/* * OMAP4 PRM module functions * * Copyright (C) 2011-2012 Texas Instruments, Inc. * Copyright (C) 2010 Nokia Corporation * BenoƮt Cousson * Paul Walmsley * Rajendra Nayak * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include "soc.h" #include "iomap.h" #include "common.h" #include "vp.h" #include "prm44xx.h" #include "prm-regbits-44xx.h" #include "prcm44xx.h" #include "prminst44xx.h" #include "powerdomain.h" /* Static data */ static void omap44xx_prm_read_pending_irqs(unsigned long *events); static void omap44xx_prm_ocp_barrier(void); static void omap44xx_prm_save_and_clear_irqen(u32 *saved_mask); static void omap44xx_prm_restore_irqen(u32 *saved_mask); static void omap44xx_prm_reconfigure_io_chain(void); static const struct omap_prcm_irq omap4_prcm_irqs[] = { OMAP_PRCM_IRQ("io", 9, 1), }; static struct omap_prcm_irq_setup omap4_prcm_irq_setup = { .ack = OMAP4_PRM_IRQSTATUS_MPU_OFFSET, .mask = OMAP4_PRM_IRQENABLE_MPU_OFFSET, .nr_regs = 2, .irqs = omap4_prcm_irqs, .nr_irqs = ARRAY_SIZE(omap4_prcm_irqs), .irq = 11 + OMAP44XX_IRQ_GIC_START, .xlate_irq = omap4_xlate_irq, .read_pending_irqs = &omap44xx_prm_read_pending_irqs, .ocp_barrier = &omap44xx_prm_ocp_barrier, .save_and_clear_irqen = &omap44xx_prm_save_and_clear_irqen, .restore_irqen = &omap44xx_prm_restore_irqen, .reconfigure_io_chain = &omap44xx_prm_reconfigure_io_chain, }; /* * omap44xx_prm_reset_src_map - map from bits in the PRM_RSTST * hardware register (which are specific to OMAP44xx SoCs) to reset * source ID bit shifts (which is an OMAP SoC-independent * enumeration) */ static struct prm_reset_src_map omap44xx_prm_reset_src_map[] = { { OMAP4430_GLOBAL_WARM_SW_RST_SHIFT, OMAP_GLOBAL_WARM_RST_SRC_ID_SHIFT }, { OMAP4430_GLOBAL_COLD_RST_SHIFT, OMAP_GLOBAL_COLD_RST_SRC_ID_SHIFT }, { OMAP4430_MPU_SECURITY_VIOL_RST_SHIFT, OMAP_SECU_VIOL_RST_SRC_ID_SHIFT }, { OMAP4430_MPU_WDT_RST_SHIFT, OMAP_MPU_WD_RST_SRC_ID_SHIFT }, { OMAP4430_SECURE_WDT_RST_SHIFT, OMAP_SECU_WD_RST_SRC_ID_SHIFT }, { OMAP4430_EXTERNAL_WARM_RST_SHIFT, OMAP_EXTWARM_RST_SRC_ID_SHIFT }, { OMAP4430_VDD_MPU_VOLT_MGR_RST_SHIFT, OMAP_VDD_MPU_VM_RST_SRC_ID_SHIFT }, { OMAP4430_VDD_IVA_VOLT_MGR_RST_SHIFT, OMAP_VDD_IVA_VM_RST_SRC_ID_SHIFT }, { OMAP4430_VDD_CORE_VOLT_MGR_RST_SHIFT, OMAP_VDD_CORE_VM_RST_SRC_ID_SHIFT }, { OMAP4430_ICEPICK_RST_SHIFT, OMAP_ICEPICK_RST_SRC_ID_SHIFT }, { OMAP4430_C2C_RST_SHIFT, OMAP_C2C_RST_SRC_ID_SHIFT }, { -1, -1 }, }; /* PRM low-level functions */ /* Read a register in a CM/PRM instance in the PRM module */ static u32 omap4_prm_read_inst_reg(s16 inst, u16 reg) { return readl_relaxed(prm_base + inst + reg); } /* Write into a register in a CM/PRM instance in the PRM module */ static void omap4_prm_write_inst_reg(u32 val, s16 inst, u16 reg) { writel_relaxed(val, prm_base + inst + reg); } /* Read-modify-write a register in a PRM module. Caller must lock */ static u32 omap4_prm_rmw_inst_reg_bits(u32 mask, u32 bits, s16 inst, s16 reg) { u32 