRIVER P: Jes Sorensen M: jes@trained-monkey.org diff --git a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig index 164760df1233..6fb93d63bd8c 100644 --- a/drivers/hwmon/Kconfig +++ b/drivers/hwmon/Kconfig @@ -27,6 +27,18 @@ config HWMON_VID tristate default n +config SENSORS_ABITUGURU + tristate "Abit uGuru" + depends on HWMON && EXPERIMENTAL + help + If you say yes here you get support for the Abit uGuru chips + sensor part. The voltage and frequency control parts of the Abit + uGuru are not supported. The Abit uGuru chip can be found on Abit + uGuru featuring motherboards (most modern Abit motherboards). + + This driver can also be built as a module. If so, the module + will be called abituguru. + config SENSORS_ADM1021 tristate "Analog Devices ADM1021 and compatibles" depends on HWMON && I2C diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile index db72b1415e7f..5092999deb7b 100644 --- a/drivers/hwmon/Makefile +++ b/drivers/hwmon/Makefile @@ -12,6 +12,7 @@ obj-$(CONFIG_SENSORS_W83792D) += w83792d.o obj-$(CONFIG_SENSORS_W83781D) += w83781d.o obj-$(CONFIG_SENSORS_W83791D) += w83791d.o +obj-$(CONFIG_SENSORS_ABITUGURU) += abituguru.o obj-$(CONFIG_SENSORS_ADM1021) += adm1021.o obj-$(CONFIG_SENSORS_ADM1025) += adm1025.o obj-$(CONFIG_SENSORS_ADM1026) += adm1026.o diff --git a/drivers/hwmon/abituguru.c b/drivers/hwmon/abituguru.c new file mode 100644 index 000000000000..bf2cb0aa69b4 --- /dev/null +++ b/drivers/hwmon/abituguru.c @@ -0,0 +1,1391 @@ +/* + abituguru.c Copyright (c) 2005-2006 Hans de Goede + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ +/* + This driver supports the sensor part of the custom Abit uGuru chip found + on Abit uGuru motherboards. Note: because of lack of specs the CPU / RAM / + etc voltage & frequency control is not supported! +*/ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* Banks */ +#define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */ +#define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */ +#define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */ +#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */ +/* max nr of sensors in bank2, currently mb's with max 6 fans are known */ +#define ABIT_UGURU_MAX_BANK2_SENSORS 6 +/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */ +#define ABIT_UGURU_MAX_PWMS 5 +/* uGuru sensor bank 1 flags */ /* Alarm if: */ +#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */ +#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */ +#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */ +#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */ +#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */ +#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */ +/* uGuru sensor bank 2 flags */ /* Alarm if: */ +#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */ +/* uGuru sensor bank common flags */ +#define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */ +#define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */ +/* uGuru fan PWM (speed control) flags */ +#define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */ +/* Values used for conversion */ +#define ABIT_UGURU_FAN_MAX 15300 /* RPM */ +/* Bank1 sensor types */ +#define ABIT_UGURU_IN_SENSOR 0 +#define ABIT_UGURU_TEMP_SENSOR 1 +#define ABIT_UGURU_NC 2 +/* Timeouts / Retries, if these turn out to need a lot of fiddling we could + convert them to params. */ +/* 250 was determined by trial and error, 200 works most of the time, but not + always. I assume this is cpu-speed independent, since the ISA-bus and not + the CPU should be the bottleneck. Note that 250 sometimes is still not + enough (only reported on AN7 mb) this is handled by a higher layer. */ +#define ABIT_UGURU_WAIT_TIMEOUT 250 +/* Normally all expected status in abituguru_ready, are reported after the + first read, but sometimes not and we need to poll, 5 polls was not enough + 50 sofar is. */ +#define ABIT_UGURU_READY_TIMEOUT 50 +/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */ +#define ABIT_UGURU_MAX_RETRIES 3 +#define ABIT_UGURU_RETRY_DELAY (HZ/5) +/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is a error */ +#define ABIT_UGURU_MAX_TIMEOUTS 2 + +/* All the variables below are named identical to the oguru and oguru2 programs + reverse engineered by Olle Sandberg, hence the names might not be 100% + logical. I could come up with better names, but I prefer keeping the names + identical so that this driver can be compared with his work more easily. */ +/* Two i/o-ports are used by uGuru */ +#define ABIT_UGURU_BASE 0x00E0 +/* Used to tell uGuru what to read and to read the actual data */ +#define ABIT_UGURU_CMD 0x00 +/* Mostly used to check if uGuru is busy */ +#define ABIT_UGURU_DATA 0x04 +#define ABIT_UGURU_REGION_LENGTH 5 +/* uGuru status' */ +#define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */ +#define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */ +#define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */ +#define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */ +/* utility macros */ +#define ABIT_UGURU_NAME "abituguru" +#define ABIT_UGURU_DEBUG(level, format, arg...) \ + if (level <= verbose) \ + printk(KERN_DEBUG ABIT_UGURU_NAME ": " format , ## arg) + +/* Constants */ +/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */ +static const int abituguru_bank1_max_value[2] = { 3494, 255000 }; +/* Min / Max allowed values for sensor2 (fan) alarm threshold, these values + correspond to 300-3000 RPM */ +static const u8 abituguru_bank2_min_threshold = 5; +static const u8 abituguru_bank2_max_threshold = 50; +/* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4 + are temperature trip points. */ +static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 }; +/* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a + special case the minium allowed pwm% setting for this is 30% (77) on + some MB's this special case is handled in the code! */ +static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 }; +static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 }; + + +/* Insmod parameters */ +static int force; +module_param(force, bool, 0); +MODULE_PARM_DESC(force, "Set to one to force detection."); +static int fan_sensors; +module_param(fan_sensors, int, 0); +MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru " + "(0 = autodetect)"); +static int pwms; +module_param(pwms, int, 