/* * linux/arch/arm/kernel/setup.c * * Copyright (C) 1995-2001 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "atags.h" #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE) char fpe_type[8]; static int __init fpe_setup(char *line) { memcpy(fpe_type, line, 8); return 1; } __setup("fpe=", fpe_setup); #endif extern void paging_init(const struct machine_desc *desc); extern void early_paging_init(const struct machine_desc *, struct proc_info_list *); extern void sanity_check_meminfo(void); extern enum reboot_mode reboot_mode; extern void setup_dma_zone(const struct machine_desc *desc); unsigned int processor_id; EXPORT_SYMBOL(processor_id); unsigned int __machine_arch_type __read_mostly; EXPORT_SYMBOL(__machine_arch_type); unsigned int cacheid __read_mostly; EXPORT_SYMBOL(cacheid); unsigned int __atags_pointer __initdata; unsigned int system_rev; EXPORT_SYMBOL(system_rev); unsigned int system_serial_low; EXPORT_SYMBOL(system_serial_low); unsigned int system_serial_high; EXPORT_SYMBOL(system_serial_high); unsigned int elf_hwcap __read_mostly; EXPORT_SYMBOL(elf_hwcap); #ifdef MULTI_CPU struct processor processor __read_mostly; #endif #ifdef MULTI_TLB struct cpu_tlb_fns cpu_tlb __read_mostly; #endif #ifdef MULTI_USER struct cpu_user_fns cpu_user __read_mostly; #endif #ifdef MULTI_CACHE struct cpu_cache_fns cpu_cache __read_mostly; #endif #ifdef CONFIG_OUTER_CACHE struct outer_cache_fns outer_cache __read_mostly; EXPORT_SYMBOL(outer_cache); #endif /* * Cached cpu_architecture() result for use by assembler code. * C code should use the cpu_architecture() function instead of accessing this * variable directly. */ int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN; struct stack { u32 irq[3]; u32 abt[3]; u32 und[3]; } ____cacheline_aligned; #ifndef CONFIG_CPU_V7M static struct stack stacks[NR_CPUS]; #endif char elf_platform[ELF_PLATFORM_SIZE]; EXPORT_SYMBOL(elf_platform); static const char *cpu_name; static const char *machine_name; static char __initdata cmd_line[COMMAND_LINE_SIZE]; const struct machine_desc *machine_desc __initdata; static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } }; #define ENDIANNESS ((char)endian_test.l) DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data); /* * Standard memory resources */ static struct resource mem_res[] = { { .name = "Video RAM", .start = 0, .end = 0, .flags = IORESOURCE_MEM }, { .name = "Kernel code", .start = 0, .end = 0, .flags = IORESOURCE_MEM }, { .name = "Kernel data", .start = 0, .end = 0, .flags = IORESOURCE_MEM } }; #define video_ram mem_res[0] #define kernel_code mem_res[1] #define kernel_data mem_res[2] static struct resource io_res[] = { { .name = "reserved", .start = 0x3bc, .end = 0x3be, .flags = IORESOURCE_IO | IORESOURCE_BUSY }, { .name = "reserved", .start = 0x378, .end = 0x37f, .flags = IORESOURCE_IO | IORESOURCE_BUSY }, { .name = "reserved", .start = 0x278, .end = 0x27f, .flags = IORESOURCE_IO | IORESOURCE_BUSY } }; #define lp0 io_res[0] #define lp1 io_res[1] #define lp2 io_res[2] static const char *proc_arch[] = { "undefined/unknown", "3", "4", "4T", "5", "5T", "5TE", "5TEJ", "6TEJ", "7", "7M", "?(12)", "?(13)", "?(14)", "?(15)", "?(16)", "?