v; v = omap4_prm_read_inst_reg(inst, reg); v &= ~mask; v |= bits; omap4_prm_write_inst_reg(v, inst, reg); return v; } /* PRM VP */ /* * struct omap4_vp - OMAP4 VP register access description. * @irqstatus_mpu: offset to IRQSTATUS_MPU register for VP * @tranxdone_status: VP_TRANXDONE_ST bitmask in PRM_IRQSTATUS_MPU reg */ struct omap4_vp { u32 irqstatus_mpu; u32 tranxdone_status; }; static struct omap4_vp omap4_vp[] = { [OMAP4_VP_VDD_MPU_ID] = { .irqstatus_mpu = OMAP4_PRM_IRQSTATUS_MPU_2_OFFSET, .tranxdone_status = OMAP4430_VP_MPU_TRANXDONE_ST_MASK, }, [OMAP4_VP_VDD_IVA_ID] = { .irqstatus_mpu = OMAP4_PRM_IRQSTATUS_MPU_OFFSET, .tranxdone_status = OMAP4430_VP_IVA_TRANXDONE_ST_MASK, }, [OMAP4_VP_VDD_CORE_ID] = { .irqstatus_mpu = OMAP4_PRM_IRQSTATUS_MPU_OFFSET, .tranxdone_status = OMAP4430_VP_CORE_TRANXDONE_ST_MASK, }, }; static u32 omap4_prm_vp_check_txdone(u8 vp_id) { struct omap4_vp *vp = &omap4_vp[vp_id]; u32 irqstatus; irqstatus = omap4_prminst_read_inst_reg(OMAP4430_PRM_PARTITION, OMAP4430_PRM_OCP_SOCKET_INST, vp->irqstatus_mpu); return irqstatus & vp->tranxdone_status; } static void omap4_prm_vp_clear_txdone(u8 vp_id) { struct omap4_vp *vp = &omap4_vp[vp_id]; omap4_prminst_write_inst_reg(vp->tranxdone_status, OMAP4430_PRM_PARTITION, OMAP4430_PRM_OCP_SOCKET_INST, vp->irqstatus_mpu); }; u32 omap4_prm_vcvp_read(u8 offset) { s32 inst = omap4_prmst_get_prm_dev_inst(); if (inst == PRM_INSTANCE_UNKNOWN) return 0; return omap4_prminst_read_inst_reg(OMAP4430_PRM_PARTITION, inst, offset); } void omap4_prm_vcvp_write(u32 val, u8 offset) { s32 inst = omap4_prmst_get_prm_dev_inst(); if (inst == PRM_INSTANCE_UNKNOWN) return; omap4_prminst_write_inst_reg(val, OMAP4430_PRM_PARTITION, inst, offset); } u32 omap4_prm_vcvp_rmw(u32 mask, u32 bits, u8 offset) { s32 inst = omap4_prmst_get_prm_dev_inst(); if (inst == PRM_INSTANCE_UNKNOWN) return 0; return omap4_prminst_rmw_inst_reg_bits(mask, bits, OMAP4430_PRM_PARTITION, inst, offset); } static inline u32 _read_pending_irq_reg(u16 irqen_offs, u16 irqst_offs) { u32 mask, st; /* XXX read mask from RAM? */ mask = omap4_prm_read_inst_reg(OMAP4430_PRM_OCP_SOCKET_INST, irqen_offs); st = omap4_prm_read_inst_reg(OMAP4430_PRM_OCP_SOCKET_INST, irqst_offs); return mask & st; } /** * omap44xx_prm_read_pending_irqs - read pending PRM MPU IRQs into @events * @events: ptr to two consecutive u32s, preallocated by caller * * Read PRM_IRQSTATUS_MPU* bits, AND'ed with the currently-enabled PRM * MPU IRQs, and store the result into the two u32s pointed to by @events. * No return value. */ static void omap44xx_prm_read_pending_irqs(unsigned long *events) { events[0] = _read_pending_irq_reg(OMAP4_PRM_IRQENABLE_MPU_OFFSET, OMAP4_PRM_IRQSTATUS_MPU_OFFSET); events[1] = _read_pending_irq_reg(OMAP4_PRM_IRQENABLE_MPU_2_OFFSET, OMAP4_PRM_IRQSTATUS_MPU_2_OFFSET); } /** * omap44xx_prm_ocp_barrier - force buffered MPU writes to the PRM to complete * * Force any buffered writes