/* SPDX-License-Identifier: GPL-2.0-only */ /* * linux/arch/arm/boot/compressed/head.S * * Copyright (C) 1996-2002 Russell King * Copyright (C) 2004 Hyok S. Choi (MPU support) */ #include #include #include #include "efi-header.S" AR_CLASS( .arch armv7-a ) M_CLASS( .arch armv7-m ) /* * Debugging stuff * * Note that these macros must not contain any code which is not * 100% relocatable. Any attempt to do so will result in a crash. * Please select one of the following when turning on debugging. */ #ifdef DEBUG #if defined(CONFIG_DEBUG_ICEDCC) #if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K) || defined(CONFIG_CPU_V7) .macro loadsp, rb, tmp1, tmp2 .endm .macro writeb, ch, rb mcr p14, 0, \ch, c0, c5, 0 .endm #elif defined(CONFIG_CPU_XSCALE) .macro loadsp, rb, tmp1, tmp2 .endm .macro writeb, ch, rb mcr p14, 0, \ch, c8, c0, 0 .endm #else .macro loadsp, rb, tmp1, tmp2 .endm .macro writeb, ch, rb mcr p14, 0, \ch, c1, c0, 0 .endm #endif #else #include CONFIG_DEBUG_LL_INCLUDE .macro writeb, ch, rb senduart \ch, \rb .endm #if defined(CONFIG_ARCH_SA1100) .macro loadsp, rb, tmp1, tmp2 mov \rb, #0x80000000 @ physical base address #ifdef CONFIG_DEBUG_LL_SER3 add \rb, \rb, #0x00050000 @ Ser3 #else add \rb, \rb, #0x00010000 @ Ser1 #endif .endm #else .macro loadsp, rb, tmp1, tmp2 addruart \rb, \tmp1, \tmp2 .endm #endif #endif #endif .macro kputc,val mov r0, \val bl putc .endm .macro kphex,val,len mov r0, \val mov r1, #\len bl phex .endm .macro debug_reloc_start #ifdef DEBUG kputc #'\n' kphex r6, 8 /* processor id */ kputc #':' kphex r7, 8 /* architecture id */ #ifdef CONFIG_CPU_CP15 kputc #':' mrc p15, 0, r0, c1, c0 kphex r0, 8 /* control reg */ #endif kputc #'\n' kphex r5, 8 /* decompressed kernel start */ kputc #'-' kphex r9, 8 /* decompressed kernel end */ kputc #'>' kphex r4, 8 /* kernel execution address */ kputc #'\n' #endif .endm .macro debug_reloc_end #ifdef DEBUG kphex r5, 8 /* end of kernel */ kputc #'\n' mov r0, r4 bl memdump /* dump 256 bytes at start of kernel */ #endif .endm /* * Debug kernel copy by printing the memory addresses involved */ .macro dbgkc, begin, end, cbegin, cend #ifdef DEBUG kputc #'\n' kputc #'C' kputc #':' kputc #'0' kputc #'x' kphex \begin, 8 /* Start of compressed kernel */ kputc #'-' kputc #'0' kputc #'x' kphex \end, 8 /* End of compressed kernel */ kputc #'-' kputc #'>' kputc #'0' kputc #'x' kphex \cbegin, 8 /* Start of kernel copy */ kputc #'-' kputc #'0' kputc #'x' kphex \cend, 8 /* End of kernel copy */ kputc #'\n' kputc #'\r' #endif .endm .macro enable_cp15_barriers, reg mrc p15, 0, \reg, c1, c0, 0 @ read SCTLR tst \reg, #(1 << 5) @ CP15BEN bit set? bne .L_\@ orr \reg, \reg, #(1 << 5) @ CP15 barrier instructions mcr p15, 0, \reg, c1, c0, 0 @ write SCTLR ARM( .inst 0xf57ff06f @ v7+ isb ) THUMB( isb ) .L_\@: .endm .section ".start", "ax" /* * sort out different calling conventions */ .align /* * Always enter in ARM state for CPUs that support the ARM ISA. * As of today (2014) that's exactly the members of the A and R * classes. */ AR_CLASS( .arm ) start: .type start,#function /* * These 7 nops along with the 1 nop immediately below for * !THUMB2 form 8 nops that make the compressed kernel bootable * on legacy ARM systems that were assuming the kernel in a.out * binary format. The boot loaders on these systems would * jump 32 bytes into the image to skip the a.out header. * with these 8 nops filling exactly 32 bytes, things still * work as expected on these legacy systems. Thumb2 mode keeps * 7 of the nops as it turns out that some boot loaders * were patching the initial instructions of the kernel, i.e * had started to exploit this "patch area". */ .rept 7 __nop .endr #ifndef CONFIG_THUMB2_KERNEL __nop #else AR_CLASS( sub pc, pc, #3 ) @ A/R: switch to Thumb2 mode M_CLASS( nop.w ) @ M: already in Thumb2 mode .thumb #endif W(b) 1f .word _magic_sig @ Magic numbers to help the loader .word _magic_start @ absolute load/run zImage address .word _magic_end @ zImage end address .word 0x04030201 @ endianness flag .word 0x45454545 @ another magic number to indicate .word _magic_table @ additional data table __EFI_HEADER 1: ARM_BE8( setend be ) @ go BE8 if compiled for BE8 AR_CLASS( mrs r9, cpsr ) #ifdef CONFIG_ARM_VIRT_EXT bl __hyp_stub_install @ get into SVC mode, reversibly #endif mov r7, r1 @ save architecture ID mov r8, r2 @ save atags pointer #ifndef CONFIG_CPU_V7M /* * Booting from Angel - need to enter