(17)", }; #ifdef CONFIG_CPU_V7M static int __get_cpu_architecture(void) { return CPU_ARCH_ARMv7M; } #else static int __get_cpu_architecture(void) { int cpu_arch; if ((read_cpuid_id() & 0x0008f000) == 0) { cpu_arch = CPU_ARCH_UNKNOWN; } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) { cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3; } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) { cpu_arch = (read_cpuid_id() >> 16) & 7; if (cpu_arch) cpu_arch += CPU_ARCH_ARMv3; } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { unsigned int mmfr0; /* Revised CPUID format. Read the Memory Model Feature * Register 0 and check for VMSAv7 or PMSAv7 */ asm("mrc p15, 0, %0, c0, c1, 4" : "=r" (mmfr0)); if ((mmfr0 & 0x0000000f) >= 0x00000003 || (mmfr0 & 0x000000f0) >= 0x00000030) cpu_arch = CPU_ARCH_ARMv7; else if ((mmfr0 & 0x0000000f) == 0x00000002 || (mmfr0 & 0x000000f0) == 0x00000020) cpu_arch = CPU_ARCH_ARMv6; else cpu_arch = CPU_ARCH_UNKNOWN; } else cpu_arch = CPU_ARCH_UNKNOWN; return cpu_arch; } #endif int __pure cpu_architecture(void) { BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN); return __cpu_architecture; } static int cpu_has_aliasing_icache(unsigned int arch) { int aliasing_icache; unsigned int id_reg, num_sets, line_size; /* PIPT caches never alias. */ if (icache_is_pipt()) return 0; /* arch specifies the register format */ switch (arch) { case CPU_ARCH_ARMv7: asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR" : /* No output operands */ : "r" (1)); isb(); asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR" : "=r" (id_reg)); line_size = 4 << ((id_reg & 0x7) + 2); num_sets = ((id_reg >> 13) & 0x7fff) + 1; aliasing_icache = (line_size * num_sets) > PAGE_SIZE; break; case CPU_ARCH_ARMv6: aliasing_icache = read_cpuid_cachetype() & (1 << 11); break; default: /* I-cache aliases will be handled by D-cache aliasing code */ aliasing_icache = 0; } return aliasing_icache; } static void __init cacheid_init(void) { unsigned int arch = cpu_architecture(); if (arch == CPU_ARCH_ARMv7M) { cacheid = 0; } else if (arch >= CPU_ARCH_ARMv6) { unsigned int cachetype = read_cpuid_cachetype(); if ((cachetype & (7 << 29)) == 4 << 29) { /* ARMv7 register format */ arch = CPU_ARCH_ARMv7; cacheid = CACHEID_VIPT_NONALIASING; switch (cachetype & (3 << 14)) { case (1 << 14): cacheid |= CACHEID_ASID_TAGGED; break; case (3 << 14): cacheid |= CACHEID_PIPT; break; } } else { arch = CPU_ARCH_ARMv6; if (cachetype & (1 << 23)) cacheid = CACHEID_VIPT_ALIASING; else cacheid = CACHEID_VIPT_NONALIASING; } if (cpu_has_aliasing_icache(arch)) cacheid |= CACHEID_VIPT_I_ALIASING; } else { cacheid = CACHEID_VIVT; } printk("CPU: %s data cache, %s instruction cache\n", cache_is_vivt() ? "VIVT" : cache_is_vipt_aliasing() ? "VIPT aliasing" : cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown", cache_is_vivt() ? "VIVT" : icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" : icache_is_vipt_aliasing() ? "VIPT aliasing" : icache_is_pipt() ? "PIPT" : cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown"); } /* * These functions re-use the assembly code in head.S, which * already provide the required functionality. */ extern struct proc_info_list *lookup_processor_type(unsigned int); void __init early_print(const char *str, ...) { extern void printascii(const char *); char buf[256]; va_list ap; va_start(ap, str); vsnprintf(buf, sizeof(buf), str, ap); va_end(ap); #ifdef CONFIG_DEBUG_LL printascii(buf); #endif printk("%s", buf); } static void __init cpuid_init_hwcaps(void) { unsigned int divide_instrs, vmsa; if (cpu_architecture() < CPU_ARCH_ARMv7) return; divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24; switch (divide_instrs) { case 2: elf_hwcap |= HWCAP_IDIVA; case 1: elf_hwcap |= HWCAP_IDIVT; } /* LPAE implies atomic ldrd/strd instructions */ vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0; if (vmsa >= 5) elf_hwcap |= HWCAP_LPAE; } static void __init feat_v6_fixup(void) { int id = read_cpuid_id(); if ((id & 0xff0f0000) != 0x41070000) return; /* * HWCAP_TLS is available only on 1136 r1p0 and later, * see also kuser_get_tls_init. */ if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0)) elf_hwcap &= ~HWCAP_TLS; } /* * cpu_init - initialise one CPU. * * cpu_init sets up the