/* * arch/arm/mach-at91/pm.c * AT91 Power Management * * Copyright (C) 2005 David Brownell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "generic.h" #include "pm.h" static struct { unsigned long uhp_udp_mask; int memctrl; } at91_pm_data; static void (*at91_pm_standby)(void); void __iomem *at91_ramc_base[2]; static int at91_pm_valid_state(suspend_state_t state) { switch (state) { case PM_SUSPEND_ON: case PM_SUSPEND_STANDBY: case PM_SUSPEND_MEM: return 1; default: return 0; } } static suspend_state_t target_state; /* * Called after processes are frozen, but before we shutdown devices. */ static int at91_pm_begin(suspend_state_t state) { target_state = state; return 0; } /* * Verify that all the clocks are correct before entering * slow-clock mode. */ static int at91_pm_verify_clocks(void) { unsigned long scsr; int i; scsr = at91_pmc_read(AT91_PMC_SCSR); /* USB must not be using PLLB */ if ((scsr & at91_pm_data.uhp_udp_mask) != 0) { pr_err("AT91: PM - Suspend-to-RAM with USB still active\n"); return 0; } /* PCK0..PCK3 must be disabled, or configured to use clk32k */ for (i = 0; i < 4; i++) { u32 css; if ((scsr & (AT91_PMC_PCK0 << i)) == 0) continue; css = at91_pmc_read(AT91_PMC_PCKR(i)) & AT91_PMC_CSS; if (css != AT91_PMC_CSS_SLOW) { pr_err("AT91: PM - Suspend-to-RAM with PCK%d src %d\n", i, css); return 0; } } return 1; } /* * Call this from platform driver suspend() to see how deeply to suspend. * For example, some controllers (like OHCI) need one of the PLL clocks * in order to act as a wakeup source, and those are not available when * going into slow clock mode. * * REVISIT: generalize as clk_will_be_available(clk)? Other platforms have * the very same problem (but not using at91 main_clk), and it'd be better * to add one generic API rather than lots of platform-specific ones. */ int at91_suspend_entering_slow_clock(void) { return (target_state == PM_SUSPEND_MEM); } EXPORT_SYMBOL(at91_suspend_entering_slow_clock); static void (*slow_clock)(void __iomem *pmc, void __iomem *ramc0, void __iomem *ramc1, int memctrl); extern void at91_slow_clock(void __iomem *pmc, void __iomem *ramc0, void __iomem *ramc1, int memctrl); extern u32 at91_slow_clock_sz; static int at91_pm_enter(suspend_state_t state) { at91_pinctrl_gpio_suspend(); switch (state) { /* * Suspend-to-RAM is like STANDBY plus slow clock mode, so * drivers must suspend more deeply: only the master clock * controller may be using the main oscillator. */ case PM_SUSPEND_MEM: /* * Ensure that clocks are in a valid state. */ if (!at91_pm_verify_clocks()) goto error; /* * Enter slow clock mode by switching over to clk32k and * turning off the main oscillator; reverse on wakeup. */ if (slow_clock) { /* copy slow_clock handler to SRAM, and call it */ memcpy(slow_clock, at91_slow_clock, at91_slow_clock_sz); slow_clock(at91_pmc_base, at91_ramc_base[0], at91_ramc_base[1], at91_pm_data.memctrl); break; } else { pr_info("AT91: PM - no slow clock mode enabled ...\n"); /* FALLTHROUGH leaving master clock alone */ } /* * STANDBY mode has *all* drivers suspended; ignores irqs not * marked as 'wakeup' event sources; and reduces DRAM power. * But otherwise it's identical to PM_SUSPEND_ON: cpu idle, and * nothing fancy done with main or cpu clocks. */ case PM_SUSPEND_STANDBY: /* * NOTE: the Wait-for-Interrupt instruction needs to be * in icache so no SDRAM accesses are needed until the * wakeup IRQ occurs and self-refresh is terminated. * For ARM 926 based chips, this requirement is weaker * as at91sam9 can access a RAM in self-refresh mode. */ if (at91_pm_standby) at91_pm_standby(); break; case PM_SUSPEND_ON: cpu_do_idle(); break; default: pr_debug("AT91: PM - bogus suspend state %d\n", state); goto error; } error: target_state = PM_SUSPEND_ON; at91_pinctrl_gpio_resume(); return 0; } /* * Called right prior to thawing processes. */ static void at91_pm_end(void) { target_state = PM_SUSPEND_ON; } static const struct platform_suspend_ops at91_pm_ops = { .valid = at91_pm_valid_state, .begin = at91_pm_begin, .enter = at91_pm_enter, .end = at91_pm_end, }; static struct platform_device at91_cpuidle_device = { .name = "cpuidle-at91", }; static void at91_pm_set_standby(void (*at91_standby)(void)) { if (at91_standby) { at91_cpuidle_device.dev.platform_data = at91_standby; at91_pm_standby = at91_standby; } } static const struct of_device_id ramc_ids[] __initconst = { { .compatible = "atmel,at91rm9200-sdramc", .data = at91rm9200_standby }, { .compatible = "atmel,at91sam9260-sdramc", .data = at91sam9_sdram_standby }, { .compatible = "atmel,at91sam9g45-ddramc", .data = at91_ddr_standby }, { .compatible = "atmel,sama5d3-ddramc", .data = at91_ddr_standby }, { /*sentinel*/ } }; static __init void at91_dt_ramc(void) { struct device_node *np; const struct of_device_id *of_id; int idx = 0; const void *standby = NULL; for_each_matching_node_and_match(np, ramc_ids, &of_id) { at91_ramc_base[idx] = of_iomap(np, 0); if (!at91_ramc_base[idx]) panic(pr_fmt("unable to map ramc[%d] cpu registers\n"), idx); if (!standby) standby = of_id->data; idx++; } if (!idx) panic(pr_fmt("unable to find compatible ram controller node in dtb\n")); if (!standby) { pr_warn("ramc no standby function available\n"); return; } at91_pm_set_standby(standby); } static void __init at91_pm_sram_init(void) { struct gen_pool *sram_pool; phys_addr_t sram_pbase; unsigned long sram_base; struct device_node *node; struct platform_device *pdev = NULL; for_each_compatible_node(node, NULL, "mmio-sram") { pdev = of_find_device_by_node(node); if (pdev) { of_node_put(node); break; } } if (!pdev) { pr_warn("%s: failed to find sram device!\n", __func__); return; } sram_pool = dev_get_gen_pool(&pdev->dev); if (!sram_pool) { pr_warn("%s: sram pool unavailable!\n", __func__); return; } sram_base = gen_pool_alloc(sram_pool, at91_slow_clock_sz); if (!sram_base) { pr_warn("%s: unable to alloc ocram!\n", __func__); return; } sram_pbase = gen_pool_virt_to_phys(sram_pool, sram_base); slow_clock = __arm_ioremap_exec(sram_pbase, at91_slow_clock_sz, false); } static void __init at91_pm_init(void) { at91_pm_sram_init(); if (at91_cpuidle_device.dev.platform_data) platform_device_register(&at91_cpuidle_device); suspend_set_ops(&at91_pm_ops); } void __init at91rm9200_pm_init(void) { at91_dt_ramc(); /* * AT91RM9200 SDRAM low-power mode cannot be used with self-refresh. */ at91_ramc_write(0, AT91RM9200_SDRAMC_LPR, 0); at91_pm_data.uhp_udp_mask = AT91RM9200_PMC_UHP | AT91RM9200_PMC_UDP; at91_pm_data.memctrl = AT91_MEMCTRL_MC; at91_pm_init(); } void __init at91sam9260_pm_init(void) { at91_dt_ramc(); at91_pm_data.memctrl = AT91_MEMCTRL_SDRAMC; at91_pm_data.uhp_udp_mask = AT91SAM926x_PMC_UHP | AT91SAM926x_PMC_UDP; return at91_pm_init(); } void __init at91sam9g45_pm_init(void) { at91_dt_ramc(); at91_pm_data.uhp_udp_mask = AT91SAM926x_PMC_UHP; at91_pm_data.memctrl = AT91_MEMCTRL_DDRSDR; return at91_pm_init(); } void __init at91sam9x5_pm_init(void) { at91_dt_ramc(); at91_pm_data.uhp_udp_mask = AT91SAM926x_PMC_UHP | AT91SAM926x_PMC_UDP; at91_pm_data.memctrl = AT91_MEMCTRL_DDRSDR; return at91_pm_init(); }