SVC mode and disable * FIQs/IRQs (numeric definitions from angel arm.h source). * We only do this if we were in user mode on entry. */ mrs r2, cpsr @ get current mode tst r2, #3 @ not user? bne not_angel mov r0, #0x17 @ angel_SWIreason_EnterSVC ARM( swi 0x123456 ) @ angel_SWI_ARM THUMB( svc 0xab ) @ angel_SWI_THUMB not_angel: safe_svcmode_maskall r0 msr spsr_cxsf, r9 @ Save the CPU boot mode in @ SPSR #endif /* * Note that some cache flushing and other stuff may * be needed here - is there an Angel SWI call for this? */ /* * some architecture specific code can be inserted * by the linker here, but it should preserve r7, r8, and r9. */ .text #ifdef CONFIG_AUTO_ZRELADDR /* * Find the start of physical memory. As we are executing * without the MMU on, we are in the physical address space. * We just need to get rid of any offset by aligning the * address. * * This alignment is a balance between the requirements of * different platforms - we have chosen 128MB to allow * platforms which align the start of their physical memory * to 128MB to use this feature, while allowing the zImage * to be placed within the first 128MB of memory on other * platforms. Increasing the alignment means we place * stricter alignment requirements on the start of physical * memory, but relaxing it means that we break people who * are already placing their zImage in (eg) the top 64MB * of this range. */ mov r4, pc and r4, r4, #0xf8000000 /* Determine final kernel image address. */ add r4, r4, #TEXT_OFFSET #else ldr r4, =zreladdr #endif /* * Set up a page table only if it won't overwrite ourself. * That means r4 < pc || r4 - 16k page directory > &_end. * Given that r4 > &_end is most unfrequent, we add a rough * additional 1MB of room for a possible appended DTB. */ mov r0, pc cmp r0, r4 ldrcc r0, LC0+32 addcc r0, r0, pc cmpcc r4, r0 orrcc r4, r4, #1 @ remember we skipped cache_on blcs cache_on restart: adr r0, LC0 ldmia r0, {r1, r2, r3, r6, r10, r11, r12} ldr sp, [r0, #28] /* * We might be running at a different address. We need * to fix up various pointers. */ sub r0, r0, r1 @ calculate the delta offset add r6, r6, r0 @ _edata add r10, r10, r0 @ inflated kernel size location /* * The kernel build system appends the size of the * decompressed kernel at the end of the compressed data * in little-endian form. */ ldrb r9, [r10, #0] ldrb lr, [r10, #1] orr r9, r9, lr, lsl #8 ldrb lr, [r10, #2] ldrb r10, [r10, #3] orr r9, r9, lr, lsl #16 orr r9, r9, r10, lsl #24 #ifndef CONFIG_ZBOOT_ROM /* malloc space is above the relocated stack (64k max) */ add sp, sp, r0 add r10, sp, #0x10000 #else /* * With ZBOOT_ROM the bss/stack is non relocatable, * but someone could still run this code from RAM, * in which case our reference is _edata. */ mov r10, r6 #endif mov r5, #0 @ init dtb size to 0 #ifdef CONFIG_ARM_APPENDED_DTB /* * r0 = delta * r2 = BSS start * r3 = BSS end * r4 = final kernel address (possibly with LSB set) * r5 = appended dtb size (still unknown) * r6 = _edata * r7 = architecture ID * r8 = atags/device tree pointer * r9 = size of decompressed image * r10 = end of this image, including bss/stack/malloc space if non XIP * r11 = GOT start * r12 = GOT end * sp = stack pointer * * if there are device trees (dtb) appended to zImage, advance r10 so that the * dtb data will get relocated along with the kernel if necessary. */ ldr lr, [r6, #0] #ifndef __ARMEB__ ldr r1, =0xedfe0dd0 @ sig is 0xd00dfeed big endian #else ldr r1, =0xd00dfeed #endif cmp lr, r1 bne dtb_check_done @ not found #ifdef CONFIG_ARM_ATAG_DTB_COMPAT /* * OK... Let's do some funky business here. * If we do have a DTB appended to zImage, and we do have * an ATAG list around, we want the later to be translated * and folded into the former here. No GOT fixup has occurred * yet, but none of the code we're about to call uses any * global variable. */ /* Get the initial DTB size */ ldr r5, [r6, #4] #ifndef __ARMEB__ /* convert to little endian */ eor r1, r5, r5, ror #16 bic r1, r1, #0x00ff0000 mov r5, r5, ror #8 eor r5, r5, r1, lsr #8 #endif /* 50% DTB growth should be good enough */ add r5, r5, r5, lsr #1 /* preserve 64-bit alignment */ add r5, r5, #7 bic r5, r5, #7 /* clamp to 32KB min and 1MB max */ cmp r5, #(1 << 15) movlo r5, #(1 << 15) cmp r5, #(1 << 20) movhi r5, #(1 << 20) /* temporarily relocate the stack past the DTB work space */ add sp, sp, r5 stmfd sp!, {r0-r3, ip, lr} mov r0, r8 mov r1, r6 mov r2, r5 