/* Copyright (c) 2010, Code Aurora Forum. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. * */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include "gpiomux.h" /* Bits of interest in the GPIO_IN_OUT register. */ enum { GPIO_IN = 0, GPIO_OUT = 1 }; /* Bits of interest in the GPIO_INTR_STATUS register. */ enum { INTR_STATUS = 0, }; /* Bits of interest in the GPIO_CFG register. */ enum { GPIO_OE = 9, }; /* Bits of interest in the GPIO_INTR_CFG register. * When a GPIO triggers, two separate decisions are made, controlled * by two separate flags. * * - First, INTR_RAW_STATUS_EN controls whether or not the GPIO_INTR_STATUS * register for that GPIO will be updated to reflect the triggering of that * gpio. If this bit is 0, this register will not be updated. * - Second, INTR_ENABLE controls whether an interrupt is triggered. * * If INTR_ENABLE is set and INTR_RAW_STATUS_EN is NOT set, an interrupt * can be triggered but the status register will not reflect it. */ enum { INTR_ENABLE = 0, INTR_POL_CTL = 1, INTR_DECT_CTL = 2, INTR_RAW_STATUS_EN = 3, }; /* Codes of interest in GPIO_INTR_CFG_SU. */ enum { TARGET_PROC_SCORPION = 4, TARGET_PROC_NONE = 7, }; #define GPIO_INTR_CFG_SU(gpio) (MSM_TLMM_BASE + 0x0400 + (0x04 * (gpio))) #define GPIO_CONFIG(gpio) (MSM_TLMM_BASE + 0x1000 + (0x10 * (gpio))) #define GPIO_IN_OUT(gpio) (MSM_TLMM_BASE + 0x1004 + (0x10 * (gpio))) #define GPIO_INTR_CFG(gpio) (MSM_TLMM_BASE + 0x1008 + (0x10 * (gpio))) #define GPIO_INTR_STATUS(gpio) (MSM_TLMM_BASE + 0x100c + (0x10 * (gpio))) /** * struct msm_gpio_dev: the MSM8660 SoC GPIO device structure * * @enabled_irqs: a bitmap used to optimize the summary-irq handler. By * keeping track of which gpios are unmasked as irq sources, we avoid * having to do readl calls on hundreds of iomapped registers each time * the summary interrupt fires in order to locate the active interrupts. * * @wake_irqs: a bitmap for tracking which interrupt lines are enabled * as wakeup sources. When the device is suspended, interrupts which are * not wakeup sources are disabled. * * @dual_edge_irqs: a bitmap used to track which irqs are configured * as dual-edge, as this is not supported by the hardware and requires * some special handling in the driver. */ struct msm_gpio_dev { struct gpio_chip gpio_chip; DECLARE_BITMAP(enabled_irqs, NR_GPIO_IRQS); DECLARE_BITMAP(wake_irqs, NR_GPIO_IRQS); DECLARE_BITMAP(dual_edge_irqs, NR_GPIO_IRQS); }; static DEFINE_SPINLOCK(tlmm_lock); static inline struct msm_gpio_dev *to_msm_gpio_dev(struct gpio_chip *chip) { return container_of(chip, struct msm_gpio_dev, gpio_chip); } static inline void set_gpio_bits(unsigned n, void __iomem *reg) { writel(readl(reg) | n, reg); } static inline void clear_gpio_bits(unsigned n, void __iomem *reg) { writel(readl(reg) & ~n, reg); } static int msm_gpio_get(struct gpio_chip *chip, unsigned offset) { return readl(GPIO_IN_OUT(offset)) & BIT(GPIO_IN); } static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int val) { writel(val ? BIT(GPIO_OUT) : 0, GPIO_IN_OUT(offset)); } static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset) { unsigned long irq_flags; spin_lock_irqsave(&tlmm_lock, irq_flags); clear_gpio_bits(BIT(GPIO_OE), GPIO_CONFIG(offset)); spin_unlock_irqrestore(&tlmm_lock, irq_flags); return 0; } static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int val) { unsigned long irq_flags; spin_lock_irqsave(&tlmm_lock, irq_flags); msm_gpio_set(chip, offset, val); set_gpio_bits(BIT(GPIO_OE), GPIO_CONFIG(offset)); spin_unlock_irqrestore(&tlmm_lock, irq_flags); return 0; } static int msm_gpio_request(struct gpio_chip *chip, unsigned