From e7b52ffd45a6d834473f43b349e7d86593d763c7 Mon Sep 17 00:00:00 2001 From: Alex Shi Date: Thu, 28 Jun 2012 09:02:17 +0800 Subject: x86/flush_tlb: try flush_tlb_single one by one in flush_tlb_range x86 has no flush_tlb_range support in instruction level. Currently the flush_tlb_range just implemented by flushing all page table. That is not the best solution for all scenarios. In fact, if we just use 'invlpg' to flush few lines from TLB, we can get the performance gain from later remain TLB lines accessing. But the 'invlpg' instruction costs much of time. Its execution time can compete with cr3 rewriting, and even a bit more on SNB CPU. So, on a 512 4KB TLB entries CPU, the balance points is at: (512 - X) * 100ns(assumed TLB refill cost) = X(TLB flush entries) * 100ns(assumed invlpg cost) Here, X is 256, that is 1/2 of 512 entries. But with the mysterious CPU pre-fetcher and page miss handler Unit, the assumed TLB refill cost is far lower then 100ns in sequential access. And 2 HT siblings in one core makes the memory access more faster if they are accessing the same memory. So, in the patch, I just do the change when the target entries is less than 1/16 of whole active tlb entries. Actually, I have no data support for the percentage '1/16', so any suggestions are welcomed. As to hugetlb, guess due to smaller page table, and smaller active TLB entries, I didn't see benefit via my benchmark, so no optimizing now. My micro benchmark show in ideal scenarios, the performance improves 70 percent in reading. And in worst scenario, the reading/writing performance is similar with unpatched 3.4-rc4 kernel. Here is the reading data on my 2P * 4cores *HT NHM EP machine, with THP 'always': multi thread testing, '-t' paramter is thread number: with patch unpatched 3.4-rc4 ./mprotect -t 1 14ns 24ns ./mprotect -t 2 13ns 22ns ./mprotect -t 4 12ns 19ns ./mprotect -t 8 14ns 16ns ./mprotect -t 16 28ns 26ns ./mprotect -t 32 54ns 51ns ./mprotect -t 128 200ns 199ns Single process with sequencial flushing and memory accessing: with patch unpatched 3.4-rc4 ./mprotect 7ns 11ns ./mprotect -p 4096 -l 8 -n 10240 21ns 21ns [ hpa: http://lkml.kernel.org/r/1B4B44D9196EFF41AE41FDA404FC0A100BFF94@SHSMSX101.ccr.corp.intel.com has additional performance numbers. ] Signed-off-by: Alex Shi Link: http://lkml.kernel.org/r/1340845344-27557-3-git-send-email-alex.shi@intel.com Signed-off-by: H. Peter Anvin --- include/trace/events/xen.h | 12 +++++++----- 1 file changed, 7 insertions(+), 5 deletions(-) (limited to 'include/trace') diff --git a/include/trace/events/xen.h b/include/trace/events/xen.h index 92f1a796829e..15ba03bdd7c6 100644 --- a/include/trace/events/xen.h +++ b/include/trace/events/xen.h @@ -397,18 +397,20 @@ TRACE_EVENT(xen_mmu_flush_tlb_single, TRACE_EVENT(xen_mmu_flush_tlb_others, TP_PROTO(const struct cpumask *cpus, struct mm_struct *mm, - unsigned long addr), - TP_ARGS(cpus, mm, addr), + unsigned long addr, unsigned long end), + TP_ARGS(cpus, mm, addr, end), TP_STRUCT__entry( __field(unsigned, ncpus) __field(struct mm_struct *, mm) __field(unsigned long, addr) + __field(unsigned long, end) ), TP_fast_assign(__entry->ncpus = cpumask_weight(cpus); __entry->mm = mm; - __entry->addr = addr), - TP_printk("ncpus %d mm %p addr %lx", - __entry->ncpus, __entry->mm, __entry->addr) + __entry->addr = addr, + __entry->end = end), + TP_printk("ncpus %d mm %p addr %lx, end %lx", + __entry->ncpus, __entry->mm, __entry->addr, __entry->end) ); TRACE_EVENT(xen_mmu_write_cr3, -- cgit v1.2.3