bl atags_to_fdt /* * If returned value is 1, there is no ATAG at the location * pointed by r8. Try the typical 0x100 offset from start * of RAM and hope for the best. */ cmp r0, #1 sub r0, r4, #TEXT_OFFSET bic r0, r0, #1 add r0, r0, #0x100 mov r1, r6 mov r2, r5 bleq atags_to_fdt ldmfd sp!, {r0-r3, ip, lr} sub sp, sp, r5 #endif mov r8, r6 @ use the appended device tree /* * Make sure that the DTB doesn't end up in the final * kernel's .bss area. To do so, we adjust the decompressed * kernel size to compensate if that .bss size is larger * than the relocated code. */ ldr r5, =_kernel_bss_size adr r1, wont_overwrite sub r1, r6, r1 subs r1, r5, r1 addhi r9, r9, r1 /* Get the current DTB size */ ldr r5, [r6, #4] #ifndef __ARMEB__ /* convert r5 (dtb size) to little endian */ eor r1, r5, r5, ror #16 bic r1, r1, #0x00ff0000 mov r5, r5, ror #8 eor r5, r5, r1, lsr #8 #endif /* preserve 64-bit alignment */ add r5, r5, #7 bic r5, r5, #7 /* relocate some pointers past the appended dtb */ add r6, r6, r5 add r10, r10, r5 add sp, sp, r5 dtb_check_done: #endif /* * Check to see if we will overwrite ourselves. * r4 = final kernel address (possibly with LSB set) * r9 = size of decompressed image * r10 = end of this image, including bss/stack/malloc space if non XIP * We basically want: * r4 - 16k page directory >= r10 -> OK * r4 + image length <= address of wont_overwrite -> OK * Note: the possible LSB in r4 is harmless here. */ add r10, r10, #16384 cmp r4, r10 bhs wont_overwrite add r10, r4, r9 adr r9, wont_overwrite cmp r10, r9 bls wont_overwrite /* * Relocate ourselves past the end of the decompressed kernel. * r6 = _edata * r10 = end of the decompressed kernel * Because we always copy ahead, we need to do it from the end and go * backward in case the source and destination overlap. */ /* * Bump to the next 256-byte boundary with the size of * the relocation code added. This avoids overwriting * ourself when the offset is small. */ add r10, r10, #((reloc_code_end - restart + 256) & ~255) bic r10, r10, #255 /* Get start of code we want to copy and align it down. */ adr r5, restart bic r5, r5, #31 /* Relocate the hyp vector base if necessary */ #ifdef CONFIG_ARM_VIRT_EXT mrs r0, spsr and r0, r0, #MODE_MASK cmp r0, #HYP_MODE bne 1f /* * Compute the address of the hyp vectors after relocation. * This requires some arithmetic since we cannot directly * reference __hyp_stub_vectors in a PC-relative way. * Call __hyp_set_vectors with the new address so that we * can HVC again after the copy. */ 0: adr r0, 0b movw r1, #:lower16:__hyp_stub_vectors - 0b movt r1, #:upper16:__hyp_stub_vectors - 0b add r0, r0, r1 sub r0, r0, r5 add r0, r0, r10 bl __hyp_set_vectors 1: #endif sub r9, r6, r5 @ size to copy add r9, r9, #31 @ rounded up to a multiple bic r9, r9, #31 @ ... of 32 bytes add r6, r9, r5 add r9, r9, r10 #ifdef DEBUG sub r10, r6, r5 sub r10, r9, r10 /* * We are about to copy the kernel to a new memory area. * The boundaries of the new memory area can be found in * r10 and r9, whilst r5 and r6 contain the boundaries * of the memory we are going to copy. * Calling dbgkc will help with the printing of this * information. */ dbgkc r5, r6, r10, r9 #endif 1: ldmdb r6!, {r0 - r3, r10 - r12, lr} cmp r6, r5 stmdb r9!, {r0 - r3, r10 - r12, lr} bhi 1b /* Preserve offset to relocated code. */ sub r6, r9, r6 #ifndef CONFIG_ZBOOT_ROM /* cache_clean_flush may use the stack, so relocate it */ add sp, sp, r6 #endif bl cache_clean_flush badr r0, restart add r0, r0, r6 mov pc, r0 wont_overwrite: /* * If delta is zero, we are running at the address we were linked at. * r0 = delta * r2 = BSS start * r3 = BSS end * r4 = kernel execution address (possibly with LSB set) * r5 = appended dtb size (0 if not present) * r7 = architecture ID * r8 = atags pointer * r11 = GOT start * r12 = GOT end * sp = stack pointer */ orrs r1, r0, r5 beq not_relocated add r11, r11, r0 add r12, r12, r0 #ifndef CONFIG_ZBOOT_ROM /* * If we're running fully PIC === CONFIG_ZBOOT_ROM = n, * we need to fix up pointers into the BSS region. * Note that the stack pointer has already been fixed up. */ add r2, r2, r0 add r3, r3, r0 /* * Relocate all entries in the GOT table. * Bump bss entries to _edata + dtb size */ 1: ldr r1, [r11, #0] @ relocate entries in the GOT add r1, r1, r0 @ This fixes up C references cmp r1, r2 @ if entry >= bss_start && cmphs r3, r1 @ bss_end > entry addhi r1, r1, r5 @ entry += dtb