/* SPDX-License-Identifier: GPL-2.0-only */ /* * linux/arch/arm/boot/compressed/head.S * * Copyright (C) 1996-2002 Russell King * Copyright (C) 2004 Hyok S. Choi (MPU support) */ #include #include #include #include "efi-header.S" #ifdef __ARMEB__ #define OF_DT_MAGIC 0xd00dfeed #else #define OF_DT_MAGIC 0xedfe0dd0 #endif AR_CLASS( .arch armv7-a ) M_CLASS( .arch armv7-m ) /* * Debugging stuff * * Note that these macros must not contain any code which is not * 100% relocatable. Any attempt to do so will result in a crash. * Please select one of the following when turning on debugging. */ #ifdef DEBUG #if defined(CONFIG_DEBUG_ICEDCC) #if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K) || defined(CONFIG_CPU_V7) .macro loadsp, rb, tmp1, tmp2 .endm .macro writeb, ch, rb, tmp mcr p14, 0, \ch, c0, c5, 0 .endm #elif defined(CONFIG_CPU_XSCALE) .macro loadsp, rb, tmp1, tmp2 .endm .macro writeb, ch, rb, tmp mcr p14, 0, \ch, c8, c0, 0 .endm #else .macro loadsp, rb, tmp1, tmp2 .endm .macro writeb, ch, rb, tmp mcr p14, 0, \ch, c1, c0, 0 .endm #endif #else #include CONFIG_DEBUG_LL_INCLUDE .macro writeb, ch, rb, tmp #ifdef CONFIG_DEBUG_UART_FLOW_CONTROL waituartcts \tmp, \rb #endif waituarttxrdy \tmp, \rb senduart \ch, \rb busyuart \tmp, \rb .endm #if defined(CONFIG_ARCH_SA1100) .macro loadsp, rb, tmp1, tmp2 mov \rb, #0x80000000 @ physical base address #ifdef CONFIG_DEBUG_LL_SER3 add \rb, \rb, #0x00050000 @ Ser3 #else add \rb, \rb, #0x00010000 @ Ser1 #endif .endm #else .macro loadsp, rb, tmp1, tmp2 addruart \rb, \tmp1, \tmp2 .endm #endif #endif #endif .macro kputc,val mov r0, \val bl putc .endm .macro kphex,val,len mov r0, \val mov r1, #\len bl phex .endm /* * Debug kernel copy by printing the memory addresses involved */ .macro dbgkc, begin, end, cbegin, cend #ifdef DEBUG kputc #'C' kputc #':' kputc #'0' kputc #'x' kphex \begin, 8 /* Start of compressed kernel */ kputc #'-' kputc #'0' kputc #'x' kphex \end, 8 /* End of compressed kernel */ kputc #'-' kputc #'>' kputc #'0' kputc #'x' kphex \cbegin, 8 /* Start of kernel copy */ kputc #'-' kputc #'0' kputc #'x' kphex \cend, 8 /* End of kernel copy */ kputc #'\n' #endif .endm /* * Debug print of the final appended DTB location */ .macro dbgadtb, begin, size #ifdef DEBUG kputc #'D' kputc #'T' kputc #'B' kputc #':' kputc #'0' kputc #'x' kphex \begin, 8 /* Start of appended DTB */ kputc #' ' kputc #'(' kputc #'0' kputc #'x' kphex \size, 8 /* Size of appended DTB */ kputc #')' kputc #'\n' #endif .endm .macro enable_cp15_barriers, reg mrc p15, 0, \reg, c1, c0, 0 @ read SCTLR tst \reg, #(1 << 5) @ CP15BEN bit set? bne .L_\@ orr \reg, \reg, #(1 << 5) @ CP15 barrier instructions mcr p15, 0, \reg, c1, c0, 0 @ write SCTLR ARM( .inst 0xf57ff06f @ v7+ isb ) THUMB( isb ) .L_\@: .endm /* * The kernel build system appends the size of the * decompressed kernel at the end of the compressed data * in little-endian form. */ .macro get_inflated_image_size, res:req, tmp1:req, tmp2:req adr \res, .Linflated_image_size_offset ldr \tmp1, [\res] add \tmp1, \tmp1, \res @ address of inflated image size ldrb \res, [\tmp1] @ get_unaligned_le32 ldrb \tmp2, [\tmp1, #1] orr \res, \res, \tmp2, lsl #8 ldrb \tmp2, [\tmp1, #2] ldrb \tmp1, [\tmp1, #3] orr \res, \res, \tmp2, lsl #16 orr \res, \res, \tmp1, lsl #24 .endm .macro be32tocpu, val, tmp #ifndef __ARMEB__ /* convert to little endian */ rev_l \val, \tmp #endif .endm .section ".start", "ax" /* * sort out different calling conventions */ .align /* * Always enter in ARM state for CPUs that support the ARM ISA. * As of today (2014) that's exactly the members of the A and R * classes. */ AR_CLASS( .arm ) start: .type start,#function /* * These 7 nops along with the 1 nop immediately below for * !THUMB2 form 8 nops that make the compressed kernel bootable * on legacy ARM systems that were assuming the kernel in a.out * binary format. The boot loaders on these systems would * jump 32 bytes into the image to skip the a.out header. * with these 8 nops filling exactly 32 bytes, things still * work as expected on these legacy systems. Thumb2 mode keeps * 7 of the nops as it turns out that some boot loaders * were patching the initial instructions of the kernel, i.e * had started to exploit this "patch area". */ .rept 7 __nop .endr #ifndef CONFIG_THUMB2_KERNEL __nop #else AR_CLASS( sub pc, pc, #3 ) @ A/R: switch to Thumb2 mode M_CLASS( nop.w ) @ M: already in Thumb2 mode .thumb #endif W(b) 1f .word _magic_sig @ Magic numbers to help the