to the PRM IP block to complete. Needed * by the PRM IRQ handler, which reads and writes directly to the IP * block, to avoid race conditions after acknowledging or clearing IRQ * bits. No return value. */ static void omap44xx_prm_ocp_barrier(void) { omap4_prm_read_inst_reg(OMAP4430_PRM_OCP_SOCKET_INST, OMAP4_REVISION_PRM_OFFSET); } /** * omap44xx_prm_save_and_clear_irqen - save/clear PRM_IRQENABLE_MPU* regs * @saved_mask: ptr to a u32 array to save IRQENABLE bits * * Save the PRM_IRQENABLE_MPU and PRM_IRQENABLE_MPU_2 registers to * @saved_mask. @saved_mask must be allocated by the caller. * Intended to be used in the PRM interrupt handler suspend callback. * The OCP barrier is needed to ensure the write to disable PRM * interrupts reaches the PRM before returning; otherwise, spurious * interrupts might occur. No return value. */ static void omap44xx_prm_save_and_clear_irqen(u32 *saved_mask) { saved_mask[0] = omap4_prm_read_inst_reg(OMAP4430_PRM_OCP_SOCKET_INST, OMAP4_PRM_IRQSTATUS_MPU_OFFSET); saved_mask[1] = omap4_prm_read_inst_reg(OMAP4430_PRM_OCP_SOCKET_INST, OMAP4_PRM_IRQSTATUS_MPU_2_OFFSET); omap4_prm_write_inst_reg(0, OMAP4430_PRM_OCP_SOCKET_INST, OMAP4_PRM_IRQENABLE_MPU_OFFSET); omap4_prm_write_inst_reg(0, OMAP4430_PRM_OCP_SOCKET_INST, OMAP4_PRM_IRQENABLE_MPU_2_OFFSET); /* OCP barrier */ omap4_prm_read_inst_reg(OMAP4430_PRM_OCP_SOCKET_INST, OMAP4_REVISION_PRM_OFFSET); } /** * omap44xx_prm_restore_irqen - set PRM_IRQENABLE_MPU* registers from args * @saved_mask: ptr to a u32 array of IRQENABLE bits saved previously * * Restore the PRM_IRQENABLE_MPU and PRM_IRQENABLE_MPU_2 registers from * @saved_mask. Intended to be used in the PRM interrupt handler resume * callback to restore values saved by omap44xx_prm_save_and_clear_irqen(). * No OCP barrier should be needed here; any pending PRM interrupts will fire * once the writes reach the PRM. No return value. */ static void omap44xx_prm_restore_irqen(u32 *saved_mask) { omap4_prm_write_inst_reg(saved_mask[0], OMAP4430_PRM_OCP_SOCKET_INST, OMAP4_PRM_IRQENABLE_MPU_OFFSET); omap4_prm_write_inst_reg(saved_mask[1], OMAP4430_PRM_OCP_SOCKET_INST, OMAP4_PRM_IRQENABLE_MPU_2_OFFSET); } /** * omap44xx_prm_reconfigure_io_chain - clear latches and reconfigure I/O chain * * Clear any previously-latched I/O wakeup events and ensure that the * I/O wakeup gates are aligned with the current mux settings. Works * by asserting WUCLKIN, waiting for WUCLKOUT to be asserted, and then * deasserting WUCLKIN and waiting for WUCLKOUT to be deasserted. * No return value. XXX Are the final two steps necessary? */ static void omap44xx_prm_reconfigure_io_chain(void) { int i = 0; s32 inst = omap4_prmst_get_prm_dev_inst(); if (inst == PRM_INSTANCE_UNKNOWN) return; /* Trigger WUCLKIN enable */ omap4_prm_rmw_inst_reg_bits(OMAP4430_WUCLK_CTRL_MASK, OMAP4430_WUCLK_CTRL_MASK, inst, OMAP4_PRM_IO_PMCTRL_OFFSET); omap_test_timeout( (((omap4_prm_read_inst_reg(inst, OMAP4_PRM_IO_PMCTRL_OFFSET) & OMAP4430_WUCLK_STATUS_MASK) >> OMAP4430_WUCLK_STATUS_SHIFT) == 