/* * ARMv8 single-step debug support and mdscr context switching. * * Copyright (C) 2012 ARM Limited * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Author: Will Deacon */ #include #include #include #include #include #include #include #include #include #include /* Determine debug architecture. */ u8 debug_monitors_arch(void) { return read_cpuid(ID_AA64DFR0_EL1) & 0xf; } /* * MDSCR access routines. */ static void mdscr_write(u32 mdscr) { unsigned long flags; local_dbg_save(flags); asm volatile("msr mdscr_el1, %0" :: "r" (mdscr)); local_dbg_restore(flags); } static u32 mdscr_read(void) { u32 mdscr; asm volatile("mrs %0, mdscr_el1" : "=r" (mdscr)); return mdscr; } /* * Allow root to disable self-hosted debug from userspace. * This is useful if you want to connect an external JTAG debugger. */ static bool debug_enabled = true; static int create_debug_debugfs_entry(void) { debugfs_create_bool("debug_enabled", 0644, NULL, &debug_enabled); return 0; } fs_initcall(create_debug_debugfs_entry); static int __init early_debug_disable(char *buf) { debug_enabled = false; return 0; } early_param("nodebugmon", early_debug_disable); /* * Keep track of debug users on each core. * The ref counts are per-cpu so we use a local_t type. */ static DEFINE_PER_CPU(int, mde_ref_count); static DEFINE_PER_CPU(int, kde_ref_count); void enable_debug_monitors(enum dbg_active_el el) { u32 mdscr, enable = 0; WARN_ON(preemptible()); if (this_cpu_inc_return(mde_ref_count) == 1) enable = DBG_MDSCR_MDE; if (el == DBG_ACTIVE_EL1 && this_cpu_inc_return(kde_ref_count) == 1) enable |= DBG_MDSCR_KDE; if (enable && debug_enabled) { mdscr = mdscr_read(); mdscr |= enable; mdscr_write(mdscr); } } void disable_debug_monitors(enum dbg_active_el el) { u32 mdscr, disable = 0; WARN_ON(preemptible()); if (this_cpu_dec_return(mde_ref_count) == 0) disable = ~DBG_MDSCR_MDE; if (el == DBG_ACTIVE_EL1 && this_cpu_dec_return(kde_ref_count) == 0) disable &= ~DBG_MDSCR_KDE; if (disable) { mdscr = mdscr_read(); mdscr &= disable; mdscr_write(mdscr); } } /* * OS lock clearing. */ static void clear_os_lock(void *unused) { asm volatile("msr oslar_el1, %0" : : "r" (0)); } static int os_lock_notify(struct notifier_block *self, unsigned long action, void *data) { int cpu = (unsigned long)data; if ((action & ~CPU_TASKS_FROZEN) == CPU_ONLINE) smp_call_function_single(cpu, clear_os_lock, NULL, 1); return NOTIFY_OK; } static struct notifier_block os_lock_nb = { .notifier_call = os_lock_notify, }; static int debug_monitors_init(void) { cpu_notifier_register_begin(); /* Clear the OS lock. */ on_each_cpu(clear_os_lock, NULL, 1); isb(); local_dbg_enable(); /* Register hotplug handler. */ __register_cpu_notifier(&os_lock_nb); cpu_notifier_register_done(); return 0; } postcore_initcall(debug_monitors_init); /* * Single step API and exception handling. */ static void set_regs_spsr_ss(struct pt_regs *regs) { unsigned long spsr; spsr = regs->pstate; spsr &= ~DBG_SPSR_SS; spsr |= DBG_SPSR_SS; regs->pstate = spsr; } static void clear_regs_spsr_ss(struct pt_regs *regs) { unsigned long spsr; spsr = regs->pstate; spsr &= ~DBG_SPSR_SS; regs->pstate = spsr; } /* EL1 Single Step Handler hooks */ static LIST_HEAD(step_hook); static DEFINE_RWLOCK(step_hook_lock); void register_step_hook(struct step_hook *hook) { write_lock(&step_hook_lock); list_add(&hook->node, &step_hook); write_unlock(&step_hook_lock); } void unregister_step_hook(struct step_hook *hook) { write_lock(&step_hook_lock); list_del(&hook->node); write_unlock(&step_hook_lock); } /* * Call registered single step handers * There is no Syndrome info to check for determining the handler. * So we call all the registered handlers, until the right handler is * found which returns zero. */ static int call_step_hook(struct pt_regs *regs, unsigned int esr) { struct step_hook *hook; int retval = DBG_HOOK_ERROR; read_lock(&step_hook_lock); list_for_each_entry(hook, &step_hook, node) { retval = hook->fn(regs, esr); if (retval == DBG_HOOK_HANDLED) break; } read_unlock(&step_hook_lock); return retval; } static int single_step_handler(unsigned long addr, unsigned int esr, struct pt_regs *regs) { siginfo_t info; /* * If we are stepping a pending breakpoint, call the hw_breakpoint * handler first. */ if (!reinstall_suspended_bps(regs)) return 0; if (user_mode(regs)) { info.si_signo = SIGTRAP; info.si_errno = 0; info.si_code = TRAP_HWBKPT; info.si_addr = (void __user *)instruction_pointer(regs); force_sig_info(SIGTRAP, &info, current); /* * ptrace will disable single step unless explicitly * asked to re-enable it. For other clients, it makes * sense to leave it enabled (i.e. rewind the controls * to the active-not-pending state). */ user_rewind_single_step(current); } else { if (call_step_hook(regs, esr) == DBG_HOOK_HANDLED) return 0; pr_warning("Unexpected kernel single-step exception at EL1\n"); /* * Re-enable stepping since we know that we will be * returning to regs. */ set_regs_spsr_ss(regs); } return 0; } /* * Breakpoint handler is re-entrant as another breakpoint can * hit within breakpoint handler, especically in kprobes. * Use reader/writer locks instead of plain spinlock. */ static LIST_HEAD(break_hook); static DEFINE_RWLOCK(break_hook_lock); void register_break_hook(struct break_hook *hook) { write_lock(&break_hook_lock); list_add(&hook->node, &break_hook); write_unlock(&break_hook_lock); } void unregister_break_hook(struct break_hook *hook) { write_lock(&break_hook_lock); list_del(&hook->node); write_unlock(&break_hook_lock); } static int call_break_hook(struct pt_regs *regs, unsigned int esr) { struct break_hook *hook; int (*fn)(struct pt_regs *regs, unsigned int esr) = NULL; read_lock(&break_hook_lock); list_for_each_entry(hook, &break_hook, node) if ((esr & hook->esr_mask) == hook->esr_val) fn = hook->fn; read_unlock(&break_hook_lock); return fn ? fn(regs, esr) : DBG_HOOK_ERROR; } static int brk_handler(unsigned long addr, unsigned int esr, struct pt_regs *regs) { siginfo_t info; if (user_mode(regs)) { info = (siginfo_t) { .si_signo = SIGTRAP, .si_errno = 0, .si_code = TRAP_BRKPT, .si_addr = (void __user *)instruction_pointer(regs), }; force_sig_info(SIGTRAP, &info, current); } else if (call_break_hook(regs, esr) != DBG_HOOK_HANDLED) { pr_warning("Unexpected kernel BRK exception at EL1\n"); return -EFAULT; } return 0; } int aarch32_break_handler(struct pt_regs *regs) { siginfo_t info; u32 arm_instr; u16 thumb_instr; bool bp = false; void __user *pc = (void __user *)instruction_pointer(regs); if (!compat_user_mode(regs)) return -EFAULT; if (compat_thumb_mode(regs)) { /* get 16-bit Thumb instruction */ get_user(thumb_instr, (u16 __user *)pc); thumb_instr = le16_to_cpu(thumb_instr); if (thumb_instr == AARCH32_BREAK_THUMB2_LO) { /* get second half of 32-bit Thumb-2 instruction */ get_user(thumb_instr, (u16 __user *)(pc + 2)); thumb_instr = le16_to_cpu(thumb_instr); bp = thumb_instr == AARCH32_BREAK_THUMB2_HI; } else { bp = thumb_instr == AARCH32_BREAK_THUMB; } } else { /* 32-bit ARM instruction */ get_user(arm_instr, (u32 __user *)pc); arm_instr = le32_to_cpu(arm_instr); bp = (arm_instr & ~0xf0000000) == AARCH32_BREAK_ARM; } if (!bp) return -EFAULT; info = (siginfo_t) { .si_signo = SIGTRAP, .si_errno = 0, .si_code = TRAP_BRKPT, .si_addr = pc, }; force_sig_info(SIGTRAP, &info, current); return 0; } static int __init debug_traps_init(void) { hook_debug_fault_code(DBG_ESR_EVT_HWSS, single_step_handler, SIGTRAP, TRAP_HWBKPT, "single-step handler"); hook_debug_fault_code(DBG_ESR_EVT_BRK, brk_handler, SIGTRAP, TRAP_BRKPT, "ptrace BRK handler"); return 0; } arch_initcall(debug_traps_init); /* Re-enable single step for syscall restarting. */ void user_rewind_single_step(struct task_struct *task) { /* * If single step is active for this thread, then set SPSR.SS * to 1 to avoid returning to the active-pending state. */ if (test_ti_thread_flag(task_thread_info(task), TIF_SINGLESTEP)) set_regs_spsr_ss(task_pt_regs(task)); } void user_fastforward_single_step(struct task_struct *task) { if (test_ti_thread_flag(task_thread_info(task), TIF_SINGLESTEP)) clear_regs_spsr_ss(task_pt_regs(task)); } /* Kernel API */ void kernel_enable_single_step(struct pt_regs *regs) { WARN_ON(!irqs_disabled()); set_regs_spsr_ss(regs); mdscr_write(mdscr_read() | DBG_MDSCR_SS); enable_debug_monitors(DBG_ACTIVE_EL1); } void kernel_disable_single_step(void) { WARN_ON(!irqs_disabled()); mdscr_write(mdscr_read() & ~DBG_MDSCR_SS); disable_debug_monitors(DBG_ACTIVE_EL1); } int kernel_active_single_step(void) { WARN_ON(!irqs_disabled()); return mdscr_read() & DBG_MDSCR_SS; } /* ptrace API */ void user_enable_single_step(struct task_struct *task) { set_ti_thread_flag(task_thread_info(task), TIF_SINGLESTEP); set_regs_spsr_ss(task_pt_regs(task)); } void user_disable_single_step(struct task_struct *task) { clear_ti_thread_flag(task_thread_info(task), TIF_SINGLESTEP); }