0); +MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru " + "(0 = autodetect)"); + +/* Default verbose is 2, since this driver is still in the testing phase */ +static int verbose = 2; +module_param(verbose, int, 0644); +MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n" + " 0 normal output\n" + " 1 + verbose error reporting\n" + " 2 + sensors type probing info\n" + " 3 + retryable error reporting"); + + +/* For the Abit uGuru, we need to keep some data in memory. + The structure is dynamically allocated, at the same time when a new + abituguru device is allocated. */ +struct abituguru_data { + struct class_device *class_dev; /* hwmon registered device */ + struct mutex update_lock; /* protect access to data and uGuru */ + unsigned long last_updated; /* In jiffies */ + unsigned short addr; /* uguru base address */ + char uguru_ready; /* is the uguru in ready state? */ + unsigned char update_timeouts; /* number of update timeouts since last + successful update */ + + /* The sysfs attr and their names are generated automatically, for bank1 + we cannot use a predefined array because we don't know beforehand + of a sensor is a volt or a temp sensor, for bank2 and the pwms its + easier todo things the same way. For in sensors we have 9 (temp 7) + sysfs entries per sensor, for bank2 and pwms 6. */ + struct sensor_device_attribute_2 sysfs_attr[16 * 9 + + ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6]; + /* Buffer to store the dynamically generated sysfs names, we need 2120 + bytes for bank1 (worst case scenario of 16 in sensors), 444 bytes + for fan1-6 and 738 bytes for pwm1-6 + some room to spare in case I + miscounted :) */ + char bank1_names[3400]; + + /* Bank 1 data */ + u8 bank1_sensors[2]; /* number of [0] in, [1] temp sensors */ + u8 bank1_address[2][16];/* addresses of [0] in, [1] temp sensors */ + u8 bank1_value[16]; + /* This array holds 16 x 3 entries for all the bank 1 sensor settings + (flags, min, max for voltage / flags, warn, shutdown for temp). */ + u8 bank1_settings[16][3]; + /* Maximum value for each sensor used for scaling in mV/millidegrees + Celsius. */ + int bank1_max_value[16]; + + /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */ + u8 bank2_sensors; /* actual number of bank2 sensors found */ + u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS]; + u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */ + + /* Alarms 2 bytes for bank1, 1 byte for bank2 */ + u8 alarms[3]; + + /* Fan PWM (speed control) 5 bytes per PWM */ + u8 pwms; /* actual number of pwms found */ + u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5]; +}; + +/* wait till the uguru is in the specified state */ +static int abituguru_wait(struct abituguru_data *data, u8 state) +{ + int timeout = ABIT_UGURU_WAIT_TIMEOUT; + + while (inb_p(data->addr + ABIT_UGURU_DATA) != state) { + timeout--; + if (timeout == 0) + return -EBUSY; + } + return 0; +} + +/* Put the uguru in ready for input state */ +static int abituguru_ready(struct abituguru_data *data) +{ + int timeout = ABIT_UGURU_READY_TIMEOUT; + + if (data->uguru_ready) + return 0; + + /* Reset? / Prepare for next read/write cycle */ + outb(0x00, data->addr + ABIT_UGURU_DATA); + + /* Wait till the uguru is ready */ + if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) { + ABIT_UGURU_DEBUG(1, + "timeout exceeded waiting for ready state\n"); + return -EIO; + } + + /* Cmd port MUST be read now and should contain 0xAC */ + while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { + timeout--; + if (timeout == 0) { + ABIT_UGURU_DEBUG(1, + "CMD reg does not hold 0xAC after ready command\n"); + return -EIO; + } + } + + /* After this the ABIT_UGURU_DATA port should contain + ABIT_UGURU_STATUS_INPUT */ + timeout = ABIT_UGURU_READY_TIMEOUT; + while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) { + timeout--; + if (timeout == 0) { + ABIT_UGURU_DEBUG(1, + "state != more input after ready command\n"); + return -EIO; + } + } + + data->uguru_ready = 1; + return 0; +} + +/* Send the bank and then sensor address to the uGuru for the next read/write + cycle. This function gets called as the first part of a read/write by + abituguru_read and abituguru_write. This function should never be + called by any other function. */ +static int abituguru_send_address(struct abituguru_data *data, + u8 bank_addr, u8 sensor_addr, int retries) +{ + /* assume the caller does error handling itself if it has not requested + any retries, and thus be quiet. */ + int report_errors = retries; + + for (;;) { + /* Make sure the uguru is ready and then send the bank address, + after this the uguru is no longer "ready". */ + if (abituguru_ready(data) != 0) + return -EIO; + outb(bank_addr, data->addr + ABIT_UGURU_DATA); + data->uguru_ready = 0; + + /* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again + and send the sensor addr */ + if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) { + if (retries) { + ABIT_UGURU_DEBUG(3, "timeout exceeded " + "waiting for more input state, %d " + "tries remaining\n", retries); + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(ABIT_UGURU_RETRY_DELAY); + retries--; + continue; + } + if (report_errors) + ABIT_UGURU_DEBUG(1, "timeout exceeded " + "waiting for more input state " + "(bank: %d)\n", (int)bank_addr); + return -EBUSY; + } + outb(sensor_addr, data->addr + ABIT_UGURU_CMD); + return 0; + } +} + +/* Read count bytes from sensor sensor_addr in bank bank_addr and store the + result in buf, retry the send address part of the read retries times. */ +static int abituguru_read(struct abituguru_data *data, + u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries) +{ + int i; + + /* Send the address */ + i = abituguru_send_address(data, bank_addr, sensor_addr, retries); + if (i) + return i; + + /* And read the data */ + for (i = 0; i < count; i++) { + if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { + ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " + "read state (bank: %d, sensor: %d)\n", + (int)bank_addr, (int)sensor_addr); + break; + } + buf[i] = inb(data->addr + ABIT_UGURU_CMD); + } + + /* Last put the chip back in ready state */ + abituguru_ready(data); + + return i; +} + +/* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send + address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */ +static int abituguru_write(struct abituguru_data *data, + u8 bank_addr, u8 sensor_addr, u8 *buf, int count) +{ + int i; + + /* Send the address */ + i = abituguru_send_address(data, bank_addr, sensor_addr, + ABIT_UGURU_MAX_RETRIES); + if (i) + return i; + + /* And write the data */ + for (i = 0; i < count; i++) { + if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) { + ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " + "write state (bank: %d, sensor: %d)\n", + (int)bank_addr, (int)sensor_addr); + break; + } + outb(buf[i], data->addr + ABIT_UGURU_CMD); + } + + /* Now we need to wait till the chip is ready to be read again, + don't ask why */ + if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { + ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state " + "after write (bank: %d, sensor: %d)\n", (int)bank_addr, + (int)sensor_addr); + return -EIO; + } + + /* Cmd port MUST be read now and should contain 0xAC */ + if (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { + ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after write " + "(bank: %d, sensor: %d)\n", (int)bank_addr, + (int)sensor_addr); + return -EIO; + } + + /* Last put the chip back in ready state */ + abituguru_ready(data); + + return i; +} + +/* Detect sensor type. Temp and Volt sensors are enabled with + different masks and will ignore enable masks not meant for them. + This enables us to test what kind of sensor we're dealing with. + By setting the alarm thresholds so that we will always get an + alarm for sensor type X and then enabling the sensor as sensor type + X, if we then get an alarm it is a sensor of type X. */ +static int __devinit +abituguru_detect_bank1_sensor_type(struct abituguru_data *data, + u8 sensor_addr) +{ + u8 val, buf[3]; + int ret = ABIT_UGURU_NC; + + /* First read the sensor and the current settings */ + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val, + 1, ABIT_UGURU_MAX_RETRIES) != 1) + return -EIO; + + /* Test val is sane / usable for sensor type detection. */ + if ((val < 10u) || (val > 240u)) { + printk(KERN_WARNING ABIT_UGURU_NAME + ": bank1-sensor: %d reading (%d) too close to limits, " + "unable to determine sensor type, skipping sensor\n", + (int)sensor_addr, (int)val); + /* assume no sensor is there for sensors for which we can't + determine the sensor type because their reading is too close + to their limits, this usually means no sensor is there. */ + return ABIT_UGURU_NC; + } + + ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr); + /* Volt sensor test, enable volt low alarm, set min value ridicously + high. If its a volt sensor this should always give us an alarm. */ + buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE; + buf[1] = 245; + buf[2] = 250; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, + buf, 3) != 3) + return -EIO; + /* Now we need 20 ms to give the uguru time to read the sensors + and raise a voltage alarm */ + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(HZ/50); + /* Check for alarm and check the alarm is a volt low alarm. */ + if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + return -EIO; + if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, + sensor_addr, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + return -EIO; + if (buf[0] & ABIT_UGURU_VOLT_LOW_ALARM_FLAG) { + /* Restore original settings */ + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, + sensor_addr, + data->bank1_settings[sensor_addr], + 3) != 3) + return -EIO; + ABIT_UGURU_DEBUG(2, " found volt sensor\n"); + return ABIT_UGURU_IN_SENSOR; + } else + ABIT_UGURU_DEBUG(2, " alarm raised during volt " + "sensor test, but volt low flag not set\n"); + } else + ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor " + "test\n"); + + /* Temp sensor test, enable sensor as a temp sensor, set beep value + ridicously low (but not too low, otherwise uguru ignores it). + If its a temp sensor this should always give us an alarm. */ + buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE; + buf[1] = 5; + buf[2] = 10; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, + buf, 3) != 3) + return -EIO; + /* Now we need 50 ms to give the uguru time to read the sensors + and raise a temp alarm */ + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(HZ/20); + /* Check for alarm and check the alarm is a temp high alarm. */ + if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + return -EIO; + if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, + sensor_addr, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + return -EIO; + if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) { + ret = ABIT_UGURU_TEMP_SENSOR; + ABIT_UGURU_DEBUG(2, " found temp sensor\n"); + } else + ABIT_UGURU_DEBUG(2, " alarm raised during temp " + "sensor test, but temp high flag not set\n"); + } else + ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor " + "test\n"); + + /* Restore original settings */ + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, + data->bank1_settings[sensor_addr], 3) != 3) + return -EIO; + + return ret; +} + +/* These functions try to find out how many sensors there are in bank2 and how + many pwms there are. The purpose of this is to make sure that we don't give + the user the possibility to change settings for non-existent sensors / pwm. + The uGuru will happily read / write whatever memory happens to be after the + memory storing the PWM settings when reading/writing to a PWM which is not + there. Notice even if we detect a PWM which doesn't exist we normally won't + write to it, unless the user tries to change the settings. + + Although the uGuru allows reading (settings) from non existing bank2 + sensors, my version of the uGuru does seem to stop writing to them, the + write function above aborts in this case with: + "CMD reg does not hold 0xAC after write" + + Notice these 2 tests are non destructive iow read-only tests, otherwise + they would defeat their purpose. Although for the bank2_sensors detection a + read/write test would be feasible because of the reaction above, I've + however opted to stay on the safe side. */ +static void __devinit +abituguru_detect_no_bank2_sensors(struct abituguru_data *data) +{ + int i; + + if (fan_sensors) { + data->bank2_sensors = fan_sensors; + ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of " + "\"fan_sensors\" module param\n", + (int)data->bank2_sensors); + return; + } + + ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n"); + for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { + /* 0x89 are the known used bits: + -0x80 enable shutdown + -0x08 enable beep + -0x01 enable alarm + All other bits should be 0, but on some motherboards + 0x40 (bit 6) is also high, at least for fan1 */ + if ((!i && (data->bank2_settings[i][0] & ~0xC9)) || + (i && (data->bank2_settings[i][0] & ~0x89))) { + ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " + "to be a fan sensor: settings[0] = %02X\n", + i, (unsigned int)data->bank2_settings[i][0]); + break; + } + + /* check if the threshold is within the allowed range */ + if (data->bank2_settings[i][1] < + abituguru_bank2_min_threshold) { + ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " + "to be a fan sensor: the threshold (%d) is " + "below the minimum (%d)\n", i, + (int)data->bank2_settings[i][1], + (int)abituguru_bank2_min_threshold); + break; + } + if (data->bank2_settings[i][1] > + abituguru_bank2_max_threshold) { + ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " + "to be a fan sensor: the threshold (%d) is " + "above the maximum (%d)\n", i, + (int)data->bank2_settings[i][1], + (int)abituguru_bank2_max_threshold); + break; + } + } + + data->bank2_sensors = i; + ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n", + (int)data->bank2_sensors); +} + +static void __devinit +abituguru_detect_no_pwms(struct abituguru_data *data) +{ + int i, j; + + if (pwms) { + data->pwms = pwms; + ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of " + "\"pwms\" module param\n", (int)data->pwms); + return; + } + + ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n"); + for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { + /* 0x80 is the enable bit and the low + nibble is which temp sensor to use, + the other bits should be 0 */ + if (data->pwm_settings[i][0] & ~0x8F) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: settings[0] = %02X\n", + i, (unsigned int)data->pwm_settings[i][0]); + break; + } + + /* the low nibble must correspond to one of the temp sensors + we've found */ + for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; + j++) { + if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] == + (data->pwm_settings[i][0] & 0x0F)) + break; + } + if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: %d is not a valid temp " + "sensor address\n", i, + data->pwm_settings[i][0] & 0x0F); + break; + } + + /* check if all other settings are within the allowed range */ + for (j = 1; j < 5; j++) { + u8 min; + /* special case pwm1 min pwm% */ + if ((i == 0) && ((j == 1) || (j == 2))) + min = 77; + else + min = abituguru_pwm_min[j]; + if (data->pwm_settings[i][j] < min) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does " + "not seem to be a pwm channel: " + "setting %d (%d) is below the minimum " + "value (%d)\n", i, j, + (int)data->pwm_settings[i][j], + (int)min); + goto abituguru_detect_no_pwms_exit; + } + if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does " + "not seem to be a pwm channel: " + "setting %d (%d) is above the maximum " + "value (%d)\n", i, j, + (int)data->pwm_settings[i][j], + (int)abituguru_pwm_max[j]); + goto abituguru_detect_no_pwms_exit; + } + } + + /* check that min temp < max temp and min pwm < max pwm */ + if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: min pwm (%d) >= " + "max pwm (%d)\n", i, + (int)data->pwm_settings[i][1], + (int)data->pwm_settings[i][2]); + break; + } + if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: min temp (%d) >= " + "max temp (%d)\n", i, + (int)data->pwm_settings[i][3], + (int)data->pwm_settings[i][4]); + break; + } + } + +abituguru_detect_no_pwms_exit: + data->pwms = i; + ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms); +} + +/* Following are the sysfs callback functions. These functions expect: + sensor_device_attribute_2->index: sensor address/offset in the bank + sensor_device_attribute_2->nr: register offset, bitmask or NA. */ +static struct abituguru_data *abituguru_update_device(struct device *dev); + +static ssize_t show_bank1_value(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + return sprintf(buf, "%d\n", (data->bank1_value[attr->index] * + data->bank1_max_value[attr->index] + 128) / 255); +} + +static ssize_t show_bank1_setting(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + return sprintf(buf, "%d\n", + (data->bank1_settings[attr->index][attr->nr] * + data->bank1_max_value[attr->index] + 128) / 255); +} + +static ssize_t show_bank2_value(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + return sprintf(buf, "%d\n", (data->bank2_value[attr->index] * + ABIT_UGURU_FAN_MAX + 128) / 255); +} + +static ssize_t show_bank2_setting(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + return sprintf(buf, "%d\n", + (data->bank2_settings[attr->index][attr->nr] * + ABIT_UGURU_FAN_MAX + 128) / 255); +} + +static ssize_t store_bank1_setting(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 val = (simple_strtoul(buf, NULL, 10) * 255 + + data->bank1_max_value[attr->index]/2) / + data->bank1_max_value[attr->index]; + ssize_t ret = count; + + mutex_lock(&data->update_lock); + if (data->bank1_settings[attr->index][attr->nr] != val) { + u8 orig_val = data->bank1_settings[attr->index][attr->nr]; + data->bank1_settings[attr->index][attr->nr] = val; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, + attr->index, data->bank1_settings[attr->index], + 3) <= attr->nr) { + data->bank1_settings[attr->index][attr->nr] = orig_val; + ret = -EIO; + } + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t store_bank2_setting(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) / + ABIT_UGURU_FAN_MAX; + ssize_t ret = count; + + /* this check can be done before taking the lock */ + if ((val < abituguru_bank2_min_threshold) || + (val > abituguru_bank2_max_threshold)) + return -EINVAL; + + mutex_lock(&data->update_lock); + if (data->bank2_settings[attr->index][attr->nr] != val) { + u8 orig_val = data->bank2_settings[attr->index][attr->nr]; + data->bank2_settings[attr->index][attr->nr] = val; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2, + attr->index, data->bank2_settings[attr->index], + 2) <= attr->nr) { + data->bank2_settings[attr->index][attr->nr] = orig_val; + ret = -EIO; + } + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_bank1_alarm(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + /* See if the alarm bit for this sensor is set, and if the + alarm matches the type of alarm we're looking