size str r1, [r11], #4 @ next entry cmp r11, r12 blo 1b /* bump our bss pointers too */ add r2, r2, r5 add r3, r3, r5 #else /* * Relocate entries in the GOT table. We only relocate * the entries that are outside the (relocated) BSS region. */ 1: ldr r1, [r11, #0] @ relocate entries in the GOT cmp r1, r2 @ entry < bss_start || cmphs r3, r1 @ _end < entry addlo r1, r1, r0 @ table. This fixes up the str r1, [r11], #4 @ C references. cmp r11, r12 blo 1b #endif not_relocated: mov r0, #0 1: str r0, [r2], #4 @ clear bss str r0, [r2], #4 str r0, [r2], #4 str r0, [r2], #4 cmp r2, r3 blo 1b /* * Did we skip the cache setup earlier? * That is indicated by the LSB in r4. * Do it now if so. */ tst r4, #1 bic r4, r4, #1 blne cache_on /* * The C runtime environment should now be setup sufficiently. * Set up some pointers, and start decompressing. * r4 = kernel execution address * r7 = architecture ID * r8 = atags pointer */ mov r0, r4 mov r1, sp @ malloc space above stack add r2, sp, #0x10000 @ 64k max mov r3, r7 bl decompress_kernel bl cache_clean_flush bl cache_off #ifdef CONFIG_ARM_VIRT_EXT mrs r0, spsr @ Get saved CPU boot mode and r0, r0, #MODE_MASK cmp r0, #HYP_MODE @ if not booted in HYP mode... bne __enter_kernel @ boot kernel directly adr r12, .L__hyp_reentry_vectors_offset ldr r0, [r12] add r0, r0, r12 bl __hyp_set_vectors __HVC(0) @ otherwise bounce to hyp mode b . @ should never be reached .align 2 .L__hyp_reentry_vectors_offset: .long __hyp_reentry_vectors - . #else b __enter_kernel #endif .align 2 .type LC0, #object LC0: .word LC0 @ r1 .word __bss_start @ r2 .word _end @ r3 .word _edata @ r6 .word input_data_end - 4 @ r10 (inflated size location) .word _got_start @ r11 .word _got_end @ ip .word .L_user_stack_end @ sp .word _end - restart + 16384 + 1024*1024 .size LC0, . - LC0 #ifdef CONFIG_ARCH_RPC .globl params params: ldr r0, =0x10000100 @ params_phys for RPC mov pc, lr .ltorg .align #endif /* * Turn on the cache. We need to setup some page tables so that we * can have both the I and D caches on. * * We place the page tables 16k down from the kernel execution address, * and we hope that nothing else is using it. If we're using it, we * will go pop! * * On entry, * r4 = kernel execution address * r7 = architecture number * r8 = atags pointer * On exit, * r0, r1, r2, r3, r9, r10, r12 corrupted * This routine must preserve: * r4, r7, r8 */ .align 5 cache_on: mov r3, #8 @ cache_on function b call_cache_fn /* * Initialize the highest priority protection region, PR7 * to cover all 32bit address and cacheable and bufferable. */ __armv4_mpu_cache_on: mov r0, #0x3f @ 4G, the whole mcr p15, 0, r0, c6, c7, 0 @ PR7 Area Setting mcr p15, 0, r0, c6, c7, 1 mov r0, #0x80 @ PR7 mcr p15, 0, r0, c2, c0, 0 @ D-cache on mcr p15, 0, r0, c2, c0, 1 @ I-cache on mcr p15, 0, r0, c3, c0, 0 @ write-buffer on mov r0, #0xc000 mcr p15, 0, r0, c5, c0, 1 @ I-access permission mcr p15, 0, r0, c5, c0, 0 @ D-access permission mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c7, c5, 0 @ flush(inval) I-Cache mcr p15, 0, r0, c7, c6, 0 @ flush(inval) D-Cache mrc p15, 0, r0, c1, c0, 0 @ read control reg @ ...I .... ..D. WC.M orr r0, r0, #0x002d @ .... .... ..1. 11.1 orr r0, r0, #0x1000 @ ...1 .... .... .... mcr p15, 0, r0, c1, c0, 0 @ write control reg mov r0, #0 mcr p15, 0, r0, c7, c5, 0 @ flush(inval) I-Cache mcr p15, 0, r0, c7, c6, 0 @ flush(inval) D-Cache mov pc, lr __armv3_mpu_cache_on: mov r0, #0x3f @ 4G, the whole mcr p15, 0, r0, c6, c7, 0 @ PR7 Area Setting mov r0, #0x80 @ PR7 mcr p15, 0, r0, c2, c0, 0 @ cache on mcr p15, 0, r0, c3, c0, 0 @ write-buffer on mov r0, #0xc000 mcr p15, 0, r0, c5, c0, 0 @ access permission mov r0, #0 mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 /* * ?? ARMv3 MMU does not allow reading the control register, * does this really work on ARMv3 MPU? */ mrc p15, 0, r0, c1, c0, 0 @ read control reg @ .... .... .... WC.M orr r0, r0, #0x000d @ .... .... .... 