/* * Copyright 2015 Vishnu Patekar * * Vishnu Patekar * * This file is dual-licensed: you can use it either under the terms * of the GPL or the X11 license, at your option. Note that this dual * licensing only applies to this file, and not this project as a * whole. * * a) This file is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Or, alternatively, * * b) Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include / { interrupt-parent = <&gic>; #address-cells = <1>; #size-cells = <1>; aliases { }; chosen { }; cpus { #address-cells = <1>; #size-cells = <0>; cpu@0 { compatible = "arm,cortex-a7"; device_type = "cpu"; reg = <0>; }; cpu@1 { compatible = "arm,cortex-a7"; device_type = "cpu"; reg = <1>; }; cpu@2 { compatible = "arm,cortex-a7"; device_type = "cpu"; reg = <2>; }; cpu@3 { compatible = "arm,cortex-a7"; device_type = "cpu"; reg = <3>; }; cpu@100 { compatible = "arm,cortex-a7"; device_type = "cpu"; reg = <0x100>; }; cpu@101 { compatible = "arm,cortex-a7"; device_type = "cpu"; reg = <0x101>; }; cpu@102 { compatible = "arm,cortex-a7"; device_type = "cpu"; reg = <0x102>; }; cpu@103 { compatible = "arm,cortex-a7"; device_type = "cpu"; reg = <0x103>; }; }; timer { compatible = "arm,armv7-timer"; interrupts = , , , ; }; clocks { #address-cells = <1>; #size-cells = <1>; ranges; /* TODO: PRCM block has a mux for this. */ osc24M: osc24M_clk { #clock-cells = <0>; compatible = "fixed-clock"; clock-frequency = <24000000>; clock-accuracy = <50000>; clock-output-names = "osc24M"; }; /* * This is called "internal OSC" in some places. * It is an internal RC-based oscillator. * TODO: Its controls are in the PRCM block. */ osc16M: osc16M_clk { #clock-cells = <0>; compatible = "fixed-clock"; clock-frequency = <16000000>; clock-output-names = "osc16M"; }; osc16Md512: osc16Md512_clk { #clock-cells = <0>; compatible = "fixed-factor-clock"; clock-div = <512>; clock-mult = <1>; clocks = <&osc16M>; clock-output-names = "osc16M-d512"; }; }; memory { reg = <0x40000000 0x80000000>; device_type = "memory"; }; soc { compatible = "simple-bus"; #address-cells = <1>; #size-cells = <1>; ranges; syscon: syscon@1c00000 { compatible = "allwinner,sun8i-a83t-system-controller", "syscon"; reg = <0x01c00000 0x1000>; }; dma: dma-controller@1c02000 { compatible = "allwinner,sun8i-a83t-dma"; reg = <0x01c02000 0x1000>; interrupts = ; clocks = <&ccu CLK_BUS_DMA>; resets = <&ccu RST_BUS_DMA>; #dma-cells = <1>; }; mmc0: mmc@1c0f000 { compatible = "allwinner,sun8i-a83t-mmc", "allwinner,sun7i-a20-mmc"; reg = <0x01c0f000 0x1000>; clocks = <&ccu CLK_BUS_MMC0>, <&ccu CLK_MMC0>, <&ccu CLK_MMC0_OUTPUT>, <&ccu CLK_MMC0_SAMPLE>; clock-names = "ahb", "mmc", "output", "sample"; resets = <&ccu RST_BUS_MMC0>; reset-names = "ahb"; interrupts = ; status = "disabled"; #address-cells = <1>; #size-cells = <0>; }; mmc1: mmc@1c10000 { compatible = "allwinner,sun8i-a83t-mmc", "allwinner,sun7i-a20-mmc"; reg = <0x01c10000 0x1000>; clocks = <&ccu CLK_BUS_MMC1>, <&ccu CLK_MMC1>, <&ccu CLK_MMC1_OUTPUT>, <&ccu CLK_MMC1_SAMPLE>; clock-names = "ahb", "mmc", "output", "sample"; resets = <&ccu RST_BUS_MMC1>; reset-names = "ahb"; interrupts = ; status = "disabled"; #address-cells = <1>; #size-cells = <0>; }; mmc2: mmc@1c11000 { compatible = "allwinner,sun8i-a83t-emmc"; reg = <0x01c11000 0x1000>; clocks = <&ccu CLK_BUS_MMC2>, <&ccu CLK_MMC2>, <&ccu CLK_MMC2_OUTPUT>, <&ccu CLK_MMC2_SAMPLE>; clock-names = "ahb", "mmc", "output", "sample"; resets = <&ccu RST_BUS_MMC2>; reset-names = "ahb"; interrupts = ; status = "disabled"; #address-cells = <1>; #size-cells = <0>; }; usb_otg: usb@1c19000 { compatible = "allwinner,sun8i-a83t-musb", "allwinner,sun8i-a33-musb"; reg = <0x01c19000 0x0400>; clocks = <&ccu CLK_BUS_OTG>; resets = <&ccu RST_BUS_OTG>; interrupts = ; interrupt-names = "mc"; phys = <&usbphy 0>; phy-names = "usb"; extcon = <&usbphy 0>; status = "disabled"; }; usbphy: phy@1c19400 { compatible = "allwinner,sun8i-a83t-usb-phy"; reg = <0x01c19400 0x10>, <0x01c1a800 0x14>, <0x01c1b800 0x14>; reg-names = "phy_ctrl", "pmu1", "pmu2"; clocks = <&ccu CLK_USB_PHY0>, <&ccu CLK_USB_PHY1>, <&ccu CLK_USB_HSIC>, <&ccu CLK_USB_HSIC_12M>; clock-names = "usb0_phy", "usb1_phy", "usb2_phy", "usb2_hsic_12M"; resets = <&ccu RST_USB_PHY0>, <&ccu RST_USB_PHY1>, <&ccu RST_USB_HSIC>; reset-names = "usb0_reset", "usb1_reset", "usb2_reset"; status = "disabled"; #phy-cells = <1>; }; ehci0: usb@1c1a000 { compatible = "allwinner,sun8i-a83t-ehci", "generic-ehci"; reg = <0x01c1a000 0x100>; interrupts = ; clocks = <&ccu CLK_BUS_EHCI0>; resets = <&ccu RST_BUS_EHCI0>; phys = <&usbphy 1>; phy-names = "usb"; status = "disabled"; }; ohci0: usb@1c1a400 { compatible = "allwinner,sun8i-a83t-ohci", "generic-ohci"; reg = <0x01c1a400 0x100>; interrupts = ; clocks = <&ccu CLK_BUS_OHCI0>, <&ccu CLK_USB_OHCI0>; resets = <&ccu RST_BUS_OHCI0>; phys = <&usbphy 1>; phy-names = "usb"; status = "disabled"; }; ehci1: usb@1c1b000 { compatible = "allwinner,sun8i-a83t-ehci", "generic-ehci"; reg = <0x01c1b000 0x100>; interrupts = ; clocks = <&ccu CLK_BUS_EHCI1>; resets = <&ccu RST_BUS_EHCI1>; phys = <&usbphy 2>; phy-names = "usb"; status = "disabled"; }; ccu: clock@1c20000 { compatible = "allwinner,sun8i-a83t-ccu"; reg = <0x01c20000 0x400>; clocks = <&osc24M>, <&osc16Md512>; clock-names = "hosc", "losc"; #clock-cells = <1>; #reset-cells = <1>; }; pio: pinctrl@1c20800 { compatible = "allwinner,sun8i-a83t-pinctrl"; interrupts = , , ; reg = <0x01c20800 0x400>; clocks = <&ccu CLK_BUS_PIO>, <&osc24M>, <&osc16Md512>; clock-names = "apb", "hosc", "losc"; gpio-controller; interrupt-controller; #interrupt-cells = <3>; #gpio-cells = <3>; mmc0_pins: mmc0-pins { pins = "PF0", "PF1", "PF2", "PF3", "PF4", "PF5"; function = "mmc0"; drive-strength = <30>; bias-pull-up; }; mmc2_8bit_emmc_pins: mmc2-8bit-emmc-pins { pins = "PC5", "PC6", "PC8", "PC9", "PC10", "PC11", "PC12", "PC13", "PC14", "PC15", "PC16"; function = "mmc2"; drive-strength = <30>; bias-pull-up; }; spdif_tx_pin: spdif-tx-pin { pins = "PE18"; function = "spdif"; }; uart0_pb_pins: uart0-pb-pins { pins = "PB9", "PB10"; function = "uart0"; }; uart0_pf_pins: uart0-pf-pins { pins = "PF2", "PF4"; function = "uart0"; }; }; timer@1c20c00 { compatible = "allwinner,sun4i-a10-timer"; reg = <0x01c20c00 0xa0>; interrupts = , ; clocks = <&osc24M>; }; watchdog@1c20ca0 { compatible = "allwinner,sun6i-a31-wdt"; reg = <0x01c20ca0 0x20>; interrupts = ; clocks = <&osc24M>; }; spdif: spdif@1c21000 { #sound-dai-cells = <0>; compatible = "allwinner,sun8i-a83t-spdif", "allwinner,sun8i-h3-spdif"; reg = <0x01c21000 0x400>; interrupts = ; clocks = <&ccu CLK_BUS_SPDIF>, <&ccu CLK_SPDIF>; resets = <&ccu RST_BUS_SPDIF>; clock-names = "apb", "spdif"; dmas = <&dma 2>; dma-names = "tx"; pinctrl-names = "default"; pinctrl-0 = <&spdif_tx_pin>; status = "disabled"; }; uart0: serial@1c28000 { compatible = "snps,dw-apb-uart"; reg = <0x01c28000 0x400>; interrupts = ; reg-shift = <2>; reg-io-width = <4>; clocks = <&ccu CLK_BUS_UART0>; resets = <&ccu RST_BUS_UART0>; status = "disabled"; }; gic: interrupt-controller@1c81000 { compatible = "arm,cortex-a7-gic", "arm,cortex-a15-gic"; reg = <0x01c81000 0x1000>, <0x01c82000 0x2000>, <0x01c84000 0x2000>, <0x01c86000 0x2000>; interrupt-controller; #interrupt-cells = <3>; interrupts = ; }; r_intc: interrupt-controller@1f00c00 { compatible = "allwinner,sun8i-a83t-r-intc", "allwinner,sun6i-a31-r-intc"; interrupt-controller; #interrupt-cells = <2>; reg = <0x01f00c00 0x400>; interrupts = ; }; r_ccu: clock@1f01400 { compatible = "allwinner,sun8i-a83t-r-ccu"; reg = <0x01f01400 0x400>; clocks = <&osc24M>, <&osc16Md512>, <&osc16M>, <&ccu 6>; clock-names = "hosc", "losc", "iosc", "pll-periph"; #clock-cells = <1>; #reset-cells = <1>; }; r_pio: pinctrl@1f02c00 { compatible = "allwinner,sun8i-a83t-r-pinctrl"; reg = <0x01f02c00 0x400>; interrupts = ; clocks = <&r_ccu CLK_APB0_PIO>, <&osc24M>, <&osc16Md512>; clock-names = "apb", "hosc", "losc"; gpio-controller; #gpio-cells = <3>; interrupt-controller; #interrupt-cells = <3>; r_rsb_pins: r-rsb-pins { pins = "PL0", "PL1"; function = "s_rsb"; drive-strength = <20>; bias-pull-up; }; }; r_rsb: rsb@1f03400 { compatible = "allwinner,sun8i-a83t-rsb", "allwinner,sun8i-a23-rsb"; reg = <0x01f03400 0x400>; interrupts = ; clocks = <&r_ccu CLK_APB0_RSB>; clock-frequency = <3000000>; resets = <&r_ccu RST_APB0_RSB>; pinctrl-names = "default"; pinctrl-0 = <&r_rsb_pins>; status = "disabled"; #address-cells = <1>; #size-cells = <0>; }; }; };