loader .word _magic_start @ absolute load/run zImage address .word _magic_end @ zImage end address .word 0x04030201 @ endianness flag .word 0x45454545 @ another magic number to indicate .word _magic_table @ additional data table __EFI_HEADER 1: ARM_BE8( setend be ) @ go BE8 if compiled for BE8 AR_CLASS( mrs r9, cpsr ) #ifdef CONFIG_ARM_VIRT_EXT bl __hyp_stub_install @ get into SVC mode, reversibly #endif mov r7, r1 @ save architecture ID mov r8, r2 @ save atags pointer #ifndef CONFIG_CPU_V7M /* * Booting from Angel - need to enter SVC mode and disable * FIQs/IRQs (numeric definitions from angel arm.h source). * We only do this if we were in user mode on entry. */ mrs r2, cpsr @ get current mode tst r2, #3 @ not user? bne not_angel mov r0, #0x17 @ angel_SWIreason_EnterSVC ARM( swi 0x123456 ) @ angel_SWI_ARM THUMB( svc 0xab ) @ angel_SWI_THUMB not_angel: safe_svcmode_maskall r0 msr spsr_cxsf, r9 @ Save the CPU boot mode in @ SPSR #endif /* * Note that some cache flushing and other stuff may * be needed here - is there an Angel SWI call for this? */ /* * some architecture specific code can be inserted * by the linker here, but it should preserve r7, r8, and r9. */ .text #ifdef CONFIG_AUTO_ZRELADDR /* * Find the start of physical memory. As we are executing * without the MMU on, we are in the physical address space. * We just need to get rid of any offset by aligning the * address. * * This alignment is a balance between the requirements of * different platforms - we have chosen 128MB to allow * platforms which align the start of their physical memory * to 128MB to use this feature, while allowing the zImage * to be placed within the first 128MB of memory on other * platforms. Increasing the alignment means we place * stricter alignment requirements on the start of physical * memory, but relaxing it means that we break people who * are already placing their zImage in (eg) the top 64MB * of this range. */ mov r0, pc and r0, r0, #0xf8000000 #ifdef CONFIG_USE_OF adr r1, LC1 #ifdef CONFIG_ARM_APPENDED_DTB /* * Look for an appended DTB. If found, we cannot use it to * validate the calculated start of physical memory, as its * memory nodes may need to be augmented by ATAGS stored at * an offset from the same start of physical memory. */ ldr r2, [r1, #4] @ get &_edata add r2, r2, r1 @ relocate it ldr r2, [r2] @ get DTB signature ldr r3, =OF_DT_MAGIC cmp r2, r3 @ do we have a DTB there? beq 1f @ if yes, skip validation #endif /* CONFIG_ARM_APPENDED_DTB */ /* * Make sure we have some stack before calling C code. * No GOT fixup has occurred yet, but none of the code we're * about to call uses any global variables. */ ldr sp, [r1] @ get stack location add sp, sp, r1 @ apply relocation /* Validate calculated start against passed DTB */ mov r1, r8 bl fdt_check_mem_start 1: #endif /* CONFIG_USE_OF */ /* Determine final kernel image address. */ add r4, r0, #TEXT_OFFSET #else ldr r4, =zreladdr #endif /* * Set up a page table only if it won't overwrite ourself. * That means r4 < pc || r4 - 16k page directory > &_end. * Given that r4 > &_end is most unfrequent, we add a rough * additional 1MB of room for a possible appended DTB. */ mov r0, pc cmp r0, r4 ldrcc r0, .Lheadroom addcc r0, r0, pc cmpcc r4, r0 orrcc r4, r4, #1 @ remember we skipped cache_on blcs cache_on restart: adr r0, LC1 ldr sp, [r0] ldr r6, [r0, #4] add sp, sp, r0 add r6, r6, r0 get_inflated_image_size r9, r10, lr #ifndef CONFIG_ZBOOT_ROM /* malloc space is above the relocated stack (64k max) */ add r10, sp, #MALLOC_SIZE #else /* * With ZBOOT_ROM the bss/stack is non relocatable, * but someone could still run this code from RAM, * in which case our reference is _edata. */ mov r10, r6 #endif mov r5, #0 @ init dtb size to 0 #ifdef CONFIG_ARM_APPENDED_DTB /* * r4 = final kernel address (possibly with LSB set) * r5 = appended dtb size (still unknown) * r6 = _edata * r7 = architecture ID * r8 = atags/device tree pointer * r9 = size of decompressed image * r10 = end of this image, including bss/stack/malloc space if non XIP * sp = stack pointer * * if there are device trees (dtb) appended to zImage, advance r10 so that the * dtb data will get relocated along with the kernel if necessary. */ ldr lr, [r6, #0] ldr r1, =OF_DT_MAGIC cmp lr, r1 bne dtb_check_done @ not found #ifdef CONFIG_ARM_ATAG_DTB_COMPAT /* * OK... Let's do some funky business here. * If we do have a DTB appended to zImage, and we do have * an ATAG list around, we want the later to be translated * and folded into the former here. No GOT fixup has occurred * yet, but none of the code we're about to call uses any * global variable. */ /* Get the initial DTB size */ ldr r5, [r6, #4] be32tocpu r5, r1 dbgadtb r6, r5 /* 50% DTB growth should be good enough */ add r5, r5, r5, lsr #1 /* preserve 64-bit alignment */ add r5, r5, #7 bic r5, r5, #7 /* clamp to 32KB min and 1MB max */ cmp r5, #(1 << 15) movlo r5, #(1 << 15) cmp r5, #(1 << 20) movhi r5, #(1 << 20) /* temporarily relocate the stack past the DTB work space */ add sp, sp, r5 mov r0, r8 mov r1, r6 mov r2, r5 bl atags_to_fdt /* * If returned value is 1, there is no ATAG at the location * pointed by r8. Try the typical 0x100 offset from start * of RAM and hope for the best. */ cmp r0, #1 sub r0, r4, #TEXT_OFFSET bic r0, r0, #1 add r0, r0, #0x100 mov r1, r6 mov r2, r5 bleq atags_to_fdt sub sp, sp, r5 #endif mov r8, r6 @ use the appended device tree /* * Make sure that the DTB doesn't end up in the final * kernel's .bss area. To do so, we adjust the decompressed * kernel size to compensate if that .bss size is larger * than the relocated code. */ ldr r5, =_kernel_bss_size adr r1, wont_overwrite sub r1, r6, r1 subs r1, r5, r1 addhi r9, r9, r1 /* Get the current DTB size */ ldr r5, [r6, #4] be32tocpu r5, r1 /* preserve 64-bit alignment */ add r5, r5, #7 bic r5, r5, #7 /* relocate some pointers past the appended dtb */ add r6, r6, r5 add r10, r10, r5 add sp, sp, r5 dtb_check_done: #endif /* * Check to see if we will overwrite ourselves. * r4 = final kernel address (possibly with LSB set) * r9 = size of decompressed image * r10 = end of this image, including bss/stack/malloc space if non XIP * We basically want: * r4 - 16k page directory >= r10 -> OK * r4 + image length <= address of wont_overwrite -> OK * Note: the possible LSB in r4 is harmless here. */ add r10, r10, #16384 cmp r4, r10 bhs wont_overwrite add r10, r4, r9 adr r9, wont_overwrite cmp r10, r9 bls wont_overwrite /* * Relocate ourselves past the end of the decompressed kernel. * r6 = _edata * r10 = end of the decompressed kernel * Because we always copy ahead, we need to do it from the end and go * backward in case the source and destination overlap. */ /* * Bump to the next 256-byte boundary with the size of * the relocation code added. This avoids overwriting * ourself when the offset is small. */ add r10, r10, #((reloc_code_end - restart + 256) & ~255) bic r10, r10, #255 /* Get start of code we want to copy and align it down. */ adr r5, restart bic r5, r5, #31 /* Relocate the hyp vector base if necessary */ #ifdef CONFIG_ARM_VIRT_EXT mrs r0, spsr and r0, r0, #MODE_MASK cmp r0, #HYP_MODE bne 1f /* * Compute the address of the hyp vectors after relocation. * Call __hyp_set_vectors with the new address so that we * can HVC again after the copy. */ adr_l r0, __hyp_stub_vectors sub r0, r0, r5 add r0, r0, r10 bl __hyp_set_vectors 1: #endif sub r9, r6, r5 @ size to copy add r9, r9, #31 @ rounded up to a multiple bic r9, r9, #31 @ ... of 32 bytes add r6, r9, r5 add r9, r9, r10 #ifdef DEBUG sub r10, r6, r5 sub r10, r9, r10 /* * We are about to copy the kernel to a new memory area. * The boundaries of the new memory area can be found in * r10 and r9, whilst r5 and r6 contain the boundaries * of the memory we are going to copy. * Calling dbgkc will help with the printing of this * information. */ dbgkc r5, r6, r10, r9 #endif 1: ldmdb r6!, {r0 - r3, r10 - r12, lr} cmp r6, r5 stmdb r9!, {r0 - r3, r10 - r12, lr} bhi 1b /* Preserve offset to relocated code. */ sub r6, r9, r6 mov r0, r9 @ start of relocated zImage add r1, sp, r6 @ end of relocated zImage bl cache_clean_flush badr r0, restart add r0, r0, r6 mov pc, r0 wont_overwrite: adr r0, LC0 ldmia r0, {r1, r2, r3, r11, r12} sub r0, r0, r1 @ calculate the delta offset /* * If delta is zero, we are running at the address we were linked at. * r0 = delta * r2 = BSS start * r3 = BSS end * r4 = kernel execution address (possibly with LSB set) * r5 = appended dtb size (0 if not present) * r7 = architecture ID * r8 = atags pointer * r11 = GOT start * r12 = GOT end * sp = stack pointer */ orrs r1, r0, r5 beq not_relocated add r11, r11, r0 add r12, r12, r0 #ifndef CONFIG_ZBOOT_ROM /* * If we're running fully PIC === CONFIG_ZBOOT_ROM = n, * we need to fix up pointers into the BSS region. * Note that the stack pointer has already been fixed up. */ add r2, r2, r0 add r3, r3, r0 /* * Relocate all entries in the GOT table. * Bump bss entries to _edata + dtb size */ 1: ldr r1, [r11, #0] @ relocate entries in the GOT add r1, r1, r0 @ This fixes up C references cmp r1, r2 @ if entry >= bss_start && cmphs r3, r1 @ bss_end > entry addhi r1, r1, r5 @ entry += dtb size str r1, [r11], #4 @ next entry cmp r11, r12 blo 1b /* bump our bss pointers too */ add r2, r2, r5 add r3, r3, r5 #else /* * Relocate entries in the GOT table. We only relocate * the entries that are outside the (relocated) BSS region. */ 1: ldr r1, [r11, #0] @ relocate entries in the GOT cmp r1, r2 @ entry < bss_start || cmphs r3, r1 @ _end < entry addlo r1, r1, r0 @ table. This fixes up the str r1, [r11], #4 @ C references. cmp r11, r12 blo 1b #endif not_relocated: mov r0, #0 1: str r0, [r2], #4 @ clear bss str r0, [r2], #4 str r0, [r2], #4 str r0, [r2], #4 cmp r2, r3 blo 1b /* * Did we skip the cache setup earlier? * That is indicated by the LSB in r4. * Do it now if so. */ tst r4, #1 bic r4, r4, #1 blne cache_on /* * The C runtime environment should now be setup sufficiently. * Set up some pointers, and start decompressing. * r4 = kernel execution address * r7 = architecture ID * r8 = atags pointer */ mov r0, r4 mov r1, sp @ malloc space above stack add r2, sp, #MALLOC_SIZE @ 64k max mov r3, r7 bl decompress_kernel get_inflated_image_size r1, r2, r3 mov r0, r4 @ start of inflated image add r1, r1, r0 @ end of inflated image bl cache_clean_flush bl cache_off #ifdef CONFIG_ARM_VIRT_EXT mrs r0, spsr @ Get saved CPU boot mode and r0, r0, #MODE_MASK cmp r0, #HYP_MODE @ if not booted in HYP mode... bne __enter_kernel @ boot kernel directly adr_l r0, __hyp_reentry_vectors bl __hyp_set_vectors __HVC(0) @ otherwise bounce to hyp mode b . @ should never be reached #else b __enter_kernel #endif .align 2 .type LC0, #object LC0: .word LC0 @ r1 .word __bss_start @ r2 .word _end @ r3 .word _got_start @ r11 .word _got_end @ ip .size LC0, . - LC0 .type LC1, #object LC1: .word .L_user_stack_end - LC1 @ sp .word _edata - LC1 @ r6 .size LC1, . - LC1 .Lheadroom: .word _end - restart + 16384 + 1024*1024 .Linflated_image_size_offset: .long (input_data_end - 4) - . #ifdef CONFIG_ARCH_RPC .globl params params: ldr r0, =0x10000100 @ params_phys for RPC mov pc, lr .ltorg .align #endif /* * dcache_line_size - get the minimum D-cache line size from the CTR register * on ARMv7. */ .macro dcache_line_size, reg, tmp #ifdef CONFIG_CPU_V7M movw \tmp, #:lower16:BASEADDR_V7M_SCB + V7M_SCB_CTR movt \tmp, #:upper16:BASEADDR_V7M_SCB + V7M_SCB_CTR ldr \tmp, [\tmp] #else mrc p15, 0, \tmp, c0, c0, 1 @ read ctr #endif lsr \tmp, \tmp, #16 and \tmp, \tmp, #0xf @ cache line size encoding mov \reg, #4 @ bytes per word mov \reg, \reg, lsl \tmp @ actual cache line size .endm /* * Turn on the cache. We need to setup some page tables so that we * can have both the I and D caches on. * * We place the page tables 16k down from the kernel execution address, * and we hope that nothing else is using it. If we're using it, we * will go pop! * * On entry, * r4 = kernel execution address * r7 = architecture number * r8 = atags pointer * On exit, * r0, r1, r2, r3, r9, r10, r12 corrupted * This routine must preserve: * r4, r7, r8 */ .align 5 cache_on: mov r3, #8 @ cache_on function b call_cache_fn /* * Initialize the highest priority protection region, PR7 * to cover all 32bit address and cacheable and bufferable. */ __armv4_mpu_cache_on: mov r0, #0x3f @ 4G, the whole mcr p15, 0, r0, c6, c7, 0 @ PR7 Area Setting mcr p15, 0, r0, c6, c7, 1 mov r0, #0x80 @ PR7 mcr p15, 0, r0, c2, c0, 0 @ D-cache on mcr p15, 0, r0, c2, c0, 1 @ I-cache on mcr p15, 0, r0, c3, c0, 0 @ write-buffer on mov r0, #0xc000 mcr p15, 0, r0, c5, c0, 1 @ I-access permission mcr p15, 0, r0, c5, c0, 0 @ D-access permission mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c7, c5, 0 @ flush(inval) I-Cache mcr p15, 0, r0, c7, c6, 0 @ flush(inval) D-Cache mrc p15, 0, r0, c1, c0, 0 @ read control reg @ ...I .... ..D. WC.M orr r0, r0, #0x002d @ .... .... ..1. 11.1 orr r0, r0, #0x1000 @ ...1 .... .... .... mcr p15, 0, r0, c1, c0, 0 @ write control reg mov r0, #0 mcr p15, 0, r0, c7, c5, 0 @ flush(inval) I-Cache mcr p15, 0, r0, c7, c6, 0 @ flush(inval) D-Cache mov pc, lr __armv3_mpu_cache_on: mov r0, #0x3f @ 4G, the whole mcr p15, 0, r0, c6, c7, 0 @ PR7 Area Setting mov r0, #0x80 @ PR7 mcr p15, 0, r0, c2, c0, 0 @ cache on mcr p15, 0, r0, c3, c0, 0 @ write-buffer on mov r0, #0xc000 mcr p15, 0, r0, c5, c0, 0 @ access permission mov r0, #0 mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 /* * ?? ARMv3 MMU does not allow reading the control register, * does this really work on ARMv3 MPU? */ mrc p15, 0, r0, c1, c0, 0 @ read control reg @ .... .... .... WC.M orr r0, r0, #0x000d @ .... .... .... 