for (for volt + it can be either low or high). The type is stored in a few + readonly bits in the settings part of the relevant sensor. + The bitmask of the type is passed to us in attr->nr. */ + if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) && + (data->bank1_settings[attr->index][0] & attr->nr)) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t show_bank2_alarm(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + if (data->alarms[2] & (0x01 << attr->index)) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t show_bank1_mask(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + if (data->bank1_settings[attr->index][0] & attr->nr) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t show_bank2_mask(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + if (data->bank2_settings[attr->index][0] & attr->nr) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t store_bank1_mask(struct device *dev, + struct device_attribute *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int mask = simple_strtoul(buf, NULL, 10); + ssize_t ret = count; + u8 orig_val; + + mutex_lock(&data->update_lock); + orig_val = data->bank1_settings[attr->index][0]; + + if (mask) + data->bank1_settings[attr->index][0] |= attr->nr; + else + data->bank1_settings[attr->index][0] &= ~attr->nr; + + if ((data->bank1_settings[attr->index][0] != orig_val) && + (abituguru_write(data, + ABIT_UGURU_SENSOR_BANK1 + 2, attr->index, + data->bank1_settings[attr->index], 3) < 1)) { + data->bank1_settings[attr->index][0] = orig_val; + ret = -EIO; + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t store_bank2_mask(struct device *dev, + struct device_attribute *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int mask = simple_strtoul(buf, NULL, 10); + ssize_t ret = count; + u8 orig_val; + + mutex_lock(&data->update_lock); + orig_val = data->bank2_settings[attr->index][0]; + + if (mask) + data->bank2_settings[attr->index][0] |= attr->nr; + else + data->bank2_settings[attr->index][0] &= ~attr->nr; + + if ((data->bank2_settings[attr->index][0] != orig_val) && + (abituguru_write(data, + ABIT_UGURU_SENSOR_BANK2 + 2, attr->index, + data->bank2_settings[attr->index], 2) < 1)) { + data->bank2_settings[attr->index][0] = orig_val; + ret = -EIO; + } + mutex_unlock(&data->update_lock); + return ret; +} + +/* Fan PWM (speed control) */ +static ssize_t show_pwm_setting(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] * + abituguru_pwm_settings_multiplier[attr->nr]); +} + +static ssize_t store_pwm_setting(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 min, val = (simple_strtoul(buf, NULL, 10) + + abituguru_pwm_settings_multiplier[attr->nr]/2) / + abituguru_pwm_settings_multiplier[attr->nr]; + ssize_t ret = count; + + /* special case pwm1 min pwm% */ + if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2))) + min = 77; + else + min = abituguru_pwm_min[attr->nr]; + + /* this check can be done before taking the lock */ + if ((val < min) || (val > abituguru_pwm_max[attr->nr])) + return -EINVAL; + + mutex_lock(&data->update_lock); + /* this check needs to be done after taking the lock */ + if ((attr->nr & 1) && + (val >= data->pwm_settings[attr->index][attr->nr + 1])) + ret = -EINVAL; + else if (!(attr->nr & 1) && + (val <= data->pwm_settings[attr->index][attr->nr - 1])) + ret = -EINVAL; + else if (data->pwm_settings[attr->index][attr->nr] != val) { + u8 orig_val = data->pwm_settings[attr->index][attr->nr]; + data->pwm_settings[attr->index][attr->nr] = val; + if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, + attr->index, data->pwm_settings[attr->index], + 5) <= attr->nr) { + data->pwm_settings[attr->index][attr->nr] = + orig_val; + ret = -EIO; + } + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_pwm_sensor(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int i; + /* We need to walk to the temp sensor addresses to find what + the userspace id of the configured temp sensor is. */ + for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++) + if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] == + (data->pwm_settings[attr->index][0] & 0x0F)) + return sprintf(buf, "%d\n", i+1); + + return -ENXIO; +} + +static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + unsigned long val = simple_strtoul(buf, NULL, 10) - 1; + ssize_t ret = count; + + mutex_lock(&data->update_lock); + if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { + u8 orig_val = data->pwm_settings[attr->index][0]; + u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val]; + data->pwm_settings[attr->index][0] &= 0xF0; + data->pwm_settings[attr->index][0] |= address; + if (data->pwm_settings[attr->index][0] != orig_val) { + if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, + attr->index, + data->pwm_settings[attr->index], + 5) < 1) { + data->pwm_settings[attr->index][0] = orig_val; + ret = -EIO; + } + } + } + else + ret = -EINVAL; + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_pwm_enable(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int res = 0; + if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE) + res = 2; + return sprintf(buf, "%d\n", res); +} + +static ssize_t store_pwm_enable(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 orig_val, user_val = simple_strtoul(buf, NULL, 10); + ssize_t ret = count; + + mutex_lock(&data->update_lock); + orig_val = data->pwm_settings[attr->index][0]; + switch (user_val) { + case 0: + data->pwm_settings[attr->index][0] &= + ~ABIT_UGURU_FAN_PWM_ENABLE; + break; + case 2: + data->pwm_settings[attr->index][0] |= + ABIT_UGURU_FAN_PWM_ENABLE; + break; + default: + ret = -EINVAL; + } + if ((data->pwm_settings[attr->index][0] != orig_val) && + (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, + attr->index, data->pwm_settings[attr->index], + 5) < 1)) { + data->pwm_settings[attr->index][0] = orig_val; + ret = -EIO; + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_name(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + return sprintf(buf, "%s\n", ABIT_UGURU_NAME); +} + +/* Sysfs attr templates, the real entries are generated automatically. */ +static const +struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = { + { + SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0), + SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting, + store_bank1_setting, 1, 0), + SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL, + ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0), + SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting, + store_bank1_setting, 2, 0), + SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL, + ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0), + SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), + SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), + SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0), + SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0), + }, { + SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0), + SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL, + ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0), + SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting, + store_bank1_setting, 1, 0), + SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting, + store_bank1_setting, 2, 0), + SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), + SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), + SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0), + } +}; + +static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = { + SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0), + SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0), + SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting, + store_bank2_setting, 1, 0), + SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask, + store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0), + SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask, + store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), + SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask, + store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0), +}; + +static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = { + SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable, + store_pwm_enable, 0, 0), + SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor, + store_pwm_sensor, 0, 0), + SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting, + store_pwm_setting, 1, 0), + SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting, + store_pwm_setting, 2, 0), + SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting, + store_pwm_setting, 3, 0), + SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting, + store_pwm_setting, 4, 0), +}; + +static const struct sensor_device_attribute_2 abituguru_sysfs_attr[] = { + SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0), +}; + +static int __devinit abituguru_probe(struct platform_device *pdev) +{ + struct abituguru_data *data; + int i, j, res; + char *sysfs_filename; + int sysfs_attr_i = 0; + + /* El weirdo probe order, to keep the sysfs order identical to the + BIOS and window-appliction listing order. */ + const u8 probe_order[16] = { 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, + 0x02, 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C }; + + if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL))) + return -ENOMEM; + + data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start; + mutex_init(&data->update_lock); + platform_set_drvdata(pdev, data); + + /* See if the uGuru is ready */ + if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT) + data->uguru_ready = 1; + + /* Completely read the uGuru this has 2 purposes: + - testread / see if one really is there. + - make an in memory copy of all the uguru settings for future use. */ + if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, + data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3) { + kfree(data); + return -ENODEV; + } + + for (i = 0; i < 16; i++) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i, + &data->bank1_value[i], 1, + ABIT_UGURU_MAX_RETRIES) != 1) { + kfree(data); + return -ENODEV; + } + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i, + data->bank1_settings[i], 3, + ABIT_UGURU_MAX_RETRIES) != 3) { + kfree(data); + return -ENODEV; + } + } + /* Note: We don't know how many bank2 sensors / pwms there really are, + but in order to "detect" this we need to read the maximum amount + anyways. If we read sensors/pwms not there we'll just read crap + this can't hurt. We need the detection because we don't want + unwanted writes, which will hurt! */ + for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, + &data->bank2_value[i], 1, + ABIT_UGURU_MAX_RETRIES) != 1) { + kfree(data); + return -ENODEV; + } + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i, + data->bank2_settings[i], 2, + ABIT_UGURU_MAX_RETRIES) != 2) { + kfree(data); + return -ENODEV; + } + } + for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { + if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i, + data->pwm_settings[i], 5, + ABIT_UGURU_MAX_RETRIES) != 5) { + kfree(data); + return -ENODEV; + } + } + data->last_updated = jiffies; + + /* Detect sensor types and fill the sysfs attr for bank1 */ + sysfs_filename = data->bank1_names; + for (i = 0; i < 16; i++) { + res = abituguru_detect_bank1_sensor_type(data, probe_order[i]); + if (res < 0) { + kfree(data); + return -ENODEV; + } + if (res == ABIT_UGURU_NC) + continue; + + for (j = 0; j < (res ? 7 : 9); j++) { + const char *name_templ = abituguru_sysfs_bank1_templ[ + res][j].dev_attr.attr.name; + data->sysfs_attr[sysfs_attr_i] = + abituguru_sysfs_bank1_templ[res][j]; + data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = + sysfs_filename; + sysfs_filename += sprintf(sysfs_filename, name_templ, + data->bank1_sensors[res] + res) + 1; + data->sysfs_attr[sysfs_attr_i].index = probe_order[i]; + sysfs_attr_i++; + } + data->bank1_max_value[probe_order[i]] = + abituguru_bank1_max_value[res]; + data->bank1_address[res][data->bank1_sensors[res]] = + probe_order[i]; + data->bank1_sensors[res]++; + } + /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */ + abituguru_detect_no_bank2_sensors(data); + for (i = 0; i < data->bank2_sensors; i++) { + for (j = 0; j < 6; j++) { + const char *name_templ = abituguru_sysfs_fan_templ[j]. + dev_attr.attr.name; + data->sysfs_attr[sysfs_attr_i] = + abituguru_sysfs_fan_templ[j]; + data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = + sysfs_filename; + sysfs_filename += sprintf(sysfs_filename, name_templ, + i + 1) + 1; + data->sysfs_attr[sysfs_attr_i].index = i; + sysfs_attr_i++; + } + } + /* Detect number of sensors and fill the sysfs attr for pwms */ + abituguru_detect_no_pwms(data); + for (i = 0; i < data->pwms; i++) { + for (j = 0; j < 