offset) { return msm_gpiomux_get(chip->base + offset); } static void msm_gpio_free(struct gpio_chip *chip, unsigned offset) { msm_gpiomux_put(chip->base + offset); } static int msm_gpio_to_irq(struct gpio_chip *chip, unsigned offset) { return MSM_GPIO_TO_INT(chip->base + offset); } static inline int msm_irq_to_gpio(struct gpio_chip *chip, unsigned irq) { return irq - MSM_GPIO_TO_INT(chip->base); } static struct msm_gpio_dev msm_gpio = { .gpio_chip = { .base = 0, .ngpio = NR_GPIO_IRQS, .direction_input = msm_gpio_direction_input, .direction_output = msm_gpio_direction_output, .get = msm_gpio_get, .set = msm_gpio_set, .to_irq = msm_gpio_to_irq, .request = msm_gpio_request, .free = msm_gpio_free, }, }; /* For dual-edge interrupts in software, since the hardware has no * such support: * * At appropriate moments, this function may be called to flip the polarity * settings of both-edge irq lines to try and catch the next edge. * * The attempt is considered successful if: * - the status bit goes high, indicating that an edge was caught, or * - the input value of the gpio doesn't change during the attempt. * If the value changes twice during the process, that would cause the first * test to fail but would force the second, as two opposite * transitions would cause a detection no matter the polarity setting. * * The do-loop tries to sledge-hammer closed the timing hole between * the initial value-read and the polarity-write - if the line value changes * during that window, an interrupt is lost, the new polarity setting is * incorrect, and the first success test will fail, causing a retry. * * Algorithm comes from Google's msmgpio driver, see mach-msm/gpio.c. */ static void msm_gpio_update_dual_edge_pos(unsigned gpio) { int loop_limit = 100; unsigned val, val2, intstat; do { val = readl(GPIO_IN_OUT(gpio)) & BIT(GPIO_IN); if (val) clear_gpio_bits(BIT(INTR_POL_CTL), GPIO_INTR_CFG(gpio)); else set_gpio_bits(BIT(INTR_POL_CTL), GPIO_INTR_CFG(gpio)); val2 = readl(GPIO_IN_OUT(gpio)) & BIT(GPIO_IN); intstat = readl(GPIO_INTR_STATUS(gpio)) & BIT(INTR_STATUS); if (intstat || val == val2) return; } while (loop_limit-- > 0); pr_err("dual-edge irq failed to stabilize, " "interrupts dropped. %#08x != %#08x\n", val, val2); } static void msm_gpio_irq_ack(struct irq_data *d) { int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq); writel(BIT(INTR_STATUS), GPIO_INTR_STATUS(gpio)); if (test_bit(gpio, msm_gpio.dual_edge_irqs)) msm_gpio_update_dual_edge_pos(gpio); } static void msm_gpio_irq_mask(struct irq_data *d) { int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq); unsigned long irq_flags; spin_lock_irqsave(&tlmm_lock, irq_flags); writel(TARGET_PROC_NONE, GPIO_INTR_CFG_SU(gpio)); clear_gpio_bits(INTR_RAW_STATUS_EN | INTR_ENABLE, GPIO_INTR_CFG(gpio)); __clear_bit(gpio, msm_gpio.enabled_irqs); spin_unlock_irqrestore(&tlmm_lock, irq_flags); } static void msm_gpio_irq_unmask(struct irq_data *d) { int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq); unsigned long irq_flags; spin_lock_irqsave(&tlmm_lock, irq_flags); __set_bit(gpio, msm_gpio.enabled_irqs); set_gpio_bits(INTR_RAW_STATUS_EN | INTR_ENABLE, GPIO_INTR_CFG(gpio)); writel(TARGET_PROC_SCORPION, GPIO_INTR_CFG_SU(gpio)); spin_unlock_irqrestore(&tlmm_lock, irq_flags); } static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int flow_type) { int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq); unsigned long irq_flags; uint32_t bits; spin_lock_irqsave(&tlmm_lock, irq_flags); bits = readl(GPIO_INTR_CFG(gpio)); if (flow_type & IRQ_TYPE_EDGE_BOTH) { bits |= BIT(INTR_DECT_CTL); __irq_set_handler_locked(d->irq, handle_edge_irq); if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH) __set_bit(gpio, msm_gpio.dual_edge_irqs); else __clear_bit(gpio, msm_gpio.dual_edge_irqs); } else { bits &= ~BIT(INTR_DECT_CTL); __irq_set_handler_locked(d->irq, handle_level_irq); __clear_bit(gpio, msm_gpio.dual_edge_irqs); } if (flow_type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_LEVEL_HIGH)) bits |= BIT(INTR_POL_CTL); else bits &= ~BIT(INTR_POL_CTL); writel(bits, GPIO_INTR_CFG(gpio)); if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH) msm_gpio_update_dual_edge_pos(gpio); spin_unlock_irqrestore(&tlmm_lock, irq_flags); return 0; } /* * When the summary IRQ is raised, any number of GPIO lines may be high. * It is the job of the summary handler to find all those GPIO lines * which have been set as summary IRQ lines and which are triggered, * and to call their interrupt handlers. */ static void msm_summary_irq_handler(unsigned int irq, struct irq_desc *desc) { struct irq_data *data = irq_desc_get_irq_data(desc); unsigned long i; for (i = find_first_bit(msm_gpio.enabled_irqs, NR_GPIO_IRQS); i < NR_GPIO_IRQS; i = find_next_bit(msm_gpio.enabled_irqs, NR_GPIO_IRQS, i + 1)) { if (readl(GPIO_INTR_STATUS(i)) & BIT(INTR_STATUS)) generic_handle_irq(msm_gpio_to_irq(&msm_gpio.gpio_chip, i)); } data->chip->irq_ack(data); } static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on) { int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq); if (on) { if (bitmap_empty(msm_gpio.wake_irqs, NR_GPIO_IRQS)) irq_set_irq_wake(TLMM_SCSS_SUMMARY_IRQ, 1); set_bit(gpio, msm_gpio.wake_irqs); } else { clear_bit(gpio, msm_gpio.wake_irqs); if (bitmap_empty(msm_gpio.wake_irqs, NR_GPIO_IRQS)) irq_set_irq_wake(TLMM_SCSS_SUMMARY_IRQ, 0); } return 0; } static struct irq_chip msm_gpio_irq_chip = { .name = "msmgpio", .irq_mask = msm_gpio_irq_mask, .irq_unmask = msm_gpio_irq_unmask, .irq_ack = msm_gpio_irq_ack, .irq_set_type = msm_gpio_irq_set_type, .irq_set_wake = msm_gpio_irq_set_wake, }; static int __devinit msm_gpio_probe(struct platform_device *dev) { int i, irq, ret; bitmap_zero(msm_gpio.enabled_irqs, NR_GPIO_IRQS); bitmap_zero(msm_gpio.wake_irqs, NR_GPIO_IRQS); bitmap_zero(msm_gpio.dual_edge_irqs, NR_GPIO_IRQS); msm_gpio.gpio_chip.label = dev->name; ret = gpiochip_add(&msm_gpio.gpio_chip); if (ret < 0) return ret; for (i = 0; i < msm_gpio.gpio_chip.ngpio; ++i) { irq = msm_gpio_to_irq(&msm_gpio.gpio_chip, i); irq_set_chip(irq, &msm_gpio_irq_chip); irq_set_handler(irq, handle_level_irq); set_irq_flags(irq, IRQF_VALID); } irq_set_chained_handler(TLMM_SCSS_SUMMARY_IRQ, msm_summary_irq_handler); return 0; } static int __devexit msm_gpio_remove(struct platform_device *dev) { int ret = gpiochip_remove(&msm_gpio.gpio_chip); if (ret < 0) return ret; irq_set_handler(TLMM_SCSS_SUMMARY_IRQ, NULL); return 0; } static struct platform_driver msm_gpio_driver = { .probe = msm_gpio_probe, .remove = __devexit_p(msm_gpio_remove), .driver = { .name = "msmgpio", .owner = THIS_MODULE, }, }; static struct platform_device msm_device_gpio = { .name = "msmgpio", .id = -1, }; static int __init msm_gpio_init(void) { int rc; rc = platform_driver_register(&msm_gpio_driver); if (!rc) { rc = platform_device_register(&msm_device_gpio); if (rc) platform_driver_unregister(&msm_gpio_driver); } return rc; } static void __exit msm_gpio_exit(void) { platform_device_unregister(&msm_device_gpio); platform_driver_unregister(&msm_gpio_driver); } postcore_initcall(msm_gpio_init); module_exit(msm_gpio_exit); MODULE_AUTHOR("Gregory Bean "); MODULE_DESCRIPTION("Driver for Qualcomm MSM TLMMv2 SoC GPIOs"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:msmgpio");