11.1 /* ?? this overwrites the value constructed above? */ mov r0, #0 mcr p15, 0, r0, c1, c0, 0 @ write control reg /* ?? invalidate for the second time? */ mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 mov pc, lr #ifdef CONFIG_CPU_DCACHE_WRITETHROUGH #define CB_BITS 0x08 #else #define CB_BITS 0x0c #endif __setup_mmu: sub r3, r4, #16384 @ Page directory size bic r3, r3, #0xff @ Align the pointer bic r3, r3, #0x3f00 /* * Initialise the page tables, turning on the cacheable and bufferable * bits for the RAM area only. */ mov r0, r3 mov r9, r0, lsr #18 mov r9, r9, lsl #18 @ start of RAM add r10, r9, #0x10000000 @ a reasonable RAM size mov r1, #0x12 @ XN|U + section mapping orr r1, r1, #3 << 10 @ AP=11 add r2, r3, #16384 1: cmp r1, r9 @ if virt > start of RAM cmphs r10, r1 @ && end of RAM > virt bic r1, r1, #0x1c @ clear XN|U + C + B orrlo r1, r1, #0x10 @ Set XN|U for non-RAM orrhs r1, r1, r6 @ set RAM section settings str r1, [r0], #4 @ 1:1 mapping add r1, r1, #1048576 teq r0, r2 bne 1b /* * If ever we are running from Flash, then we surely want the cache * to be enabled also for our execution instance... We map 2MB of it * so there is no map overlap problem for up to 1 MB compressed kernel. * If the execution is in RAM then we would only be duplicating the above. */ orr r1, r6, #0x04 @ ensure B is set for this orr r1, r1, #3 << 10 mov r2, pc mov r2, r2, lsr #20 orr r1, r1, r2, lsl #20 add r0, r3, r2, lsl #2 str r1, [r0], #4 add r1, r1, #1048576 str r1, [r0] mov pc, lr ENDPROC(__setup_mmu) @ Enable unaligned access on v6, to allow better code generation @ for the decompressor C code: __armv6_mmu_cache_on: mrc p15, 0, r0, c1, c0, 0 @ read SCTLR bic r0, r0, #2 @ A (no unaligned access fault) orr r0, r0, #1 << 22 @ U (v6 unaligned access model) mcr p15, 0, r0, c1, c0, 0 @ write SCTLR b __armv4_mmu_cache_on __arm926ejs_mmu_cache_on: #ifdef CONFIG_CPU_DCACHE_WRITETHROUGH mov r0, #4 @ put dcache in WT mode mcr p15, 7, r0, c15, c0, 0 #endif __armv4_mmu_cache_on: mov r12, lr #ifdef CONFIG_MMU mov r6, #CB_BITS | 0x12 @ U bl __setup_mmu mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs mrc p15, 0, r0, c1, c0, 0 @ read control reg orr r0, r0, #0x5000 @ I-cache enable, RR cache replacement orr r0, r0, #0x0030 ARM_BE8( orr r0, r0, #1 << 25 ) @ big-endian page tables bl __common_mmu_cache_on mov r0, #0 mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs #endif mov pc, r12 __armv7_mmu_cache_on: enable_cp15_barriers r11 mov r12, lr #ifdef CONFIG_MMU mrc p15, 0, r11, c0, c1, 4 @ read ID_MMFR0 tst r11, #0xf @ VMSA movne r6, #CB_BITS | 0x02 @ !XN blne __setup_mmu mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer tst r11, #0xf @ VMSA mcrne p15, 0, r0, c8, c7, 0 @ flush I,D TLBs #endif mrc p15, 0, r0, c1, c0, 0 @ read control reg bic r0, r0, #1 << 28 @ clear SCTLR.TRE orr r0, r0, #0x5000 @ I-cache enable, RR cache replacement orr r0, r0, #0x003c @ write buffer bic r0, r0, #2 @ A (no unaligned access fault) orr r0, r0, #1 << 22 @ U (v6 unaligned access model) @ (needed for ARM1176) #ifdef CONFIG_MMU ARM_BE8( orr r0, r0, #1 << 25 ) @ big-endian page tables mrcne p15, 0, r6, c2, c0, 2 @ read ttb control reg orrne r0, r0, #1 @ MMU enabled movne r1, #0xfffffffd @ domain 0 = client bic r6, r6, #1 << 31 @ 32-bit translation system bic r6, r6, #(7 << 0) | (1 << 4) @ use only ttbr0 mcrne p15, 0, r3, c2, c0, 0 @ load page table pointer mcrne p15, 0, r1, c3, c0, 0 @ load domain access control mcrne p15, 0, r6, c2, c0, 2 @ load ttb control #endif mcr p15, 0, r0, c7, c5, 4 @ ISB mcr p15, 0, r0, c1, c0, 0 @ load control register mrc p15, 0, r0, c1, c0, 0 @ and read it back mov r0, #0 mcr p15, 0, r0, c7, c5, 4 @ ISB mov pc, r12 __fa526_cache_on: mov r12, lr mov r6, #CB_BITS | 0x12 @ U bl __setup_mmu mov r0, #0 mcr p15, 0, r0, c7, c7, 0 @ Invalidate whole cache mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c8, c7, 0 @ flush UTLB mrc p15, 0, r0, c1, c0, 0 @ read control reg orr r0, r0, #0x1000 @ I-cache enable bl __common_mmu_cache_on mov r0, #0 mcr p15, 0, r0, c8, c7, 0 @ flush UTLB mov pc, r12 __common_mmu_cache_on: #ifndef CONFIG_THUMB2_KERNEL #ifndef DEBUG orr r0, r0, #0x000d @ Write buffer, mmu #endif mov r1, #-1 mcr p15, 0, r3, c2, c0, 0 @ load page table pointer mcr p15, 0, r1, c3, c0, 0 @ load domain access control b 1f .align 5 @ cache line aligned 1: mcr p15, 0, r0, c1, c0, 0 @ load control register mrc p15, 0, r0, c1, c0, 0 @ and read it back to sub pc, lr, r0, lsr #32 @ properly flush pipeline #endif #define PROC_ENTRY_SIZE (4*5) /* * Here follow the relocatable cache support functions for the * various processors. This is a generic hook for locating an * entry and jumping to an instruction at the specified offset * from the start of the block. Please note this is all position * independent code. * * r1 = corrupted * r2 = corrupted * r3 = block offset * r9 = corrupted * r12 = corrupted */ call_cache_fn: adr r12, proc_types #ifdef CONFIG_CPU_CP15 mrc p15, 0, r9, c0, c0 @ get processor ID #elif defined(CONFIG_CPU_V7M) /* * On v7-M the processor id is located in the V7M_SCB_CPUID * register, but as cache handling is IMPLEMENTATION DEFINED on * v7-M (if existant at all) we just return early here. * If V7M_SCB_CPUID were used the cpu ID functions (i.e. * __armv7_mmu_cache_{on,off,flush}) would be selected which * use cp15 registers that are not implemented on v7-M. */ bx lr #else ldr r9, =CONFIG_PROCESSOR_ID #endif 1: ldr r1, [r12, #0] @ get value ldr r2, [r12, #4] @ get mask eor r1, r1, r9 @ (real ^ match) tst r1, r2 @ & mask ARM( addeq pc, r12, r3 ) @ call cache function THUMB( addeq r12, r3 ) THUMB( moveq pc, r12 ) @ call cache function add r12, r12, #PROC_ENTRY_SIZE b 1b /* * Table for cache operations. This is basically: * - CPU ID match * - CPU ID mask * - 'cache on' method instruction * - 'cache off' method instruction * - 'cache flush' method instruction * * We match an entry using: ((real_id ^ match) & mask) == 0 * * Writethrough caches generally only need 'on' and 'off' * methods. Writeback caches _must_ have the flush method * defined. */ .align 2 .type proc_types,#object proc_types: .word 0x41000000 @ old ARM ID .word 0xff00f000 mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) .word 0x41007000 @ ARM7/710 .word 0xfff8fe00 mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) .word 0x41807200 @ ARM720T (writethrough) .word 0xffffff00 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off mov pc, lr THUMB( nop ) .word 0x41007400 @ ARM74x .word 0xff00ff00 W(b) __armv3_mpu_cache_on W(b) __armv3_mpu_cache_off W(b) __armv3_mpu_cache_flush .word 0x41009400 @ ARM94x .word 0xff00ff00 W(b) __armv4_mpu_cache_on W(b) __armv4_mpu_cache_off W(b) __armv4_mpu_cache_flush .word 0x41069260 @ ARM926EJ-S (v5TEJ) .word 0xff0ffff0 W(b) __arm926ejs_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv5tej_mmu_cache_flush .word 0x00007000 @ ARM7 IDs .word 0x0000f000 mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) @ Everything from here on will be the new ID system. .word 0x4401a100 @ sa110 / sa1100 .word 0xffffffe0 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x6901b110 @ sa1110 .word 0xfffffff0 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x56056900 .word 0xffffff00 @ PXA9xx W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x56158000 @ PXA168 .word 0xfffff000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv5tej_mmu_cache_flush .word 0x56050000 @ Feroceon .word 0xff0f0000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv5tej_mmu_cache_flush #ifdef CONFIG_CPU_FEROCEON_OLD_ID /* this conflicts with the standard ARMv5TE entry */ .long 0x41009260 @ Old Feroceon .long 0xff00fff0 b __armv4_mmu_cache_on b __armv4_mmu_cache_off b __armv5tej_mmu_cache_flush #endif .word 0x66015261 @ FA526 .word 0xff01fff1 W(b) __fa526_cache_on W(b) __armv4_mmu_cache_off W(b) __fa526_cache_flush @ These match on the architecture ID .word 0x00020000 @ ARMv4T .word 0x000f0000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x00050000 @ ARMv5TE .word 0x000f0000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x00060000 @ ARMv5TEJ .word 0x000f0000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv5tej_mmu_cache_flush .word 0x0007b000 @ ARMv6 .word 0x000ff000 W(b) __armv6_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv6_mmu_cache_flush .word 0x000f0000 @ new CPU Id .word 0x000f0000 W(b) __armv7_mmu_cache_on W(b) __armv7_mmu_cache_off W(b) __armv7_mmu_cache_flush .word 0 @ unrecognised type .word 0 mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) .size proc_types, . - proc_types /* * If you get a "non-constant expression in ".if" statement" * error from the assembler on this