/* * linux/arch/arm/plat-versatile/platsmp.c * * Copyright (C) 2002 ARM Ltd. * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/init.h> #include <linux/errno.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/jiffies.h> #include <linux/smp.h> #include <asm/cacheflush.h> /* * control for which core is the next to come out of the secondary * boot "holding pen" */ volatile int __cpuinitdata pen_release = -1; /* * Write pen_release in a way that is guaranteed to be visible to all * observers, irrespective of whether they're taking part in coherency * or not. This is necessary for the hotplug code to work reliably. */ static void __cpuinit write_pen_release(int val) { pen_release = val; smp_wmb(); __cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release)); outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1)); } static DEFINE_SPINLOCK(boot_lock); void __cpuinit platform_secondary_init(unsigned int cpu) { /* * if any interrupts are already enabled for the primary * core (e.g. timer irq), then they will not have been enabled * for us: do so */ gic_secondary_init(0); /* * let the primary processor know we're out of the * pen, then head off into the C entry point */ write_pen_release(-1); /* * Synchronise with the boot thread. */ spin_lock(&boot_lock); spin_unlock(&boot_lock); } int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) { unsigned long timeout; /* * Set synchronisation state between this boot processor * and the secondary one */ spin_lock(&boot_lock); /* * This is really belt and braces; we hold unintended secondary * CPUs in the holding pen until we're ready for them. However, * since we haven't sent them a soft interrupt, they shouldn't * be there. */ write_pen_release(cpu); /* * Send the secondary CPU a soft interrupt, thereby causing * the boot monitor to read the system wide flags register, * and branch to the address found there. */ smp_cross_call(cpumask_of(cpu), 1); timeout = jiffies + (1 * HZ); while (time_before(jiffies, timeout)) { smp_rmb(); if (pen_release == -1) break; udelay(10); } /* * now the secondary core is starting up let it run its * calibrations, then wait for it to finish */ spin_unlock(&boot_lock); return pen_release != -1 ? -ENOSYS : 0; }