1), MAX_IOPAD_LATCH_TIME, i); if (i == MAX_IOPAD_LATCH_TIME) pr_warn("PRM: I/O chain clock line assertion timed out\n"); /* Trigger WUCLKIN disable */ omap4_prm_rmw_inst_reg_bits(OMAP4430_WUCLK_CTRL_MASK, 0x0, inst, OMAP4_PRM_IO_PMCTRL_OFFSET); omap_test_timeout( (((omap4_prm_read_inst_reg(inst, OMAP4_PRM_IO_PMCTRL_OFFSET) & OMAP4430_WUCLK_STATUS_MASK) >> OMAP4430_WUCLK_STATUS_SHIFT) == 0), MAX_IOPAD_LATCH_TIME, i); if (i == MAX_IOPAD_LATCH_TIME) pr_warn("PRM: I/O chain clock line deassertion timed out\n"); return; } /** * omap44xx_prm_enable_io_wakeup - enable wakeup events from I/O wakeup latches * * Activates the I/O wakeup event latches and allows events logged by * those latches to signal a wakeup event to the PRCM. For I/O wakeups * to occur, WAKEUPENABLE bits must be set in the pad mux registers, and * omap44xx_prm_reconfigure_io_chain() must be called. No return value. */ static void __init omap44xx_prm_enable_io_wakeup(void) { s32 inst = omap4_prmst_get_prm_dev_inst(); if (inst == PRM_INSTANCE_UNKNOWN) return; omap4_prm_rmw_inst_reg_bits(OMAP4430_GLOBAL_WUEN_MASK, OMAP4430_GLOBAL_WUEN_MASK, inst, OMAP4_PRM_IO_PMCTRL_OFFSET); } /** * omap44xx_prm_read_reset_sources - return the last SoC reset source * * Return a u32 representing the last reset sources of the SoC. The * returned reset source bits are standardized across OMAP SoCs. */ static u32 omap44xx_prm_read_reset_sources(void) { struct prm_reset_src_map *p; u32 r = 0; u32 v; s32 inst = omap4_prmst_get_prm_dev_inst(); if (inst == PRM_INSTANCE_UNKNOWN) return 0; v = omap4_prm_read_inst_reg(inst, OMAP4_RM_RSTST); p = omap44xx_prm_reset_src_map; while (p->reg_shift >= 0 && p->std_shift >= 0) { if (v & (1 << p->reg_shift)) r |= 1 << p->std_shift; p++; } return r; } /** * omap44xx_prm_was_any_context_lost_old - was module hardware context lost? * @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION) * @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST) * @idx: CONTEXT register offset * * Return 1 if any bits were set in the *_CONTEXT_* register * identified by (@part, @inst, @idx), which means that some context * was lost for that module; otherwise, return 0. */ static bool omap44xx_prm_was_any_context_lost_old(u8 part, s16 inst, u16 idx) { return (omap4_prminst_read_inst_reg(part, inst, idx)) ? 1 : 0; } /** * omap44xx_prm_clear_context_lost_flags_old - clear context loss flags * @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION) * @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST) * @idx: CONTEXT register offset * * Clear hardware context loss bits for the module identified by * (@part, @inst, @idx). No return value. XXX Writes to reserved bits; * is there a way to avoid this? */ static void omap44xx_prm_clear_context_loss_flags_old(u8 part, s16 inst, u16 idx) { omap4_prminst_write_inst_reg(0xffffffff, part, inst, idx); } /* Powerdomain low-level functions */ static int omap4_pwrdm_set_next_pwrst(struct powerdomain *pwrdm, u8 pwrst) { omap4_prminst_rmw_inst_reg_bits(OMAP_POWERSTATE_MASK, (pwrst << OMAP_POWERSTATE_SHIFT), pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTCTRL); return 0; } static int omap4_pwrdm_read_next_pwrst(struct powerdomain *pwrdm) { u32 v; v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTCTRL); v &= OMAP_POWERSTATE_MASK; v >>= OMAP_POWERSTATE_SHIFT; return v; } static int omap4_pwrdm_read_pwrst(struct powerdomain *pwrdm) { u32 v; v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTST); v &= OMAP_POWERSTATEST_MASK; v >>= OMAP_POWERSTATEST_SHIFT; return v; } static int omap4_pwrdm_read_prev_pwrst(struct powerdomain *pwrdm) { u32 v; v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTST); v &= OMAP4430_LASTPOWERSTATEENTERED_MASK; v >>= OMAP4430_LASTPOWERSTATEENTERED_SHIFT; return v; } static int omap4_pwrdm_set_lowpwrstchange(struct powerdomain *pwrdm) { omap4_prminst_rmw_inst_reg_bits(OMAP4430_LOWPOWERSTATECHANGE_MASK, (1 << OMAP4430_LOWPOWERSTATECHANGE_SHIFT), pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTCTRL); return 0; } static int omap4_pwrdm_clear_all_prev_pwrst(struct powerdomain *pwrdm) { omap4_prminst_rmw_inst_reg_bits(OMAP4430_LASTPOWERSTATEENTERED_MASK, OMAP4430_LASTPOWERSTATEENTERED_MASK, pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTST); return 0; } static int omap4_pwrdm_set_logic_retst(struct powerdomain *pwrdm, u8 pwrst) { u32 v; v = pwrst << __ffs(OMAP4430_LOGICRETSTATE_MASK); omap4_prminst_rmw_inst_reg_bits(OMAP4430_LOGICRETSTATE_MASK, v, pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTCTRL); return 0; } static int omap4_pwrdm_set_mem_onst(struct powerdomain *pwrdm, u8 bank, u8 pwrst) { u32 m; m = omap2_pwrdm_get_mem_bank_onstate_mask(bank); omap4_prminst_rmw_inst_reg_bits(m, (pwrst << __ffs(m)), pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTCTRL); return 0; } static int omap4_pwrdm_set_mem_retst(struct powerdomain *pwrdm, u8 bank, u8 pwrst) { u32 m; m = omap2_pwrdm_get_mem_bank_retst_mask(bank); omap4_prminst_rmw_inst_reg_bits(m, (pwrst << __ffs(m)), pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTCTRL); return 0; } static int omap4_pwrdm_read_logic_pwrst(struct powerdomain *pwrdm) { u32 v; v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTST); v &= OMAP4430_LOGICSTATEST_MASK; v >>= OMAP4430_LOGICSTATEST_SHIFT; return v; } static int omap4_pwrdm_read_logic_retst(struct powerdomain *pwrdm) { u32 v; v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTCTRL); v &= OMAP4430_LOGICRETSTATE_MASK; v >>= OMAP4430_LOGICRETSTATE_SHIFT; return v; } /** * omap4_pwrdm_read_prev_logic_pwrst - read the previous logic powerstate * @pwrdm: struct powerdomain * to read the state for * * Reads the previous logic powerstate for a powerdomain. This * function must determine the previous logic powerstate by first * checking the previous powerstate for the domain. If that was OFF, * then logic has been lost. If previous state was RETENTION, the * function reads the setting for the next retention logic state to * see the actual value. In every other case, the logic is * retained. Returns either PWRDM_POWER_OFF or PWRDM_POWER_RET * depending whether the logic was retained or not. */ static int omap4_pwrdm_read_prev_logic_pwrst(struct powerdomain *pwrdm) { int state; state = omap4_pwrdm_read_prev_pwrst(pwrdm); if (state == PWRDM_POWER_OFF) return PWRDM_POWER_OFF; if (state != PWRDM_POWER_RET) return PWRDM_POWER_RET; return omap4_pwrdm_read_logic_retst(pwrdm); } static int omap4_pwrdm_read_mem_pwrst(struct powerdomain *pwrdm, u8 bank) { u32 m, v; m = omap2_pwrdm_get_mem_bank_stst_mask(bank); v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTST); v &= m; v >>= __ffs(m); return v; } static int omap4_pwrdm_read_mem_retst(struct powerdomain *pwrdm, u8 bank) { u32 m, v; m = omap2_pwrdm_get_mem_bank_retst_mask(bank); v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTCTRL); v &= m; v >>= __ffs(m); return v; } /** * omap4_pwrdm_read_prev_mem_pwrst - reads the previous memory powerstate * @pwrdm: struct powerdomain * to read mem powerstate for * @bank: memory bank index * * Reads the previous memory powerstate for a powerdomain. This * function must determine the previous memory powerstate by first * checking the previous powerstate for the domain. If that was OFF, * then logic has been lost. If previous state was RETENTION, the * function reads the setting for the next memory retention state to * see the actual value. In every other case, the logic is * retained. Returns either PWRDM_POWER_OFF or PWRDM_POWER_RET * depending whether logic was retained or not. */ static int omap4_pwrdm_read_prev_mem_pwrst(struct powerdomain *pwrdm, u8 bank) { int state; state = omap4_pwrdm_read_prev_pwrst(pwrdm); if (state == PWRDM_POWER_OFF) return PWRDM_POWER_OFF; if (state != PWRDM_POWER_RET) return PWRDM_POWER_RET; return omap4_pwrdm_read_mem_retst(pwrdm, bank); } static int omap4_pwrdm_wait_transition(struct powerdomain *pwrdm) { u32 c = 0; /* * REVISIT: pwrdm_wait_transition() may be better implemented * via a callback and a periodic timer check -- how long do we expect * powerdomain transitions to take? */ /* XXX Is this udelay() value meaningful? */ while ((omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs, OMAP4_PM_PWSTST) & OMAP_INTRANSITION_MASK) && (c++ < PWRDM_TRANSITION_BAILOUT)) udelay(1); if (c > PWRDM_TRANSITION_BAILOUT) { pr_err("powerdomain: %s: waited too long to complete transition\n", pwrdm->name); return -EAGAIN; } pr_debug("powerdomain: completed transition in %d loops\n", c); return 0; } static int omap4_check_vcvp(void) { if (prm_features & PRM_HAS_VOLTAGE) return 1; return 0; } struct pwrdm_ops omap4_pwrdm_operations = { .pwrdm_set_next_pwrst = omap4_pwrdm_set_next_pwrst, .pwrdm_read_next_pwrst = omap4_pwrdm_read_next_pwrst, .pwrdm_read_pwrst = omap4_pwrdm_read_pwrst, .pwrdm_read_prev_pwrst = omap4_pwrdm_read_prev_pwrst, .pwrdm_set_lowpwrstchange = omap4_pwrdm_set_lowpwrstchange, .pwrdm_clear_all_prev_pwrst = omap4_pwrdm_clear_all_prev_pwrst, .pwrdm_set_logic_retst = omap4_pwrdm_set_logic_retst, .pwrdm_read_logic_pwrst = omap4_pwrdm_read_logic_pwrst, .pwrdm_read_prev_logic_pwrst = omap4_pwrdm_read_prev_logic_pwrst, .pwrdm_read_logic_retst = omap4_pwrdm_read_logic_retst, .pwrdm_read_mem_pwrst = omap4_pwrdm_read_mem_pwrst, .pwrdm_read_mem_retst = omap4_pwrdm_read_mem_retst, .pwrdm_read_prev_mem_pwrst = omap4_pwrdm_read_prev_mem_pwrst, .pwrdm_set_mem_onst = omap4_pwrdm_set_mem_onst, .pwrdm_set_mem_retst = omap4_pwrdm_set_mem_retst, .pwrdm_wait_transition = omap4_pwrdm_wait_transition, .pwrdm_has_voltdm = omap4_check_vcvp, }; static int omap44xx_prm_late_init(void); /* * XXX document */ static struct prm_ll_data omap44xx_prm_ll_data = { .read_reset_sources = &omap44xx_prm_read_reset_sources, .was_any_context_lost_old = &omap44xx_prm_was_any_context_lost_old, .clear_context_loss_flags_old = &omap44xx_prm_clear_context_loss_flags_old, .late_init = &omap44xx_prm_late_init, .assert_hardreset = omap4_prminst_assert_hardreset, .deassert_hardreset = omap4_prminst_deassert_hardreset, .is_hardreset_asserted = omap4_prminst_is_hardreset_asserted, .reset_system = omap4_prminst_global_warm_sw_reset, .vp_check_txdone = omap4_prm_vp_check_txdone, .vp_clear_txdone = omap4_prm_vp_clear_txdone, }; int __init omap44xx_prm_init(void) { omap_prm_base_init(); if (cpu_is_omap44xx() || soc_is_omap54xx() || soc_is_dra7xx()) prm_features |= PRM_HAS_IO_WAKEUP; if (!soc_is_dra7xx()) prm_features |= PRM_HAS_VOLTAGE; return prm_register(&omap44xx_prm_ll_data); } static const struct of_device_id omap_prm_dt_match_table[] = { { .compatible = "ti,omap4-prm" }, { .compatible = "ti,omap5-prm" }, { .compatible = "ti,dra7-prm" }, { } }; static int omap44xx_prm_late_init(void) { struct device_node *np; int irq_num; if (!(prm_features & PRM_HAS_IO_WAKEUP)) return 0; /* OMAP4+ is DT only now */ if (!of_have_populated_dt()) return 0; np = of_find_matching_node(NULL, omap_prm_dt_match_table); if (!np) { /* Default loaded up with OMAP4 values */ if (!cpu_is_omap44xx()) return 0; } else { irq_num = of_irq_get(np, 0); /* * Already have OMAP4 IRQ num. For all other platforms, we need * IRQ numbers from DT */ if (irq_num < 0 && !cpu_is_omap44xx()) { if (irq_num == -EPROBE_DEFER) return irq_num; /* Have nothing to do */ return 0; } /* Once OMAP4 DT is filled as well */ if (irq_num >= 0) { omap4_prcm_irq_setup.irq = irq_num; omap4_prcm_irq_setup.xlate_irq = NULL; } } omap44xx_prm_enable_io_wakeup(); return omap_prcm_register_chain_handler(&omap4_prcm_irq_setup); } static void __exit omap44xx_prm_exit(void) { prm_unregister(&omap44xx_prm_ll_data); } __exitcall(omap44xx_prm_exit);