line, check that you have * not accidentally written a "b" instruction where you should * have written W(b). */ .if (. - proc_types) % PROC_ENTRY_SIZE != 0 .error "The size of one or more proc_types entries is wrong." .endif /* * Turn off the Cache and MMU. ARMv3 does not support * reading the control register, but ARMv4 does. * * On exit, * r0, r1, r2, r3, r9, r12 corrupted * This routine must preserve: * r4, r7, r8 */ .align 5 cache_off: mov r3, #12 @ cache_off function b call_cache_fn __armv4_mpu_cache_off: mrc p15, 0, r0, c1, c0 bic r0, r0, #0x000d mcr p15, 0, r0, c1, c0 @ turn MPU and cache off mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c7, c6, 0 @ flush D-Cache mcr p15, 0, r0, c7, c5, 0 @ flush I-Cache mov pc, lr __armv3_mpu_cache_off: mrc p15, 0, r0, c1, c0 bic r0, r0, #0x000d mcr p15, 0, r0, c1, c0, 0 @ turn MPU and cache off mov r0, #0 mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 mov pc, lr __armv4_mmu_cache_off: #ifdef CONFIG_MMU mrc p15, 0, r0, c1, c0 bic r0, r0, #0x000d mcr p15, 0, r0, c1, c0 @ turn MMU and cache off mov r0, #0 mcr p15, 0, r0, c7, c7 @ invalidate whole cache v4 mcr p15, 0, r0, c8, c7 @ invalidate whole TLB v4 #endif mov pc, lr __armv7_mmu_cache_off: mrc p15, 0, r0, c1, c0 #ifdef CONFIG_MMU bic r0, r0, #0x000d #else bic r0, r0, #0x000c #endif mcr p15, 0, r0, c1, c0 @ turn MMU and cache off mov r0, #0 #ifdef CONFIG_MMU mcr p15, 0, r0, c8, c7, 0 @ invalidate whole TLB #endif mcr p15, 0, r0, c7, c5, 6 @ invalidate BTC mcr p15, 0, r0, c7, c10, 4 @ DSB mcr p15, 0, r0, c7, c5, 4 @ ISB mov pc, lr /* * Clean and flush the cache to maintain consistency. * * On entry, * r0 = start address * r1 = end address (exclusive) * On exit, * r1, r2, r3, r9, r10, r11, r12 corrupted * This routine must preserve: * r4, r6, r7, r8 */ .align 5 cache_clean_flush: mov r3, #16 mov r11, r1 b call_cache_fn __armv4_mpu_cache_flush: tst r4, #1 movne pc, lr mov r2, #1 mov r3, #0 mcr p15, 0, ip, c7, c6, 0 @ invalidate D cache mov r1, #7 << 5 @ 8 segments 1: orr r3, r1, #63 << 26 @ 64 entries 2: mcr p15, 0, r3, c7, c14, 2 @ clean & invalidate D index subs r3, r3, #1 << 26 bcs 2b @ entries 63 to 0 subs r1, r1, #1 << 5 bcs 1b @ segments 7 to 0 teq r2, #0 mcrne p15, 0, ip, c7, c5, 0 @ invalidate I cache mcr p15, 0, ip, c7, c10, 4 @ drain WB mov pc, lr __fa526_cache_flush: tst r4, #1 movne pc, lr mov r1, #0 mcr p15, 0, r1, c7, c14, 0 @ clean and invalidate D cache mcr p15, 0, r1, c7, c5, 0 @ flush I cache mcr p15, 0, r1, c7, c10, 4 @ drain WB mov pc, lr __armv6_mmu_cache_flush: mov r1, #0 tst r4, #1 mcreq p15, 0, r1, c7, c14, 0 @ clean+invalidate D mcr p15, 0, r1, c7, c5, 0 @ invalidate I+BTB mcreq p15, 0, r1, c7, c15, 0 @ clean+invalidate unified mcr p15, 0, r1, c7, c10, 4 @ drain WB mov pc, lr __armv7_mmu_cache_flush: enable_cp15_barriers r10 tst r4, #1 bne iflush mrc p15, 0, r10, c0, c1, 5 @ read ID_MMFR1 tst r10, #0xf << 16 @ hierarchical cache (ARMv7) mov r10, #0 beq hierarchical mcr p15, 0, r10, c7, c14, 0 @ clean+invalidate D b iflush hierarchical: dcache_line_size r1, r2 @ r1 := dcache min line size sub r2, r1, #1 @ r2 := line size mask bic r0, r0, r2 @ round down start to line size sub r11, r11, #1 @ end address is exclusive bic r11, r11, r2 @ round down end to line size 0: cmp r0, r11 @ finished? bgt iflush mcr p15, 0, r0, c7, c14, 1 @ Dcache clean/invalidate by VA add r0, r0, r1 b 0b iflush: mcr p15, 0, r10, c7, c10, 4 @ DSB mcr p15, 0, r10, c7, c5, 0 @ invalidate I+BTB mcr p15, 0, r10, c7, c10, 4 @ DSB mcr p15, 0, r10, c7, c5, 4 @ ISB mov pc, lr __armv5tej_mmu_cache_flush: tst r4, #1 movne pc, lr 1: mrc p15, 0, APSR_nzcv, c7, c14, 3 @ test,clean,invalidate D cache bne 1b mcr p15, 0, r0, c7, c5, 0 @ flush I cache mcr p15, 0, r0, c7, c10, 4 @ drain WB mov pc, lr __armv4_mmu_cache_flush: tst r4, #1 movne pc, lr mov r2, #64*1024 @ default: 32K dcache size (*2) mov r11, #32 @ default: 32 byte line size mrc p15, 0, r3, c0, c0, 1 @ read cache type teq r3, r9 @ cache ID register present? beq no_cache_id mov r1, r3, lsr #18 and r1, r1, #7 mov r2, #1024 mov r2, r2, lsl r1 @ base dcache size *2 tst r3, #1 << 14 @ test M bit addne r2, r2, r2, lsr #1 @ +1/2 size if M == 1 mov r3, r3, lsr #12 and r3, r3, #3 mov r11, #8 mov r11, r11, lsl r3 @ cache line size in bytes no_cache_id: mov r1, pc bic r1, r1, #63 @ align to longest cache line add r2, r1, r2 1: ARM( ldr r3, [r1], r11 ) @ s/w flush D cache THUMB( ldr r3, [r1] ) @ s/w flush D cache THUMB( add r1, r1, r11 ) teq r1, r2 