6; j++) { + const char *name_templ = abituguru_sysfs_pwm_templ[j]. + dev_attr.attr.name; + data->sysfs_attr[sysfs_attr_i] = + abituguru_sysfs_pwm_templ[j]; + data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = + sysfs_filename; + sysfs_filename += sprintf(sysfs_filename, name_templ, + i + 1) + 1; + data->sysfs_attr[sysfs_attr_i].index = i; + sysfs_attr_i++; + } + } + /* Last add any "generic" entries to sysfs */ + for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) { + data->sysfs_attr[sysfs_attr_i] = abituguru_sysfs_attr[i]; + sysfs_attr_i++; + } + printk(KERN_INFO ABIT_UGURU_NAME ": found Abit uGuru\n"); + + /* Register sysfs hooks */ + data->class_dev = hwmon_device_register(&pdev->dev); + if (IS_ERR(data->class_dev)) { + kfree(data); + return PTR_ERR(data->class_dev); + } + for (i = 0; i < sysfs_attr_i; i++) + device_create_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); + + return 0; +} + +static int __devexit abituguru_remove(struct platform_device *pdev) +{ + struct abituguru_data *data = platform_get_drvdata(pdev); + + platform_set_drvdata(pdev, NULL); + hwmon_device_unregister(data->class_dev); + kfree(data); + + return 0; +} + +static struct abituguru_data *abituguru_update_device(struct device *dev) +{ + int i, err; + struct abituguru_data *data = dev_get_drvdata(dev); + /* fake a complete successful read if no update necessary. */ + char success = 1; + + mutex_lock(&data->update_lock); + if (time_after(jiffies, data->last_updated + HZ)) { + success = 0; + if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, + data->alarms, 3, 0)) != 3) + goto LEAVE_UPDATE; + for (i = 0; i < 16; i++) { + if ((err = abituguru_read(data, + ABIT_UGURU_SENSOR_BANK1, i, + &data->bank1_value[i], 1, 0)) != 1) + goto LEAVE_UPDATE; + if ((err = abituguru_read(data, + ABIT_UGURU_SENSOR_BANK1 + 1, i, + data->bank1_settings[i], 3, 0)) != 3) + goto LEAVE_UPDATE; + } + for (i = 0; i < data->bank2_sensors; i++) + if ((err = abituguru_read(data, + ABIT_UGURU_SENSOR_BANK2, i, + &data->bank2_value[i], 1, 0)) != 1) + goto LEAVE_UPDATE; + /* success! */ + success = 1; + data->update_timeouts = 0; +LEAVE_UPDATE: + /* handle timeout condition */ + if (err == -EBUSY) { + /* No overflow please */ + if (data->update_timeouts < 255u) + data->update_timeouts++; + if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) { + ABIT_UGURU_DEBUG(3, "timeout exceeded, will " + "try again next update\n"); + /* Just a timeout, fake a successful read */ + success = 1; + } else + ABIT_UGURU_DEBUG(1, "timeout exceeded %d " + "times waiting for more input state\n", + (int)data->update_timeouts); + } + /* On success set last_updated */ + if (success) + data->last_updated = jiffies; + } + mutex_unlock(&data->update_lock); + + if (success) + return data; + else + return NULL; +} + +static struct platform_driver abituguru_driver = { + .driver = { + .owner = THIS_MODULE, + .name = ABIT_UGURU_NAME, + }, + .probe = abituguru_probe, + .remove = __devexit_p(abituguru_remove), +}; + +static int __init abituguru_detect(void) +{ + /* See if there is an uguru there. After a reboot uGuru will hold 0x00 + at DATA and 0xAC, when this driver has already been loaded once + DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either + scenario but some will hold 0x00. + Some uGuru's initally hold 0x09 at DATA and will only hold 0x08 + after reading CMD first, so CMD must be read first! */ + u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD); + u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA); + if (((data_val == 0x00) || (data_val == 0x08)) && + ((cmd_val == 0x00) || (cmd_val == 0xAC))) + return ABIT_UGURU_BASE; + + ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = " + "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val); + + if (force) { + printk(KERN_INFO ABIT_UGURU_NAME ": Assuming Abit uGuru is " + "present because of \"force\" parameter\n"); + return ABIT_UGURU_BASE; + } + + /* No uGuru found */ + return -ENODEV; +} + +static struct platform_device *abituguru_pdev; + +static int __init abituguru_init(void) +{ + int address, err; + struct resource res = { .flags = IORESOURCE_IO }; + + address = abituguru_detect(); + if (address < 0) + return address; + + err = platform_driver_register(&abituguru_driver); + if (err) + goto exit; + + abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address); + if (!abituguru_pdev) { + printk(KERN_ERR ABIT_UGURU_NAME + ": Device allocation failed\n"); + err = -ENOMEM; + goto exit_driver_unregister; + } + + res.start = address; + res.end = address + ABIT_UGURU_REGION_LENGTH - 1; + res.name = ABIT_UGURU_NAME; + + err = platform_device_add_resources(abituguru_pdev, &res, 1); + if (err) { + printk(KERN_ERR ABIT_UGURU_NAME + ": Device resource addition failed (%d)\n", err); + goto exit_device_put; + } + + err = platform_device_add(abituguru_pdev); + if (err) { + printk(KERN_ERR ABIT_UGURU_NAME + ": Device addition failed (%d)\n", err); + goto exit_device_put; + } + + return 0; + +exit_device_put: + platform_device_put(abituguru_pdev); +exit_driver_unregister: + platform_driver_unregister(&abituguru_driver); +exit: + return err; +} + +static void __exit abituguru_exit(void) +{ + platform_device_unregister(abituguru_pdev); + platform_driver_unregister(&abituguru_driver); +} + +MODULE_AUTHOR("Hans de Goede "); +MODULE_DESCRIPTION("Abit uGuru Sensor device"); +MODULE_LICENSE("GPL"); + +module_init(abituguru_init); +module_exit(abituguru_exit); -- cgit v1.2.3 From e1a8e913f97e36cc5a23a24a8b4717e84998f13c Mon Sep 17 00:00:00 2001 From: Kaiwan N Billimoria Date: Mon, 12 Jun 2006 22:00:05 +0200 Subject: [PATCH] lm70: New hardware monitoring driver This driver implements support for the National Semiconductor LM70 temperature sensor. The LM70 temperature sensor chip supports a single temperature sensor. It communicates with a host processor (or microcontroller) via an SPI/Microwire Bus interface. Communication with the LM70 is simple: when the temperature is to be sensed, the driver accesses the LM70 using SPI communication: 16 SCLK cycles comprise the MOSI/MISO loop. At the end of the transfer, the 11-bit 2's complement digital temperature (sent via the SIO line), is available in the driver for interpretation. This driver makes use of the kernel's in-core SPI support. Signed-off-by: Kaiwan N Billimoria Signed-off-by: Jean Delvare Signed-off-by: Greg Kroah-Hartman --- Documentation/hwmon/lm70 | 31 +++++++++ drivers/hwmon/Kconfig | 10 +++ drivers/hwmon/Makefile | 1 + drivers/hwmon/lm70.c | 165 +++++++++++++++++++++++++++++++++++++++++++++++ 4 files changed, 207 insertions(+) create mode 100644 Documentation/hwmon/lm70 create mode 100644 drivers/hwmon/lm70.c (limited to 'drivers/hwmon/Makefile') diff --git a/Documentation/hwmon/lm70 b/Documentation/hwmon/lm70 new file mode 100644 index 000000000000..2bdd3feebf53 --- /dev/null +++ b/Documentation/hwmon/lm70 @@ -0,0 +1,31 @@ +Kernel driver lm70 +================== + +Supported chip: + * National Semiconductor LM70 + Datasheet: http://www.national.com/pf/LM/LM70.html + +Author: + Kaiwan N Billimoria + +Description +----------- + +This driver implements support for the National Semiconductor LM70 +temperature sensor. + +The LM70 temperature sensor chip supports a single temperature sensor. +It communicates with a host processor (or microcontroller) via an +SPI/Microwire Bus interface. + +Communication with the LM70 is simple: when the temperature is to be sensed, +the driver accesses the LM70 using SPI communication: 16 SCLK cycles +comprise the MOSI/MISO loop. At the end of the transfer, the 11-bit 2's +complement digital temperature (sent via the SIO line), is available in the +driver for interpretation. This driver makes use of the kernel's in-core +SPI support. + +Thanks to +--------- +Jean Delvare for mentoring the hwmon-side driver +development. diff --git a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig index 43e1f082f7be..0e31a0c496e8 100644 --- a/drivers/hwmon/Kconfig +++ b/drivers/hwmon/Kconfig @@ -204,6 +204,16 @@ config SENSORS_LM63 This driver can also be built as a module. If so, the module will be called lm63. +config SENSORS_LM70 + tristate "National Semiconductor LM70" + depends on HWMON && SPI_MASTER && EXPERIMENTAL + help + If you say yes here you get support for the National Semiconductor + LM70 digital temperature sensor chip. + + This driver can also be built as a module. If so, the module + will be called lm70. + config SENSORS_LM75 tristate "National Semiconductor LM75 and compatibles" depends on HWMON && I2C diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile index 5092999deb7b..31415843a91a 100644 --- a/drivers/hwmon/Makefile +++ b/drivers/hwmon/Makefile @@ -28,6 +28,7 @@ obj-$(CONFIG_SENSORS_GL520SM) += gl520sm.o obj-$(CONFIG_SENSORS_HDAPS) += hdaps.o obj-$(CONFIG_SENSORS_IT87) += it87.o obj-$(CONFIG_SENSORS_LM63) += lm63.o +obj-$(CONFIG_SENSORS_LM70) += lm70.o obj-$(CONFIG_SENSORS_LM75) += lm75.o obj-$(CONFIG_SENSORS_LM77) += lm77.o obj-$(CONFIG_SENSORS_LM78) += lm78.o diff --git a/drivers/hwmon/lm70.c b/drivers/hwmon/lm70.c new file mode 100644 index 000000000000..6ba84731b9cd --- /dev/null +++ b/drivers/hwmon/lm70.c @@ -0,0 +1,165 @@ +/* + * lm70.c + * + * The LM70 is a temperature sensor chip from National Semiconductor (NS). + * Copyright (C) 2006 Kaiwan N Billimoria + * + * The LM70 communicates with a host processor via an SPI/Microwire Bus + * interface. The complete datasheet is available at National's website + * here: + * http://www.national.com/pf/LM/LM70.html + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define DRVNAME "lm70" + +struct lm70 { + struct class_device *cdev; + struct semaphore sem; +}; + +/* sysfs hook function */ +static ssize_t lm70_sense_temp(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct spi_device *spi = to_spi_device(dev); + int status, val; + u8 rxbuf[2]; + s16 raw=0; + struct lm70 *p_lm70 = dev_get_drvdata(&spi->dev); + + if (down_interruptible(&p_lm70->sem)) + return -ERESTARTSYS; + + /* + * spi_read() requires a DMA-safe buffer; so we use + * spi_write_then_read(), transmitting 0 bytes. + */ + status = spi_write_then_read(spi, NULL, 0, &rxbuf[0], 2); + if (status < 0) { + printk(KERN_WARNING + "spi_write_then_read failed with status %d\n", status); + goto out; + } + dev_dbg(dev, "rxbuf[1] : 0x%x rxbuf[0] : 0x%x\n", rxbuf[1], rxbuf[0]); + + raw = (rxbuf[1] << 8) + rxbuf[0]; + dev_dbg(dev, "raw=0x%x\n", raw); + + /* + * The "raw" temperature read into rxbuf[] is a 16-bit signed 2's + * complement value. Only the MSB 11 bits (1 sign + 10 temperature + * bits) are meaningful; the LSB 5 bits are to be discarded. + * See the datasheet. + * + * Further, each bit represents 0.25 degrees Celsius; so, multiply + * by 0.25. Also multiply by 1000 to represent in millidegrees + * Celsius. + * So it's equivalent to multiplying by 0.25 * 1000 = 250. + */ + val = ((int)raw/32) * 250; + status = sprintf(buf, "%+d\n", val); /* millidegrees Celsius */ +out: + up(&p_lm70->sem); + return status; +} + +static DEVICE_ATTR(temp1_input, S_IRUGO, lm70_sense_temp, NULL); + +/*----------------------------------------------------------------------*/ + +static int __devinit lm70_probe(struct spi_device *spi) +{ + struct lm70 *p_lm70; + int status; + + p_lm70 = kzalloc(sizeof *p_lm70, GFP_KERNEL); + if (!p_lm70) + return -ENOMEM; + + init_MUTEX(&p_lm70->sem); + + /* sysfs hook */ + p_lm70->cdev = hwmon_device_register(&spi->dev); + if (IS_ERR(p_lm70->cdev)) { + dev_dbg(&spi->dev, "hwmon_device_register failed.\n"); + status = PTR_ERR(p_lm70->cdev); + goto out_dev_reg_failed; + } + dev_set_drvdata(&spi->dev, p_lm70); + + if ((status = device_create_file(&spi->dev, &dev_attr_temp1_input))) { + dev_dbg(&spi->dev, "device_create_file failure.\n"); + goto out_dev_create_file_failed; + } + + return 0; + +out_dev_create_file_failed: + hwmon_device_unregister(p_lm70->cdev); +out_dev_reg_failed: + dev_set_drvdata(&spi->dev, NULL); + kfree(p_lm70); + return status; +} + +static int __exit lm70_remove(struct spi_device *spi) +{ + struct lm70 *p_lm70 = dev_get_drvdata(&spi->dev); + + device_remove_file(&spi->dev, &dev_attr_temp1_input); + hwmon_device_unregister(p_lm70->cdev); + dev_set_drvdata(&spi->dev, NULL); + kfree(p_lm70); + + return 0; +} + +static struct spi_driver lm70_driver = { + .driver = { + .name = "lm70", + .owner = THIS_MODULE, + }, + .probe = lm70_probe, + .remove = __devexit_p(lm70_remove), +}; + +static int __init init_lm70(void) +{ + return spi_register_driver(&lm70_driver); +} + +static void __exit cleanup_lm70(void) +{ + spi_unregister_driver(&lm70_driver); +} + +module_init(init_lm70); +module_exit(cleanup_lm70); + +MODULE_AUTHOR("Kaiwan N Billimoria"); +MODULE_DESCRIPTION("National Semiconductor LM70 Linux driver"); +MODULE_LICENSE("GPL"); -- cgit v1.2.3