per-CPU stacks. */ void notrace cpu_init(void) { #ifndef CONFIG_CPU_V7M unsigned int cpu = smp_processor_id(); struct stack *stk = &stacks[cpu]; if (cpu >= NR_CPUS) { printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu); BUG(); } /* * This only works on resume and secondary cores. For booting on the * boot cpu, smp_prepare_boot_cpu is called after percpu area setup. */ set_my_cpu_offset(per_cpu_offset(cpu)); cpu_proc_init(); /* * Define the placement constraint for the inline asm directive below. * In Thumb-2, msr with an immediate value is not allowed. */ #ifdef CONFIG_THUMB2_KERNEL #define PLC "r" #else #define PLC "I" #endif /* * setup stacks for re-entrant exception handlers */ __asm__ ( "msr cpsr_c, %1\n\t" "add r14, %0, %2\n\t" "mov sp, r14\n\t" "msr cpsr_c, %3\n\t" "add r14, %0, %4\n\t" "mov sp, r14\n\t" "msr cpsr_c, %5\n\t" "add r14, %0, %6\n\t" "mov sp, r14\n\t" "msr cpsr_c, %7" : : "r" (stk), PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE), "I" (offsetof(struct stack, irq[0])), PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE), "I" (offsetof(struct stack, abt[0])), PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE), "I" (offsetof(struct stack, und[0])), PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE) : "r14"); #endif } u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID }; void __init smp_setup_processor_id(void) { int i; u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0; u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cpu_logical_map(0) = cpu; for (i = 1; i < nr_cpu_ids; ++i) cpu_logical_map(i) = i == cpu ? 0 : i; /* * clear __my_cpu_offset on boot CPU to avoid hang caused by * using percpu variable early, for example, lockdep will * access percpu variable inside lock_release */ set_my_cpu_offset(0); printk(KERN_INFO "Booting Linux on physical CPU 0x%x\n", mpidr); } struct mpidr_hash mpidr_hash; #ifdef CONFIG_SMP /** * smp_build_mpidr_hash - Pre-compute shifts required at each affinity * level in order to build a linear index from an * MPIDR value. Resulting algorithm is a collision * free hash carried out through shifting and ORing */ static void __init smp_build_mpidr_hash(void) { u32 i, affinity; u32 fs[3], bits[3], ls, mask = 0; /* * Pre-scan the list of MPIDRS and filter out bits that do * not contribute to affinity levels, ie they never toggle. */ for_each_possible_cpu(i) mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); pr_debug("mask of set bits 0x%x\n", mask); /* * Find and stash the last and first bit set at all affinity levels to * check how many bits are required to represent them. */ for (i = 0; i < 3; i++) { affinity = MPIDR_AFFINITY_LEVEL(mask, i); /* * Find the MSB bit and LSB bits position * to determine how many bits are required * to express the affinity level. */ ls = fls(affinity); fs[i] = affinity ? ffs(affinity) - 1 : 0; bits[i] = ls - fs[i]; } /* * An index can be created from the MPIDR by isolating the * significant bits at each affinity level and by shifting * them in order to compress the 24 bits values space to a * compressed set of values. This is equivalent to hashing * the MPIDR through shifting and ORing. It is a collision free * hash though not minimal since some levels might contain a number * of CPUs that is not an exact power of 2 and their bit * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}. */ mpidr_hash.shift_aff[0] = fs[0]; mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0]; mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] - (bits[1] + bits[0]); mpidr_hash.mask = mask; mpidr_hash.bits = bits[2] + bits[1] + bits[0]; pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n", mpidr_hash.shift_aff[0], mpidr_hash.shift_aff[1], mpidr_hash.shift_aff[2], mpidr_hash.mask, mpidr_hash.bits); /* * 