bne 1b mcr p15, 0, r1, c7, c5, 0 @ flush I cache mcr p15, 0, r1, c7, c6, 0 @ flush D cache mcr p15, 0, r1, c7, c10, 4 @ drain WB mov pc, lr __armv3_mmu_cache_flush: __armv3_mpu_cache_flush: tst r4, #1 movne pc, lr mov r1, #0 mcr p15, 0, r1, c7, c0, 0 @ invalidate whole cache v3 mov pc, lr /* * Various debugging routines for printing hex characters and * memory, which again must be relocatable. */ #ifdef DEBUG .align 2 .type phexbuf,#object phexbuf: .space 12 .size phexbuf, . - phexbuf @ phex corrupts {r0, r1, r2, r3} phex: adr r3, phexbuf mov r2, #0 strb r2, [r3, r1] 1: subs r1, r1, #1 movmi r0, r3 bmi puts and r2, r0, #15 mov r0, r0, lsr #4 cmp r2, #10 addge r2, r2, #7 add r2, r2, #'0' strb r2, [r3, r1] b 1b @ puts corrupts {r0, r1, r2, r3} puts: loadsp r3, r2, r1 1: ldrb r2, [r0], #1 teq r2, #0 moveq pc, lr 2: writeb r2, r3, r1 mov r1, #0x00020000 3: subs r1, r1, #1 bne 3b teq r2, #'\n' moveq r2, #'\r' beq 2b teq r0, #0 bne 1b mov pc, lr @ putc corrupts {r0, r1, r2, r3} putc: mov r2, r0 loadsp r3, r1, r0 mov r0, #0 b 2b @ memdump corrupts {r0, r1, r2, r3, r10, r11, r12, lr} memdump: mov r12, r0 mov r10, lr mov r11, #0 2: mov r0, r11, lsl #2 add r0, r0, r12 mov r1, #8 bl phex mov r0, #':' bl putc 1: mov r0, #' ' bl putc ldr r0, [r12, r11, lsl #2] mov r1, #8 bl phex and r0, r11, #7 teq r0, #3 moveq r0, #' ' bleq putc and r0, r11, #7 add r11, r11, #1 teq r0, #7 bne 1b mov r0, #'\n' bl putc cmp r11, #64 blt 2b mov pc, r10 #endif .ltorg #ifdef CONFIG_ARM_VIRT_EXT .align 5 __hyp_reentry_vectors: W(b) . @ reset W(b) . @ undef #ifdef CONFIG_EFI_STUB W(b) __enter_kernel_from_hyp @ hvc from HYP #else W(b) . @ svc #endif W(b) . @ pabort W(b) . @ dabort W(b) __enter_kernel @ hyp W(b) . @ irq W(b) . @ fiq #endif /* CONFIG_ARM_VIRT_EXT */ __enter_kernel: mov r0, #0 @ must be 0 mov r1, r7 @ restore architecture number mov r2, r8 @ restore atags pointer ARM( mov pc, r4 ) @ call kernel M_CLASS( add r4, r4, #1 ) @ enter in Thumb mode for M class THUMB( bx r4 ) @ entry point is always ARM for A/R classes reloc_code_end: #ifdef CONFIG_EFI_STUB __enter_kernel_from_hyp: mrc p15, 4, r0, c1, c0, 0 @ read HSCTLR bic r0, r0, #0x5 @ disable MMU and caches mcr p15, 4, r0, c1, c0, 0 @ write HSCTLR isb b __enter_kernel ENTRY(efi_enter_kernel) mov r4, r0 @ preserve image base mov r8, r1 @ preserve DT pointer adr_l r0, call_cache_fn adr r1, 0f @ clean the region of code we bl cache_clean_flush @ may run with the MMU off #ifdef CONFIG_ARM_VIRT_EXT @ @ The EFI spec does not support booting on ARM in HYP mode, @ since it mandates that the MMU and caches are on, with all @ 32-bit addressable DRAM mapped 1:1 using short descriptors. @ @ While the EDK2 reference implementation adheres to this, @ U-Boot might decide to enter the EFI stub in HYP mode @ anyway, with the MMU and caches either on or off. @ mrs r0, cpsr @ get the current mode msr spsr_cxsf, r0 @ record boot mode and r0, r0, #MODE_MASK @ are we running in HYP mode? cmp r0, #HYP_MODE bne .Lefi_svc mrc p15, 4, r1, c1, c0, 0 @ read HSCTLR tst r1, #0x1 @ MMU enabled at HYP? beq 1f @ @ When running in HYP mode with the caches on, we're better @ off just carrying on using the cached 1:1 mapping that the @ firmware provided. Set up the HYP vectors so HVC instructions @ issued from HYP mode take us to the correct handler code. We @ will disable the MMU before jumping to the kernel proper. @ ARM( bic r1, r1, #(1 << 30) ) @ clear HSCTLR.TE THUMB( orr r1, r1, #(1 << 30) ) @ set HSCTLR.TE mcr p15, 4, r1, c1, c0, 0 adr r0, __hyp_reentry_vectors mcr p15, 4, r0, c12, c0, 0 @ set HYP vector base (HVBAR) isb b .Lefi_hyp @ @ When running in HYP mode with the caches off, we need to drop @ into SVC mode now, and let the decompressor set up its cached @ 1:1 mapping as usual. @ 1: mov r9, r4 @ preserve image base bl __hyp_stub_install @ install HYP stub vectors safe_svcmode_maskall r1 @ drop to SVC mode msr spsr_cxsf, r0 @ record boot mode orr r4, r9, #1 @ restore image base and set LSB b .Lefi_hyp .Lefi_svc: #endif mrc p15, 0, r0, c1, c0, 0 @ read SCTLR tst r0, #0x1 @ MMU enabled? orreq r4, r4, #1 @ set LSB if not .Lefi_hyp: mov r0, r8 @ DT start add r1, r8, r2 @ DT end bl cache_clean_flush adr r0, 0f @ switch to our stack ldr sp, [r0] add sp, sp, r0 mov r5, #0 @ appended DTB size mov r7, #0xFFFFFFFF @ machine ID b wont_overwrite ENDPROC(efi_enter_kernel) 0: .long .L_user_stack_end - . #endif .align .section ".stack", "aw", %nobits .L_user_stack: .space 4096 .L_user_stack_end: