/* * aes-ce-glue.c - wrapper code for ARMv8 AES * * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <asm/hwcap.h> #include <asm/neon.h> #include <asm/hwcap.h> #include <crypto/aes.h> #include <crypto/ablk_helper.h> #include <crypto/algapi.h> #include <linux/module.h> #include <crypto/xts.h> MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions"); MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); MODULE_LICENSE("GPL v2"); /* defined in aes-ce-core.S */ asmlinkage u32 ce_aes_sub(u32 input); asmlinkage void ce_aes_invert(void *dst, void *src); asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks); asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks); asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[]); asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[]); asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 ctr[]); asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[], int rounds, int blocks, u8 iv[], u8 const rk2[], int first); asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[], int rounds, int blocks, u8 iv[], u8 const rk2[], int first); struct aes_block { u8 b[AES_BLOCK_SIZE]; }; static int num_rounds(struct crypto_aes_ctx *ctx) { /* * # of rounds specified by AES: * 128 bit key 10 rounds * 192 bit key 12 rounds * 256 bit key 14 rounds * => n byte key => 6 + (n/4) rounds */ return 6 + ctx->key_length / 4; } static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key, unsigned int key_len) { /* * The AES key schedule round constants */ static u8 const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, }; u32 kwords = key_len / sizeof(u32); struct aes_block *key_enc, *key_dec; int i, j; if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 && key_len != AES_KEYSIZE_256) return -EINVAL; memcpy(ctx->key_enc, in_key, key_len); ctx->key_length = key_len; kernel_neon_begin(); for (i = 0; i < sizeof(rcon); i++) { u32 *rki = ctx->key_enc + (i * kwords); u32 *rko = rki + kwords; rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8); rko[0] = rko[0] ^ rki[0] ^ rcon[i]; rko[1] = rko[0] ^ rki[1]; rko[2] = rko[1] ^ rki[2]; rko[3] = rko[2] ^ rki[3]; if (key_len == AES_KEYSIZE_192) { if (i >= 7) break; rko[4] = rko[3] ^ rki[4]; rko[5] = rko[4] ^ rki[5]; } else if (key_len == AES_KEYSIZE_256) { if (i >= 6) break; rko[4] = ce_aes_sub(rko[3]) ^ rki[4]; rko[5] = rko[4] ^ rki[5]; rko[6] = rko[5] ^ rki[6]; rko[7] = rko[6] ^ rki[7]; } } /* * Generate the decryption keys for the Equivalent Inverse Cipher. * This involves reversing the order of the round keys, and applying * the Inverse Mix Columns transformation on all but the first and * the last one. */ key_enc = (struct aes_block *)ctx->key_enc; key_dec = (struct aes_block *)ctx->key_dec; j = num_rounds(ctx); key_dec[0] = key_enc[j]; for (i = 1, j--; j > 0; i++, j--) ce_aes_invert(key_dec + i, key_enc + j); key_dec[i] = key_enc[0]; kernel_neon_end(); return 0; } static int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); int ret; ret = ce_aes_expandkey(ctx, in_key, key_len); if (!ret) return 0; tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } struct crypto_aes_xts_ctx { struct crypto_aes_ctx key1; struct crypto_aes_ctx __aligned(8) key2; }; static int xts_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm); int ret; ret = xts_check_key(tfm, in_key, key_len); if (ret) return ret; ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2); if (!ret) ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2], key_len / 2); if (!ret) return 0; tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; unsigned int blocks; int err; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); kernel_neon_begin(); while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key_enc, num_rounds(ctx), blocks); err = blkcipher_walk_done(desc, &walk, walk.nbytes % AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; unsigned int blocks; int err; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); kernel_neon_begin(); while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key_dec, num_rounds(ctx), blocks); err = blkcipher_walk_done(desc, &walk, walk.nbytes % AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; unsigned int blocks; int err; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); kernel_neon_begin(); while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { ce_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key_enc, num_rounds(ctx), blocks, walk.iv); err = blkcipher_walk_done(desc, &walk, walk.nbytes % AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; unsigned int blocks; int err; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); kernel_neon_begin(); while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { ce_aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key_dec, num_rounds(ctx), blocks, walk.iv); err = blkcipher_walk_done(desc, &walk, walk.nbytes % AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int ctr_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; int err, blocks; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE); kernel_neon_begin(); while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key_enc, num_rounds(ctx), blocks, walk.iv); nbytes -= blocks * AES_BLOCK_SIZE; if (nbytes && nbytes == walk.nbytes % AES_BLOCK_SIZE) break; err = blkcipher_walk_done(desc, &walk, walk.nbytes % AES_BLOCK_SIZE); } if (nbytes) { u8 *tdst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE; u8 *tsrc = walk.src.virt.addr + blocks * AES_BLOCK_SIZE; u8 __aligned(8) tail[AES_BLOCK_SIZE]; /* * Minimum alignment is 8 bytes, so if nbytes is <= 8, we need * to tell aes_ctr_encrypt() to only read half a block. */ blocks = (nbytes <= 8) ? -1 : 1; ce_aes_ctr_encrypt(tail, tsrc, (u8 *)ctx->key_enc, num_rounds(ctx), blocks, walk.iv); memcpy(tdst, tail, nbytes); err = blkcipher_walk_done(desc, &walk, 0); } kernel_neon_end(); return err; } static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_aes_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); int err, first, rounds = num_rounds(&ctx->key1); struct blkcipher_walk walk; unsigned int blocks; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); kernel_neon_begin(); for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) { ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key1.key_enc, rounds, blocks, walk.iv, (u8 *)ctx->key2.key_enc, first); err = blkcipher_walk_done(desc, &walk, walk.nbytes % AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_aes_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); int err, first, rounds = num_rounds(&ctx->key1); struct blkcipher_walk walk; unsigned int blocks; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); kernel_neon_begin(); for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) { ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key1.key_dec, rounds, blocks, walk.iv, (u8 *)ctx->key2.key_enc, first); err = blkcipher_walk_done(desc, &walk, walk.nbytes % AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static struct crypto_alg aes_algs[] = { { .cra_name = "__ecb-aes-ce", .cra_driver_name = "__driver-ecb-aes-ce", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER | CRYPTO_ALG_INTERNAL, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_alignmask = 7, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_blkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = 0, .setkey = ce_aes_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, }, { .cra_name = "__cbc-aes-ce", .cra_driver_name = "__driver-cbc-aes-ce", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER | CRYPTO_ALG_INTERNAL, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_alignmask = 7, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_blkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ce_aes_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, }, { .cra_name = "__ctr-aes-ce", .cra_driver_name = "__driver-ctr-aes-ce", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER | CRYPTO_ALG_INTERNAL, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_alignmask = 7, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_blkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ce_aes_setkey, .encrypt = ctr_encrypt, .decrypt = ctr_encrypt, }, }, { .cra_name = "__xts-aes-ce", .cra_driver_name = "__driver-xts-aes-ce", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER | CRYPTO_ALG_INTERNAL, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx), .cra_alignmask = 7, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_blkcipher = { .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = xts_set_key, .encrypt = xts_encrypt, .decrypt = xts_decrypt, }, }, { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-ce", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 7, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = 0, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, } }, { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-ce", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 7, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, } }, { .cra_name = "ctr(aes)", .cra_driver_name = "ctr-aes-ce", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 7, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, } }, { .cra_name = "xts(aes)", .cra_driver_name = "xts-aes-ce", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 7, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_ablkcipher = { .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, } } }; static int __init aes_init(void) { if (!(elf_hwcap2 & HWCAP2_AES)) return -ENODEV; return crypto_register_algs(aes_algs, ARRAY_SIZE(aes_algs)); } static void __exit aes_exit(void) { crypto_unregister_algs(aes_algs, ARRAY_SIZE(aes_algs)); } module_init(aes_init); module_exit(aes_exit);