4x is an arbitrary value used to warn on a hash table much bigger * than expected on most systems. */ if (mpidr_hash_size() > 4 * num_possible_cpus()) pr_warn("Large number of MPIDR hash buckets detected\n"); sync_cache_w(&mpidr_hash); } #endif static void __init setup_processor(void) { struct proc_info_list *list; /* * locate processor in the list of supported processor * types. The linker builds this table for us from the * entries in arch/arm/mm/proc-*.S */ list = lookup_processor_type(read_cpuid_id()); if (!list) { printk("CPU configuration botched (ID %08x), unable " "to continue.\n", read_cpuid_id()); while (1); } cpu_name = list->cpu_name; __cpu_architecture = __get_cpu_architecture(); #ifdef MULTI_CPU processor = *list->proc; #endif #ifdef MULTI_TLB cpu_tlb = *list->tlb; #endif #ifdef MULTI_USER cpu_user = *list->user; #endif #ifdef MULTI_CACHE cpu_cache = *list->cache; #endif printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n", cpu_name, read_cpuid_id(), read_cpuid_id() & 15, proc_arch[cpu_architecture()], cr_alignment); snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c", list->arch_name, ENDIANNESS); snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c", list->elf_name, ENDIANNESS); elf_hwcap = list->elf_hwcap; cpuid_init_hwcaps(); #ifndef CONFIG_ARM_THUMB elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT); #endif feat_v6_fixup(); cacheid_init(); cpu_init(); } void __init dump_machine_table(void) { const struct machine_desc *p; early_print("Available machine support:\n\nID (hex)\tNAME\n"); for_each_machine_desc(p) early_print("%08x\t%s\n", p->nr, p->name); early_print("\nPlease check your kernel config and/or bootloader.\n"); while (true) /* can't use cpu_relax() here as it may require MMU setup */; } int __init arm_add_memory(phys_addr_t start, phys_addr_t size) { struct membank *bank = &meminfo.bank[meminfo.nr_banks]; if (meminfo.nr_banks >= NR_BANKS) { printk(KERN_CRIT "NR_BANKS too low, " "ignoring memory at 0x%08llx\n", (long long)start); return -EINVAL; } /* * Ensure that start/size are aligned to a page boundary. * Size is appropriately rounded down, start is rounded up. */ size -= start & ~PAGE_MASK; bank->start = PAGE_ALIGN(start); #ifndef CONFIG_ARM_LPAE if (bank->start + size < bank->start) { printk(KERN_CRIT "Truncating memory at 0x%08llx to fit in " "32-bit physical address space\n", (long long)start); /* * To ensure bank->start + bank->size is representable in * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB. * This means we lose a page after masking. */ size = ULONG_MAX - bank->start; } #endif bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1); /* * Check whether this memory region has non-zero size or * invalid node number. */ if (bank->size == 0) return -EINVAL; meminfo.nr_banks++; return 0; } /* * Pick out the memory size. We look for mem=size@start, * where start and size are "size[KkMm]" */ static int __init early_mem(char *p) { static int usermem __initdata = 0; phys_addr_t size; phys_addr_t start; char *endp; /* * If the user specifies memory size, we * blow away any automatically generated * size. */ if (usermem == 0) { usermem = 1; meminfo.nr_banks = 0; } start = PHYS_OFFSET; size = memparse(p, &endp); if (*endp == '@') start = memparse(endp + 1, NULL); arm_add_memory(start, size); return 0; } early_param("mem", early_mem); static void __init request_standard_resources(const struct machine_desc *mdesc) { struct memblock_region *region; struct resource *res; kernel_code.start = virt_to_phys(_text); kernel_code.end = virt_to_phys(_etext - 1); kernel_data.start = virt_to_phys(_sdata); kernel_data.end = virt_to_phys(_end - 1); for_each_memblock(memory, region) { res = alloc_bootmem_low(sizeof(*res)); res->name = "System RAM"; res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; request_resource(&iomem_resource, res); if (kernel_code.start >= res->start && kernel_code.end <= res->end) request_resource(res, &kernel_code); if (kernel_data.start >= res->start && kernel_data.end <= res->end) request_resource(res, &kernel_data); } if (mdesc->video_start) { video_ram.start = mdesc->video_start; video_ram.end = mdesc->video_end; request_resource(&iomem_resource, &video_ram); } /* * Some machines don't have the possibility of ever * possessing lp0, lp1 or lp2 */ if (mdesc->reserve_lp0) request_resource(&ioport_resource, &lp0); if (mdesc->reserve_lp1) request_resource(&ioport_resource, &lp1); if (mdesc->reserve_lp2) request_resource(&ioport_resource, &lp2); } #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) struct screen_info screen_info = { .orig_video_lines = 30, .orig_video_cols = 80, .orig_video_mode = 0, .orig_video_ega_bx = 0, .orig_video_isVGA = 1, .orig_video_points = 8 }; #endif static int __init customize_machine(void) { /* * customizes platform devices, or adds new ones * On DT based machines, we fall back to populating the * machine from the device tree, if no callback is provided, * otherwise we would always need an init_machine callback. */ if (machine_desc->init_machine) machine_desc->init_machine(); #ifdef CONFIG_OF else of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL); #endif return 0; } arch_initcall(customize_machine); static int __init init_machine_late(void) { if (machine_desc->init_late) machine_desc->init_late(); return 0; } late_initcall(init_machine_late); #ifdef CONFIG_KEXEC static inline unsigned long long get_total_mem(void) { unsigned long total; total = max_low_pfn - min_low_pfn; return total << PAGE_SHIFT; } /** * reserve_crashkernel() - reserves memory are for crash kernel * * This function reserves memory area given in "crashkernel=" kernel command * line parameter. The memory reserved is used by a dump capture kernel when * primary kernel is crashing. */ static void __init reserve_crashkernel(void) { unsigned long long crash_size, crash_base; unsigned long long total_mem; int ret; total_mem = get_total_mem(); ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); if (ret) return; ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE); if (ret < 0) { printk(KERN_WARNING "crashkernel reservation failed - " "memory is in use (0x%lx)\n", (unsigned long)crash_base); return; } printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " "for crashkernel (System RAM: %ldMB)\n", (unsigned long)(crash_size >> 20), (unsigned long)(crash_base >> 20), (unsigned long)(total_mem >> 20)); crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; insert_resource(&iomem_resource, &crashk_res); } #else static inline void reserve_crashkernel(void) {} #endif /* CONFIG_KEXEC */ static int __init meminfo_cmp(const void *_a, const void *_b) { const struct membank *a = _a, *b = _b; long cmp = bank_pfn_start(a) - bank_pfn_start(b); return cmp < 0 ? -1 : cmp > 0 ? 1 : 0; } void __init hyp_mode_check(void) { #ifdef CONFIG_ARM_VIRT_EXT sync_boot_mode(); if (is_hyp_mode_available()) { pr_info("CPU: All CPU(s) started in HYP mode.\n"); pr_info("CPU: Virtualization extensions available.\n"); } else if (is_hyp_mode_mismatched()) { pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n", __boot_cpu_mode & MODE_MASK); pr_warn("CPU: This may indicate a broken bootloader or firmware.\n"); } else pr_info("CPU: All CPU(s) started in SVC mode.\n"); #endif } void __init setup_arch(char **cmdline_p) { const struct machine_desc *mdesc; setup_processor(); mdesc = setup_machine_fdt(__atags_pointer); if (!mdesc) mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type); machine_desc = mdesc; machine_name = mdesc->name; setup_dma_zone(mdesc); if (mdesc->reboot_mode != REBOOT_HARD) reboot_mode = mdesc->reboot_mode; init_mm.start_code = (unsigned long) _text; init_mm.end_code = (unsigned long) _etext; init_mm.end_data = (unsigned long) _edata; init_mm.brk = (unsigned long) _end; /* populate cmd_line too for later use, preserving boot_command_line */ strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE); *cmdline_p = cmd_line; parse_early_param(); sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL); early_paging_init(mdesc, lookup_processor_type(read_cpuid_id())); sanity_check_meminfo(); arm_memblock_init(&meminfo, mdesc); paging_init(mdesc); request_standard_resources(mdesc); if (mdesc->restart) arm_pm_restart = mdesc->restart; unflatten_device_tree(); arm_dt_init_cpu_maps(); psci_init(); #ifdef CONFIG_SMP if (is_smp()) { if (!mdesc->smp_init || !mdesc->smp_init()) { if (psci_smp_available()) smp_set_ops(&psci_smp_ops); else if (mdesc->smp) smp_set_ops(mdesc->smp); } smp_init_cpus(); smp_build_mpidr_hash(); } #endif if (!is_smp()) hyp_mode_check(); reserve_crashkernel(); #ifdef CONFIG_MULTI_IRQ_HANDLER handle_arch_irq = mdesc->handle_irq; #endif #ifdef CONFIG_VT #if defined(CONFIG_VGA_CONSOLE) conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif #endif if (mdesc->init_early) mdesc->init_early(); } static int __init topology_init(void) { int cpu; for_each_possible_cpu(cpu) { struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu); cpuinfo->cpu.hotpluggable = 1; register_cpu(&cpuinfo->cpu, cpu); } return 0; } subsys_initcall(topology_init); #ifdef CONFIG_HAVE_PROC_CPU static int __init proc_cpu_init(void) { struct proc_dir_entry *res; res = proc_mkdir("cpu", NULL); if (!res) return -ENOMEM; return 0; } fs_initcall(proc_cpu_init); #endif static const char *hwcap_str[] = { "swp", "half", "thumb", "26bit", "fastmult", "fpa", "vfp", "edsp", "java", "iwmmxt", "crunch", "thumbee", "neon", "vfpv3", "vfpv3d16", "tls", "vfpv4", "idiva", "idivt", "vfpd32", "lpae", NULL }; static int c_show(struct seq_file *m, void *v) { int i, j; u32 cpuid; for_each_online_cpu(i) { /* * glibc reads /proc/cpuinfo to determine the number of * online processors, looking for lines beginning with * "processor". Give glibc what it expects. */ seq_printf(m, "processor\t: %d\n", i); cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id(); seq_printf(m, "model name\t: %s rev %d (%s)\n", cpu_name, cpuid & 15, elf_platform); /* dump out the processor features */ seq_puts(m, "Features\t: "); for (j = 0; hwcap_str[j]; j++) if (elf_hwcap & (1 << j)) seq_printf(m, "%s ", hwcap_str[j]); seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24); seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]); if ((cpuid & 0x0008f000) == 0x00000000) { /* pre-ARM7 */ seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4); } else { if ((cpuid & 0x0008f000) == 0x00007000) { /* ARM7 */ seq_printf(m, "CPU variant\t: 0x%02x\n", (cpuid >> 16) & 127); } else { /* post-ARM7 */ seq_printf(m, "CPU variant\t: 0x%x\n", (cpuid >> 20) & 15); } seq_printf(m, "CPU part\t: 0x%03x\n", (cpuid >> 4) & 0xfff); } seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15); } seq_printf(m, "Hardware\t: %s\n", machine_name); seq_printf(m, "Revision\t: %04x\n", system_rev); seq_printf(m, "Serial\t\t: %08x%08x\n", system_serial_high, system_serial_low); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { return *pos < 1 ? (void *)1 : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return NULL; } static void c_stop(struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = c_show };