11.1 /* ?? this overwrites the value constructed above? */ mov r0, #0 mcr p15, 0, r0, c1, c0, 0 @ write control reg /* ?? invalidate for the second time? */ mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 mov pc, lr #ifdef CONFIG_CPU_DCACHE_WRITETHROUGH #define CB_BITS 0x08 #else #define CB_BITS 0x0c #endif __setup_mmu: sub r3, r4, #16384 @ Page directory size bic r3, r3, #0xff @ Align the pointer bic r3, r3, #0x3f00 /* * Initialise the page tables, turning on the cacheable and bufferable * bits for the RAM area only. */ mov r0, r3 mov r9, r0, lsr #18 mov r9, r9, lsl #18 @ start of RAM add r10, r9, #0x10000000 @ a reasonable RAM size mov r1, #0x12 @ XN|U + section mapping orr r1, r1, #3 << 10 @ AP=11 add r2, r3, #16384 1: cmp r1, r9 @ if virt > start of RAM cmphs r10, r1 @ && end of RAM > virt bic r1, r1, #0x1c @ clear XN|U + C + B orrlo r1, r1, #0x10 @ Set XN|U for non-RAM orrhs r1, r1, r6 @ set RAM section settings str r1, [r0], #4 @ 1:1 mapping add r1, r1, #1048576 teq r0, r2 bne 1b /* * If ever we are running from Flash, then we surely want the cache * to be enabled also for our execution instance... We map 2MB of it * so there is no map overlap problem for up to 1 MB compressed kernel. * If the execution is in RAM then we would only be duplicating the above. */ orr r1, r6, #0x04 @ ensure B is set for this orr r1, r1, #3 << 10 mov r2, pc mov r2, r2, lsr #20 orr r1, r1, r2, lsl #20 add r0, r3, r2, lsl #2 str r1, [r0], #4 add r1, r1, #1048576 str r1, [r0] mov pc, lr ENDPROC(__setup_mmu) @ Enable unaligned access on v6, to allow better code generation @ for the decompressor C code: __armv6_mmu_cache_on: mrc p15, 0, r0, c1, c0, 0 @ read SCTLR bic r0, r0, #2 @ A (no unaligned access fault) orr r0, r0, #1 << 22 @ U (v6 unaligned access model) mcr p15, 0, r0, c1, c0, 0 @ write SCTLR b __armv4_mmu_cache_on __arm926ejs_mmu_cache_on: #ifdef CONFIG_CPU_DCACHE_WRITETHROUGH mov r0, #4 @ put dcache in WT mode mcr p15, 7, r0, c15, c0, 0 #endif __armv4_mmu_cache_on: mov r12, lr #ifdef CONFIG_MMU mov r6, #CB_BITS | 0x12 @ U bl __setup_mmu mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs mrc p15, 0, r0, c1, c0, 0 @ read control reg orr r0, r0, #0x5000 @ I-cache enable, RR cache replacement orr r0, r0, #0x0030 ARM_BE8( orr r0, r0, #1 << 25 ) @ big-endian page tables bl __common_mmu_cache_on mov r0, #0 mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs #endif mov pc, r12 __armv7_mmu_cache_on: enable_cp15_barriers r11 mov r12, lr #ifdef CONFIG_MMU mrc p15, 0, r11, c0, c1, 4 @ read ID_MMFR0 tst r11, #0xf @ VMSA movne r6, #CB_BITS | 0x02 @ !XN blne __setup_mmu mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer tst r11, #0xf @ VMSA mcrne p15, 0, r0, c8, c7, 0 @ flush I,D TLBs #endif mrc p15, 0, r0, c1, c0, 0 @ read control reg bic r0, r0, #1 << 28 @ clear SCTLR.TRE orr r0, r0, #0x5000 @ I-cache enable, RR cache replacement orr r0, r0, #0x003c @ write buffer bic r0, r0, #2 @ A (no unaligned access fault) orr r0, r0, #1 << 22 @ U (v6 unaligned access model) @ (needed for ARM1176) #ifdef CONFIG_MMU ARM_BE8( orr r0, r0, #1 << 25 ) @ big-endian page tables mrcne p15, 0, r6, c2, c0, 2 @ read ttb control reg orrne r0, r0, #1 @ MMU enabled movne r1, #0xfffffffd @ domain 0 = client bic r6, r6, #1 << 31 @ 32-bit translation system bic r6, r6, #(7 << 0) | (1 << 4) @ use only ttbr0 mcrne p15, 0, r3, c2, c0, 0 @ load page table pointer mcrne p15, 0, r1, c3, c0, 0 @ load domain access control mcrne p15, 0, r6, c2, c0, 2 @ load ttb control #endif mcr p15, 0, r0, c7, c5, 4 @ ISB mcr p15, 0, r0, c1, c0, 0 @ load control register mrc p15, 0, r0, c1, c0, 0 @ and read it back mov r0, #0 mcr p15, 0, r0, c7, c5, 4 @ ISB mov pc, r12 __fa526_cache_on: mov r12, lr mov r6, #CB_BITS | 0x12 @ U bl __setup_mmu mov r0, #0 mcr p15, 0, r0, c7, c7, 0 @ Invalidate whole cache mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c8, c7, 0 @ flush UTLB mrc p15, 0, r0, c1, c0, 0 @ read control reg orr r0, r0, #0x1000 @ I-cache enable bl __common_mmu_cache_on mov r0, #0 mcr p15, 0, r0, c8, c7, 0 @ flush UTLB mov pc, r12 __common_mmu_cache_on: #ifndef CONFIG_THUMB2_KERNEL #ifndef DEBUG orr r0, r0, #0x000d @ Write buffer, mmu #endif mov r1, #-1 mcr p15, 0, r3, c2, c0, 0 @ load page table pointer mcr p15, 0, r1, c3, c0, 0 @ load domain access control b 1f .align 5 @ cache line aligned 1: mcr p15, 0, r0, c1, c0, 0 @ load control register mrc p15, 0, r0, c1, c0, 0 @ and read it back to sub pc, lr, r0, lsr #32 @ properly flush pipeline #endif #define PROC_ENTRY_SIZE (4*5) /* * Here follow the relocatable cache support functions for the * various processors. This is a generic hook for locating an * entry and jumping to an instruction at the specified offset * from the start of the block. Please note this is all position * independent code. * * r1 = corrupted * r2 = corrupted * r3 = block offset * r9 = corrupted * r12 = corrupted */ call_cache_fn: adr r12, proc_types #ifdef CONFIG_CPU_CP15 mrc p15, 0, r9, c0, c0 @ get processor ID #elif defined(CONFIG_CPU_V7M) /* * On v7-M the processor id is located in the V7M_SCB_CPUID * register, but as cache handling is IMPLEMENTATION DEFINED on * v7-M (if existant at all) we just return early here. * If V7M_SCB_CPUID were used the cpu ID functions (i.e. * __armv7_mmu_cache_{on,off,flush}) would be selected which * use cp15 registers that are not implemented on v7-M. */ bx lr #else ldr r9, =CONFIG_PROCESSOR_ID #endif 1: ldr r1, [r12, #0] @ get value ldr r2, [r12, #4] @ get mask eor r1, r1, r9 @ (real ^ match) tst r1, r2 @ & mask ARM( addeq pc, r12, r3 ) @ call cache function THUMB( addeq r12, r3 ) THUMB( moveq pc, r12 ) @ call cache function add r12, r12, #PROC_ENTRY_SIZE b 1b /* * Table for cache operations. This is basically: * - CPU ID match * - CPU ID mask * - 'cache on' method instruction * - 'cache off' method instruction * - 'cache flush' method instruction * * We match an entry using: ((real_id ^ match) & mask) == 0 * * Writethrough caches generally only need 'on' and 'off' * methods. Writeback caches _must_ have the flush method * defined. */ .align 2 .type proc_types,#object proc_types: .word 0x41000000 @ old ARM ID .word 0xff00f000 mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) .word 0x41007000 @ ARM7/710 .word 0xfff8fe00 mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) .word 0x41807200 @ ARM720T (writethrough) .word 0xffffff00 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off mov pc, lr THUMB( nop ) .word 0x41007400 @ ARM74x .word 0xff00ff00 W(b) __armv3_mpu_cache_on W(b) __armv3_mpu_cache_off W(b) __armv3_mpu_cache_flush .word 0x41009400 @ ARM94x .word 0xff00ff00 W(b) __armv4_mpu_cache_on W(b) __armv4_mpu_cache_off W(b) __armv4_mpu_cache_flush .word 0x41069260 @ ARM926EJ-S (v5TEJ) .word 0xff0ffff0 W(b) __arm926ejs_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv5tej_mmu_cache_flush .word 0x00007000 @ ARM7 IDs .word 0x0000f000 mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) @ Everything from here on will be the new ID system. .word 0x4401a100 @ sa110 / sa1100 .word 0xffffffe0 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x6901b110 @ sa1110 .word 0xfffffff0 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x56056900 .word 0xffffff00 @ PXA9xx W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x56158000 @ PXA168 .word 0xfffff000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv5tej_mmu_cache_flush .word 0x56050000 @ Feroceon .word 0xff0f0000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv5tej_mmu_cache_flush #ifdef CONFIG_CPU_FEROCEON_OLD_ID /* this conflicts with the standard ARMv5TE entry */ .long 0x41009260 @ Old Feroceon .long 0xff00fff0 b __armv4_mmu_cache_on b __armv4_mmu_cache_off b __armv5tej_mmu_cache_flush #endif .word 0x66015261 @ FA526 .word 0xff01fff1 W(b) __fa526_cache_on W(b) __armv4_mmu_cache_off W(b) __fa526_cache_flush @ These match on the architecture ID .word 0x00020000 @ ARMv4T .word 0x000f0000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x00050000 @ ARMv5TE .word 0x000f0000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x00060000 @ ARMv5TEJ .word 0x000f0000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv5tej_mmu_cache_flush .word 0x0007b000 @ ARMv6 .word 0x000ff000 W(b) __armv6_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv6_mmu_cache_flush .word 0x000f0000 @ new CPU Id .word 0x000f0000 W(b) __armv7_mmu_cache_on W(b) __armv7_mmu_cache_off W(b) __armv7_mmu_cache_flush .word 0 @ unrecognised type .word 0 mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) .size proc_types, . - proc_types /* * If you get a "non-constant expression in ".if" statement" * error from the assembler on this line, check that you have * not accidentally written a "b" instruction where you should * have written W(b). */ .if (. - proc_types) % PROC_ENTRY_SIZE != 0 .error "The size of one or more proc_types entries is wrong." .endif /* * Turn off the Cache and MMU. ARMv3 does not support * reading the control register, but ARMv4 does. * * On exit, * r0, r1, r2, r3, r9, r12 corrupted * This routine must preserve: * r4, r7, r8 */ .align 5 cache_off: mov r3, #12 @ cache_off function b call_cache_fn __armv4_mpu_cache_off: mrc p15, 0, r0, c1, c0 bic r0, r0, #0x000d mcr p15, 0, r0, c1, c0 @ turn MPU and cache off mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c7, c6, 0 @ flush D-Cache mcr p15, 0, r0, c7, c5, 0 @ flush I-Cache mov pc, lr __armv3_mpu_cache_off: mrc p15, 0, r0, c1, c0 bic r0, r0, #0x000d mcr p15, 0, r0, c1, c0, 0 @ turn MPU and cache off mov r0, #0 mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 mov pc, lr __armv4_mmu_cache_off: #ifdef CONFIG_MMU mrc p15, 0, r0, c1, c0 bic r0, r0, #0x000d mcr p15, 0, r0, c1, c0 @ turn MMU and cache off mov r0, #0 mcr p15, 0, r0, c7, c7 @ invalidate whole cache v4 mcr p15, 0, r0, c8, c7 @ invalidate whole TLB v4 #endif mov pc, lr __armv7_mmu_cache_off: mrc p15, 0, r0, c1, c0 #ifdef CONFIG_MMU bic r0, r0, #0x000d #else bic r0, r0, #0x000c #endif mcr p15, 0, r0, c1, c0 @ turn MMU and cache off mov r12, lr bl __armv7_mmu_cache_flush mov r0, #0 #ifdef CONFIG_MMU mcr p15, 0, r0, c8, c7, 0 @ invalidate whole TLB #endif mcr p15, 0, r0, c7, c5, 6 @ invalidate BTC mcr p15, 0, r0, c7, c10, 4 @ DSB mcr p15, 0, r0, c7, c5, 4 @ ISB mov pc, r12 /* * Clean and flush the cache to maintain consistency. * * On exit, * r1, r2, r3, r9, r10, r11, r12 corrupted * This routine must preserve: * r4, r6, r7, r8 */ .align 5 cache_clean_flush: mov r3, #16 b call_cache_fn __armv4_mpu_cache_flush: tst r4, #1 movne pc, lr mov r2, #1 mov r3, #0 mcr p15, 0, ip, c7, c6, 0 @ invalidate D cache mov r1, #7 << 5 @ 8 segments 1: orr r3, r1, #63 << 26 @ 64 entries 2: mcr p15, 0, r3, c7, c14, 2 @ clean & invalidate D index subs r3, r3, #1 << 26 bcs 2b @ entries 63 to 0 subs r1, r1, #1 << 5 bcs 1b @ segments 7 to 0 teq r2, #0 mcrne p15, 0, ip, c7, c5, 0 @ invalidate I cache mcr p15, 0, ip, c7, c10, 4 @ drain WB mov pc, lr __fa526_cache_flush: tst r4, #1 movne pc, lr mov r1, #0 mcr p15, 0, r1, c7, c14, 0 @ clean and invalidate D cache mcr p15, 0, r1, c7, c5, 0 @ flush I cache mcr p15, 0, r1, c7, c10, 4 @ drain WB mov pc, lr __armv6_mmu_cache_flush: mov r1, #0 tst r4, #1 mcreq p15, 0, r1, c7, c14, 0 @ clean+invalidate D mcr p15, 0, r1, c7, c5, 0 @ invalidate I+BTB mcreq p15, 0, r1, c7, c15, 0 @ clean+invalidate unified mcr p15, 0, r1, c7, c10, 4 @ drain WB mov pc, lr __armv7_mmu_cache_flush: enable_cp15_barriers r10 tst r4, #1 bne iflush mrc p15, 0, r10, c0, c1, 5 @ read ID_MMFR1 tst r10, #0xf << 16 @ hierarchical cache (ARMv7) mov r10, #0 beq hierarchical mcr p15, 0, r10, c7, c14, 0 @ clean+invalidate D b iflush hierarchical: mcr p15, 0, r10, c7, c10, 5 @ DMB stmfd sp!, {r0-r7, r9-r11} mrc p15, 1, r0, c0, c0, 1 @ read clidr ands r3, r0, #0x7000000 @ extract loc from clidr mov r3, r3, lsr #23 @ left align loc bit field beq finished @ if loc is 0, then no need to clean mov r10, #0 @ start clean at cache level 0 loop1: add r2, r10, r10, lsr #1 @ work out 3x current cache level mov r1, r0, lsr r2 @ extract cache type bits from clidr and r1, r1, #7 @ mask of the bits for current cache only cmp r1, #2 @ see what cache we have at this level blt skip @ skip if no cache, or just i-cache mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr mcr p15, 0, r10, c7, c5, 4 @ isb to sych the new cssr&csidr mrc p15, 1, r1, c0, c0, 0 @ read the new csidr and r2, r1, #7 @ extract the length of the cache lines add r2, r2, #4 @ add 4 (line length offset) ldr r4, =0x3ff ands r4, r4, r1, lsr #3 @ find maximum number on the way size clz r5, r4 @ find bit position of way size increment ldr r7, =0x7fff ands r7, r7, r1, lsr #13 @ extract max number of the index size loop2: mov r9, r4 @ create working copy of max way size loop3: ARM( orr r11, r10, r9, lsl r5 ) @ factor way and cache number into r11 ARM( orr r11, r11, r7, lsl r2 ) @ factor index number into r11 THUMB( lsl r6, r9, r5 ) THUMB( orr r11, r10, r6 ) @ factor way and cache number into r11 THUMB( lsl r6, r7, r2 ) THUMB( orr r11, r11, r6 ) @ factor index number into r11 mcr p15, 0, r11, c7, c14, 2 @ clean & invalidate by set/way subs r9, r9, #1 @ decrement the way bge loop3 subs r7, r7, #1 @ decrement the index bge loop2 skip: add r10, r10, #2 @ increment cache number cmp r3, r10 bgt loop1 finished: ldmfd sp!, {r0-r7, r9-r11} mov r10, #0 @ switch back to cache level 0 mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr iflush: mcr p15, 0, r10, c7, c10, 4 @ DSB mcr p15, 0, r10, c7, c5, 0 @ invalidate I+BTB mcr p15, 0, r10, c7, c10, 4 @ DSB mcr p15, 0, r10, c7, c5, 4 @ ISB mov pc, lr __armv5tej_mmu_cache_flush: tst r4, #1 movne pc, lr 1: mrc p15, 0, APSR_nzcv, c7, c14, 3 @ test,clean,invalidate D cache bne 1b mcr p15, 0, r0, c7, c5, 0 @ flush I cache mcr p15, 0, r0, c7, c10, 4 @ drain WB mov pc, lr __armv4_mmu_cache_flush: tst r4, #1 movne pc, lr mov r2, #64*1024 @ default: 32K dcache size (*2) mov r11, #32 @ default: 32 byte line size mrc p15, 0, r3, c0, c0, 1 @ read cache type teq r3, r9 @ cache ID register present? beq no_cache_id mov r1, r3, lsr #18 and r1, r1, #7 mov r2, #1024 mov r2, r2, lsl r1 @ base dcache size *2 tst r3, #1 << 14 @ test M bit addne r2, r2, r2, lsr #1 @ +1/2 size if M == 1 mov r3, r3, lsr #12 and r3, r3, #3 mov r11, #8 mov r11, r11, lsl r3 @ cache line size in bytes no_cache_id: mov r1, pc bic r1, r1, #63 @ align to longest cache line add r2, r1, r2 1: ARM( ldr r3, [r1], r11 ) @ s/w flush D cache THUMB( ldr r3, [r1] ) @ s/w flush D cache THUMB( add r1, r1, r11 ) teq r1, r2 bne 1b mcr p15, 0, r1, c7, c5, 0 @ flush I cache mcr p15, 0, r1, c7, c6, 0 @ flush D cache mcr p15, 0, r1, c7, c10, 4 @ drain WB mov pc, lr __armv3_mmu_cache_flush: __armv3_mpu_cache_flush: tst r4, #1 movne pc, lr mov r1, #0 mcr p15, 0, r1, c7, c0, 0 @ invalidate whole cache v3 mov pc, lr /* * Various debugging routines for printing hex characters and * memory, which again must be relocatable. */ #ifdef DEBUG .align 2 .type phexbuf,#object phexbuf: .space 12 .size phexbuf, . - phexbuf @ phex corrupts {r0, r1, r2, r3} phex: adr r3, phexbuf mov r2, #0 strb r2, [r3, r1] 1: subs r1, r1, #1 movmi r0, r3 bmi puts and r2, r0, #15 mov r0, r0, lsr #4 cmp r2, #10 addge r2, r2, #7 add r2, r2, #'0' strb r2, [r3, r1] b 1b @ puts corrupts {r0, r1, r2, r3} puts: loadsp r3, r2, r1 1: ldrb r2, [r0], #1 teq r2, #0 moveq pc, lr 2: writeb r2, r3 mov r1, #0x00020000 3: subs r1, r1, #1 bne 3b teq r2, #'\n' moveq r2, #'\r' beq 2b teq r0, #0 bne 1b mov pc, lr @ putc corrupts {r0, r1, r2, r3} putc: mov r2, r0 loadsp r3, r1, r0 mov r0, #0 b 2b @ memdump corrupts {r0, r1, r2, r3, r10, r11, r12, lr} memdump: mov r12, r0 mov r10, lr mov r11, #0 2: mov r0, r11, lsl #2 add r0, r0, r12 mov r1, #8 bl phex mov r0, #':' bl putc 1: mov r0, #' ' bl putc ldr r0, [r12, r11, lsl #2] mov r1, #8 bl phex and r0, r11, #7 teq r0, #3 moveq r0, #' ' bleq putc and r0, r11, #7 add r11, r11, #1 teq r0, #7 bne 1b mov r0, #'\n' bl putc cmp r11, #64 blt 2b mov pc, r10 #endif .ltorg #ifdef CONFIG_ARM_VIRT_EXT .align 5 __hyp_reentry_vectors: W(b) . @ reset W(b) . @ undef W(b) . @ svc W(b) . @ pabort W(b) . @ dabort W(b) __enter_kernel @ hyp W(b) . @ irq W(b) . @ fiq #endif /* CONFIG_ARM_VIRT_EXT */ __enter_kernel: mov r0, #0 @ must be 0 mov r1, r7 @ restore architecture number mov r2, r8 @ restore atags pointer ARM( mov pc, r4 ) @ call kernel M_CLASS( add r4, r4, #1 ) @ enter in Thumb mode for M class THUMB( bx r4 ) @ entry point is always ARM for A/R classes reloc_code_end: #ifdef CONFIG_EFI_STUB .align 2 _start: .long start - . ENTRY(efi_stub_entry) @ allocate space on stack for passing current zImage address @ and for the EFI stub to return of new entry point of @ zImage, as EFI stub may copy the kernel. Pointer address @ is passed in r2. r0 and r1 are passed through from the @ EFI firmware to efi_entry adr ip, _start ldr r3, [ip] add r3, r3, ip stmfd sp!, {r3, lr} mov r2, sp @ pass zImage address in r2 bl efi_entry @ Check for error return from EFI stub. r0 has FDT address @ or error code. cmn r0, #1 beq efi_load_fail @ Preserve return value of efi_entry() in r4 mov r4, r0 add r1, r4, #SZ_2M @ DT end bl cache_clean_flush ldr r0, [sp] @ relocated zImage ldr r1, =_edata @ size of zImage add r1, r1, r0 @ end of zImage bl cache_clean_flush @ The PE/COFF loader might not have cleaned the code we are @ running beyond the PoU, and so calling cache_off below from @ inside the PE/COFF loader allocated region is unsafe. Let's @ assume our own zImage relocation code did a better job, and @ jump into its version of this routine before proceeding. ldr r0, [sp] @ relocated zImage ldr r1, .Ljmp sub r1, r0, r1 mov pc, r1 @ no mode switch 0: bl cache_off @ Set parameters for booting zImage according to boot protocol @ put FDT address in r2, it was returned by efi_entry() @ r1 is the machine type, and r0 needs to be 0 mov r0, #0 mov r1, #0xFFFFFFFF mov r2, r4 b __efi_start efi_load_fail: @ Return EFI_LOAD_ERROR to EFI firmware on error. ldr r0, =0x80000001 ldmfd sp!, {ip, pc} ENDPROC(efi_stub_entry) .align 2 .Ljmp: .long start - 0b #endif .align .section ".stack", "aw", %nobits .L_user_stack: .space 4096 .L_user_stack_end: