From 782347b6bcad07ddb574422e01e22c92e05928c8 Mon Sep 17 00:00:00 2001 From: Toke Høiland-Jørgensen Date: Thu, 24 Jun 2021 18:05:55 +0200 Subject: xdp: Add proper __rcu annotations to redirect map entries MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen Signed-off-by: Daniel Borkmann Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com --- kernel/bpf/cpumap.c | 13 +++++++++---- kernel/bpf/devmap.c | 49 +++++++++++++++++++++---------------------------- 2 files changed, 30 insertions(+), 32 deletions(-) (limited to 'kernel/bpf') diff --git a/kernel/bpf/cpumap.c b/kernel/bpf/cpumap.c index a1a0c4e791c6..480e936c54d0 100644 --- a/kernel/bpf/cpumap.c +++ b/kernel/bpf/cpumap.c @@ -74,7 +74,7 @@ struct bpf_cpu_map_entry { struct bpf_cpu_map { struct bpf_map map; /* Below members specific for map type */ - struct bpf_cpu_map_entry **cpu_map; + struct bpf_cpu_map_entry __rcu **cpu_map; }; static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); @@ -469,7 +469,7 @@ static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, { struct bpf_cpu_map_entry *old_rcpu; - old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); + old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu))); if (old_rcpu) { call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); @@ -551,7 +551,7 @@ static void cpu_map_free(struct bpf_map *map) for (i = 0; i < cmap->map.max_entries; i++) { struct bpf_cpu_map_entry *rcpu; - rcpu = READ_ONCE(cmap->cpu_map[i]); + rcpu = rcu_dereference_raw(cmap->cpu_map[i]); if (!rcpu) continue; @@ -562,6 +562,10 @@ static void cpu_map_free(struct bpf_map *map) kfree(cmap); } +/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or + * by local_bh_disable() (from XDP calls inside NAPI). The + * rcu_read_lock_bh_held() below makes lockdep accept both. + */ static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) { struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); @@ -570,7 +574,8 @@ static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) if (key >= map->max_entries) return NULL; - rcpu = READ_ONCE(cmap->cpu_map[key]); + rcpu = rcu_dereference_check(cmap->cpu_map[key], + rcu_read_lock_bh_held()); return rcpu; } diff --git a/kernel/bpf/devmap.c b/kernel/bpf/devmap.c index 2a75e6c2d27d..2f6bd75cd682 100644 --- a/kernel/bpf/devmap.c +++ b/kernel/bpf/devmap.c @@ -73,7 +73,7 @@ struct bpf_dtab_netdev { struct bpf_dtab { struct bpf_map map; - struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */ + struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */ struct list_head list; /* these are only used for DEVMAP_HASH type maps */ @@ -226,7 +226,7 @@ static void dev_map_free(struct bpf_map *map) for (i = 0; i < dtab->map.max_entries; i++) { struct bpf_dtab_netdev *dev; - dev = dtab->netdev_map[i]; + dev = rcu_dereference_raw(dtab->netdev_map[i]); if (!dev) continue; @@ -259,6 +259,10 @@ static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) return 0; } +/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or + * by local_bh_disable() (from XDP calls inside NAPI). The + * rcu_read_lock_bh_held() below makes lockdep accept both. + */ static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); @@ -410,15 +414,9 @@ out: trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err); } -/* __dev_flush is called from xdp_do_flush() which _must_ be signaled - * from the driver before returning from its napi->poll() routine. The poll() - * routine is called either from busy_poll context or net_rx_action signaled - * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the - * net device can be torn down. On devmap tear down we ensure the flush list - * is empty before completing to ensure all flush operations have completed. - * When drivers update the bpf program they may need to ensure any flush ops - * are also complete. Using synchronize_rcu or call_rcu will suffice for this - * because both wait for napi context to exit. +/* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the + * driver before returning from its napi->poll() routine. See the comment above + * xdp_do_flush() in filter.c. */ void __dev_flush(void) { @@ -433,9 +431,9 @@ void __dev_flush(void) } } -/* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or - * update happens in parallel here a dev_put won't happen until after reading - * the ifindex. +/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or + * by local_bh_disable() (from XDP calls inside NAPI). The + * rcu_read_lock_bh_held() below makes lockdep accept both. */ static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) { @@ -445,12 +443,14 @@ static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) if (key >= map->max_entries) return NULL; - obj = READ_ONCE(dtab->netdev_map[key]); + obj = rcu_dereference_check(dtab->netdev_map[key], + rcu_read_lock_bh_held()); return obj; } -/* Runs under RCU-read-side, plus in softirq under NAPI protection. - * Thus, safe percpu variable access. +/* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu + * variable access, and map elements stick around. See comment above + * xdp_do_flush() in filter.c. */ static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, struct net_device *dev_rx, struct bpf_prog *xdp_prog) @@ -735,14 +735,7 @@ static int dev_map_delete_elem(struct bpf_map *map, void *key) if (k >= map->max_entries) return -EINVAL; - /* Use call_rcu() here to ensure any rcu critical sections have - * completed as well as any flush operations because call_rcu - * will wait for preempt-disable region to complete, NAPI in this - * context. And additionally, the driver tear down ensures all - * soft irqs are complete before removing the net device in the - * case of dev_put equals zero. - */ - old_dev = xchg(&dtab->netdev_map[k], NULL); + old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL)); if (old_dev) call_rcu(&old_dev->rcu, __dev_map_entry_free); return 0; @@ -851,7 +844,7 @@ static int __dev_map_update_elem(struct net *net, struct bpf_map *map, * Remembering the driver side flush operation will happen before the * net device is removed. */ - old_dev = xchg(&dtab->netdev_map[i], dev); + old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev))); if (old_dev) call_rcu(&old_dev->rcu, __dev_map_entry_free); @@ -1031,10 +1024,10 @@ static int dev_map_notification(struct notifier_block *notifier, for (i = 0; i < dtab->map.max_entries; i++) { struct bpf_dtab_netdev *dev, *odev; - dev = READ_ONCE(dtab->netdev_map[i]); + dev = rcu_dereference(dtab->netdev_map[i]); if (!dev || netdev != dev->dev) continue; - odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); + odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL)); if (dev == odev) call_rcu(&dev->rcu, __dev_map_entry_free); -- cgit v1.2.3