// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020-2023 Loongson Technology Corporation Limited */ #include #include #include #include #include #include #include #include #include static inline bool kvm_hugepage_capable(struct kvm_memory_slot *slot) { return slot->arch.flags & KVM_MEM_HUGEPAGE_CAPABLE; } static inline bool kvm_hugepage_incapable(struct kvm_memory_slot *slot) { return slot->arch.flags & KVM_MEM_HUGEPAGE_INCAPABLE; } static inline void kvm_ptw_prepare(struct kvm *kvm, kvm_ptw_ctx *ctx) { ctx->level = kvm->arch.root_level; /* pte table */ ctx->invalid_ptes = kvm->arch.invalid_ptes; ctx->pte_shifts = kvm->arch.pte_shifts; ctx->pgtable_shift = ctx->pte_shifts[ctx->level]; ctx->invalid_entry = ctx->invalid_ptes[ctx->level]; ctx->opaque = kvm; } /* * Mark a range of guest physical address space old (all accesses fault) in the * VM's GPA page table to allow detection of commonly used pages. */ static int kvm_mkold_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx) { if (kvm_pte_young(*pte)) { *pte = kvm_pte_mkold(*pte); return 1; } return 0; } /* * Mark a range of guest physical address space clean (writes fault) in the VM's * GPA page table to allow dirty page tracking. */ static int kvm_mkclean_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx) { gfn_t offset; kvm_pte_t val; val = *pte; /* * For kvm_arch_mmu_enable_log_dirty_pt_masked with mask, start and end * may cross hugepage, for first huge page parameter addr is equal to * start, however for the second huge page addr is base address of * this huge page, rather than start or end address */ if ((ctx->flag & _KVM_HAS_PGMASK) && !kvm_pte_huge(val)) { offset = (addr >> PAGE_SHIFT) - ctx->gfn; if (!(BIT(offset) & ctx->mask)) return 0; } /* * Need not split huge page now, just set write-proect pte bit * Split huge page until next write fault */ if (kvm_pte_dirty(val)) { *pte = kvm_pte_mkclean(val); return 1; } return 0; } /* * Clear pte entry */ static int kvm_flush_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx) { struct kvm *kvm; kvm = ctx->opaque; if (ctx->level) kvm->stat.hugepages--; else kvm->stat.pages--; *pte = ctx->invalid_entry; return 1; } /* * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. * * Allocate a blank KVM GPA page directory (PGD) for representing guest physical * to host physical page mappings. * * Returns: Pointer to new KVM GPA page directory. * NULL on allocation failure. */ kvm_pte_t *kvm_pgd_alloc(void) { kvm_pte_t *pgd; pgd = (kvm_pte_t *)__get_free_pages(GFP_KERNEL, 0); if (pgd) pgd_init((void *)pgd); return pgd; } static void _kvm_pte_init(void *addr, unsigned long val) { unsigned long *p, *end; p = (unsigned long *)addr; end = p + PTRS_PER_PTE; do { p[0] = val; p[1] = val; p[2] = val; p[3] = val; p[4] = val; p += 8; p[-3] = val; p[-2] = val; p[-1] = val; } while (p != end); } /* * Caller must hold kvm->mm_lock * * Walk the page tables of kvm to find the PTE corresponding to the * address @addr. If page tables don't exist for @addr, they will be created * from the MMU cache if @cache is not NULL. */ static kvm_pte_t *kvm_populate_gpa(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, unsigned long addr, int level) { kvm_ptw_ctx ctx; kvm_pte_t *entry, *child; kvm_ptw_prepare(kvm, &ctx); child = kvm->arch.pgd; while (ctx.level > level) { entry = kvm_pgtable_offset(&ctx, child, addr); if (kvm_pte_none(&ctx, entry)) { if (!cache) return NULL; child = kvm_mmu_memory_cache_alloc(cache); _kvm_pte_init(child, ctx.invalid_ptes[ctx.level - 1]); smp_wmb(); /* Make pte visible before pmd */ kvm_set_pte(entry, __pa(child)); } else if (kvm_pte_huge(*entry)) { return entry; } else child = (kvm_pte_t *)__va(PHYSADDR(*entry)); kvm_ptw_enter(&ctx); } entry = kvm_pgtable_offset(&ctx, child, addr); return entry; } /* * Page walker for VM shadow mmu at last level * The last level is small pte page or huge pmd page */ static int kvm_ptw_leaf(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx) { int ret; phys_addr_t next, start, size; struct list_head *list; kvm_pte_t *entry, *child; ret = 0; start = addr; child = (kvm_pte_t *)__va(PHYSADDR(*dir)); entry = kvm_pgtable_offset(ctx, child, addr); do { next = addr + (0x1UL << ctx->pgtable_shift); if (!kvm_pte_present(ctx, entry)) continue; ret |= ctx->ops(entry, addr, ctx); } while (entry++, addr = next, addr < end); if (kvm_need_flush(ctx)) { size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3); if (start + size == end) { list = (struct list_head *)child; list_add_tail(list, &ctx->list); *dir = ctx->invalid_ptes[ctx->level + 1]; } } return ret; } /* * Page walker for VM shadow mmu at page table dir level */ static int kvm_ptw_dir(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx) { int ret; phys_addr_t next, start, size; struct list_head *list; kvm_pte_t *entry, *child; ret = 0; start = addr; child = (kvm_pte_t *)__va(PHYSADDR(*dir)); entry = kvm_pgtable_offset(ctx, child, addr); do { next = kvm_pgtable_addr_end(ctx, addr, end); if (!kvm_pte_present(ctx, entry)) continue; if (kvm_pte_huge(*entry)) { ret |= ctx->ops(entry, addr, ctx); continue; } kvm_ptw_enter(ctx); if (ctx->level == 0) ret |= kvm_ptw_leaf(entry, addr, next, ctx); else ret |= kvm_ptw_dir(entry, addr, next, ctx); kvm_ptw_exit(ctx); } while (entry++, addr = next, addr < end); if (kvm_need_flush(ctx)) { size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3); if (start + size == end) { list = (struct list_head *)child; list_add_tail(list, &ctx->list); *dir = ctx->invalid_ptes[ctx->level + 1]; } } return ret; } /* * Page walker for VM shadow mmu at page root table */ static int kvm_ptw_top(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx) { int ret; phys_addr_t next; kvm_pte_t *entry; ret = 0; entry = kvm_pgtable_offset(ctx, dir, addr); do { next = kvm_pgtable_addr_end(ctx, addr, end); if (!kvm_pte_present(ctx, entry)) continue; kvm_ptw_enter(ctx); ret |= kvm_ptw_dir(entry, addr, next, ctx); kvm_ptw_exit(ctx); } while (entry++, addr = next, addr < end); return ret; } /* * kvm_flush_range() - Flush a range of guest physical addresses. * @kvm: KVM pointer. * @start_gfn: Guest frame number of first page in GPA range to flush. * @end_gfn: Guest frame number of last page in GPA range to flush. * @lock: Whether to hold mmu_lock or not * * Flushes a range of GPA mappings from the GPA page tables. */ static void kvm_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn, int lock) { int ret; kvm_ptw_ctx ctx; struct list_head *pos, *temp; ctx.ops = kvm_flush_pte; ctx.flag = _KVM_FLUSH_PGTABLE; kvm_ptw_prepare(kvm, &ctx); INIT_LIST_HEAD(&ctx.list); if (lock) { spin_lock(&kvm->mmu_lock); ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT, end_gfn << PAGE_SHIFT, &ctx); spin_unlock(&kvm->mmu_lock); } else ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT, end_gfn << PAGE_SHIFT, &ctx); /* Flush vpid for each vCPU individually */ if (ret) kvm_flush_remote_tlbs(kvm); /* * free pte table page after mmu_lock * the pte table page is linked together with ctx.list */ list_for_each_safe(pos, temp, &ctx.list) { list_del(pos); free_page((unsigned long)pos); } } /* * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean. * @kvm: KVM pointer. * @start_gfn: Guest frame number of first page in GPA range to flush. * @end_gfn: Guest frame number of last page in GPA range to flush. * * Make a range of GPA mappings clean so that guest writes will fault and * trigger dirty page logging. * * The caller must hold the @kvm->mmu_lock spinlock. * * Returns: Whether any GPA mappings were modified, which would require * derived mappings (GVA page tables & TLB enties) to be * invalidated. */ static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) { kvm_ptw_ctx ctx; ctx.ops = kvm_mkclean_pte; ctx.flag = 0; kvm_ptw_prepare(kvm, &ctx); return kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT, end_gfn << PAGE_SHIFT, &ctx); } /* * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages * @kvm: The KVM pointer * @slot: The memory slot associated with mask * @gfn_offset: The gfn offset in memory slot * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory * slot to be write protected * * Walks bits set in mask write protects the associated pte's. Caller must * acquire @kvm->mmu_lock. */ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask) { kvm_ptw_ctx ctx; gfn_t base_gfn = slot->base_gfn + gfn_offset; gfn_t start = base_gfn + __ffs(mask); gfn_t end = base_gfn + __fls(mask) + 1; ctx.ops = kvm_mkclean_pte; ctx.flag = _KVM_HAS_PGMASK; ctx.mask = mask; ctx.gfn = base_gfn; kvm_ptw_prepare(kvm, &ctx); kvm_ptw_top(kvm->arch.pgd, start << PAGE_SHIFT, end << PAGE_SHIFT, &ctx); } int kvm_arch_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change) { gpa_t gpa_start; hva_t hva_start; size_t size, gpa_offset, hva_offset; if ((change != KVM_MR_MOVE) && (change != KVM_MR_CREATE)) return 0; /* * Prevent userspace from creating a memory region outside of the * VM GPA address space */ if ((new->base_gfn + new->npages) > (kvm->arch.gpa_size >> PAGE_SHIFT)) return -ENOMEM; new->arch.flags = 0; size = new->npages * PAGE_SIZE; gpa_start = new->base_gfn << PAGE_SHIFT; hva_start = new->userspace_addr; if (IS_ALIGNED(size, PMD_SIZE) && IS_ALIGNED(gpa_start, PMD_SIZE) && IS_ALIGNED(hva_start, PMD_SIZE)) new->arch.flags |= KVM_MEM_HUGEPAGE_CAPABLE; else { /* * Pages belonging to memslots that don't have the same * alignment within a PMD for userspace and GPA cannot be * mapped with PMD entries, because we'll end up mapping * the wrong pages. * * Consider a layout like the following: * * memslot->userspace_addr: * +-----+--------------------+--------------------+---+ * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| * +-----+--------------------+--------------------+---+ * * memslot->base_gfn << PAGE_SIZE: * +---+--------------------+--------------------+-----+ * |abc|def Stage-2 block | Stage-2 block |tvxyz| * +---+--------------------+--------------------+-----+ * * If we create those stage-2 blocks, we'll end up with this * incorrect mapping: * d -> f * e -> g * f -> h */ gpa_offset = gpa_start & (PMD_SIZE - 1); hva_offset = hva_start & (PMD_SIZE - 1); if (gpa_offset != hva_offset) { new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE; } else { if (gpa_offset == 0) gpa_offset = PMD_SIZE; if ((size + gpa_offset) < (PMD_SIZE * 2)) new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE; } } return 0; } void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change) { int needs_flush; u32 old_flags = old ? old->flags : 0; u32 new_flags = new ? new->flags : 0; bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; /* Only track memslot flags changed */ if (change != KVM_MR_FLAGS_ONLY) return; /* Discard dirty page tracking on readonly memslot */ if ((old_flags & new_flags) & KVM_MEM_READONLY) return; /* * If dirty page logging is enabled, write protect all pages in the slot * ready for dirty logging. * * There is no need to do this in any of the following cases: * CREATE: No dirty mappings will already exist. * MOVE/DELETE: The old mappings will already have been cleaned up by * kvm_arch_flush_shadow_memslot() */ if (!(old_flags & KVM_MEM_LOG_DIRTY_PAGES) && log_dirty_pages) { /* * Initially-all-set does not require write protecting any page * because they're all assumed to be dirty. */ if (kvm_dirty_log_manual_protect_and_init_set(kvm)) return; spin_lock(&kvm->mmu_lock); /* Write protect GPA page table entries */ needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn, new->base_gfn + new->npages); spin_unlock(&kvm->mmu_lock); if (needs_flush) kvm_flush_remote_tlbs(kvm); } } void kvm_arch_flush_shadow_all(struct kvm *kvm) { kvm_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT, 0); } void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { /* * The slot has been made invalid (ready for moving or deletion), so we * need to ensure that it can no longer be accessed by any guest vCPUs. */ kvm_flush_range(kvm, slot->base_gfn, slot->base_gfn + slot->npages, 1); } bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) { kvm_ptw_ctx ctx; ctx.flag = 0; ctx.ops = kvm_flush_pte; kvm_ptw_prepare(kvm, &ctx); INIT_LIST_HEAD(&ctx.list); return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT, range->end << PAGE_SHIFT, &ctx); } bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { kvm_ptw_ctx ctx; ctx.flag = 0; ctx.ops = kvm_mkold_pte; kvm_ptw_prepare(kvm, &ctx); return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT, range->end << PAGE_SHIFT, &ctx); } bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { gpa_t gpa = range->start << PAGE_SHIFT; kvm_pte_t *ptep = kvm_populate_gpa(kvm, NULL, gpa, 0); if (ptep && kvm_pte_present(NULL, ptep) && kvm_pte_young(*ptep)) return true; return false; } /* * kvm_map_page_fast() - Fast path GPA fault handler. * @vcpu: vCPU pointer. * @gpa: Guest physical address of fault. * @write: Whether the fault was due to a write. * * Perform fast path GPA fault handling, doing all that can be done without * calling into KVM. This handles marking old pages young (for idle page * tracking), and dirtying of clean pages (for dirty page logging). * * Returns: 0 on success, in which case we can update derived mappings and * resume guest execution. * -EFAULT on failure due to absent GPA mapping or write to * read-only page, in which case KVM must be consulted. */ static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) { int ret = 0; kvm_pte_t *ptep, changed, new; gfn_t gfn = gpa >> PAGE_SHIFT; struct kvm *kvm = vcpu->kvm; struct kvm_memory_slot *slot; spin_lock(&kvm->mmu_lock); /* Fast path - just check GPA page table for an existing entry */ ptep = kvm_populate_gpa(kvm, NULL, gpa, 0); if (!ptep || !kvm_pte_present(NULL, ptep)) { ret = -EFAULT; goto out; } /* Track access to pages marked old */ new = kvm_pte_mkyoung(*ptep); if (write && !kvm_pte_dirty(new)) { if (!kvm_pte_write(new)) { ret = -EFAULT; goto out; } if (kvm_pte_huge(new)) { /* * Do not set write permission when dirty logging is * enabled for HugePages */ slot = gfn_to_memslot(kvm, gfn); if (kvm_slot_dirty_track_enabled(slot)) { ret = -EFAULT; goto out; } } /* Track dirtying of writeable pages */ new = kvm_pte_mkdirty(new); } changed = new ^ (*ptep); if (changed) kvm_set_pte(ptep, new); spin_unlock(&kvm->mmu_lock); if (kvm_pte_dirty(changed)) mark_page_dirty(kvm, gfn); return ret; out: spin_unlock(&kvm->mmu_lock); return ret; } static bool fault_supports_huge_mapping(struct kvm_memory_slot *memslot, unsigned long hva, bool write) { hva_t start, end; /* Disable dirty logging on HugePages */ if (kvm_slot_dirty_track_enabled(memslot) && write) return false; if (kvm_hugepage_capable(memslot)) return true; if (kvm_hugepage_incapable(memslot)) return false; start = memslot->userspace_addr; end = start + memslot->npages * PAGE_SIZE; /* * Next, let's make sure we're not trying to map anything not covered * by the memslot. This means we have to prohibit block size mappings * for the beginning and end of a non-block aligned and non-block sized * memory slot (illustrated by the head and tail parts of the * userspace view above containing pages 'abcde' and 'xyz', * respectively). * * Note that it doesn't matter if we do the check using the * userspace_addr or the base_gfn, as both are equally aligned (per * the check above) and equally sized. */ return (hva >= ALIGN(start, PMD_SIZE)) && (hva < ALIGN_DOWN(end, PMD_SIZE)); } /* * Lookup the mapping level for @gfn in the current mm. * * WARNING! Use of host_pfn_mapping_level() requires the caller and the end * consumer to be tied into KVM's handlers for MMU notifier events! * * There are several ways to safely use this helper: * * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before * consuming it. In this case, mmu_lock doesn't need to be held during the * lookup, but it does need to be held while checking the MMU notifier. * * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation * event for the hva. This can be done by explicit checking the MMU notifier * or by ensuring that KVM already has a valid mapping that covers the hva. * * - Do not use the result to install new mappings, e.g. use the host mapping * level only to decide whether or not to zap an entry. In this case, it's * not required to hold mmu_lock (though it's highly likely the caller will * want to hold mmu_lock anyways, e.g. to modify SPTEs). * * Note! The lookup can still race with modifications to host page tables, but * the above "rules" ensure KVM will not _consume_ the result of the walk if a * race with the primary MMU occurs. */ static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, const struct kvm_memory_slot *slot) { int level = 0; unsigned long hva; unsigned long flags; pgd_t pgd; p4d_t p4d; pud_t pud; pmd_t pmd; /* * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() * is not solely for performance, it's also necessary to avoid the * "writable" check in __gfn_to_hva_many(), which will always fail on * read-only memslots due to gfn_to_hva() assuming writes. Earlier * page fault steps have already verified the guest isn't writing a * read-only memslot. */ hva = __gfn_to_hva_memslot(slot, gfn); /* * Disable IRQs to prevent concurrent tear down of host page tables, * e.g. if the primary MMU promotes a P*D to a huge page and then frees * the original page table. */ local_irq_save(flags); /* * Read each entry once. As above, a non-leaf entry can be promoted to * a huge page _during_ this walk. Re-reading the entry could send the * walk into the weeks, e.g. p*d_leaf() returns false (sees the old * value) and then p*d_offset() walks into the target huge page instead * of the old page table (sees the new value). */ pgd = pgdp_get(pgd_offset(kvm->mm, hva)); if (pgd_none(pgd)) goto out; p4d = p4dp_get(p4d_offset(&pgd, hva)); if (p4d_none(p4d) || !p4d_present(p4d)) goto out; pud = pudp_get(pud_offset(&p4d, hva)); if (pud_none(pud) || !pud_present(pud)) goto out; pmd = pmdp_get(pmd_offset(&pud, hva)); if (pmd_none(pmd) || !pmd_present(pmd)) goto out; if (kvm_pte_huge(pmd_val(pmd))) level = 1; out: local_irq_restore(flags); return level; } /* * Split huge page */ static kvm_pte_t *kvm_split_huge(struct kvm_vcpu *vcpu, kvm_pte_t *ptep, gfn_t gfn) { int i; kvm_pte_t val, *child; struct kvm *kvm = vcpu->kvm; struct kvm_mmu_memory_cache *memcache; memcache = &vcpu->arch.mmu_page_cache; child = kvm_mmu_memory_cache_alloc(memcache); val = kvm_pte_mksmall(*ptep); for (i = 0; i < PTRS_PER_PTE; i++) { kvm_set_pte(child + i, val); val += PAGE_SIZE; } smp_wmb(); /* Make pte visible before pmd */ /* The later kvm_flush_tlb_gpa() will flush hugepage tlb */ kvm_set_pte(ptep, __pa(child)); kvm->stat.hugepages--; kvm->stat.pages += PTRS_PER_PTE; return child + (gfn & (PTRS_PER_PTE - 1)); } /* * kvm_map_page() - Map a guest physical page. * @vcpu: vCPU pointer. * @gpa: Guest physical address of fault. * @write: Whether the fault was due to a write. * * Handle GPA faults by creating a new GPA mapping (or updating an existing * one). * * This takes care of marking pages young or dirty (idle/dirty page tracking), * asking KVM for the corresponding PFN, and creating a mapping in the GPA page * tables. Derived mappings (GVA page tables and TLBs) must be handled by the * caller. * * Returns: 0 on success * -EFAULT if there is no memory region at @gpa or a write was * attempted to a read-only memory region. This is usually handled * as an MMIO access. */ static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) { bool writeable; int srcu_idx, err, retry_no = 0, level; unsigned long hva, mmu_seq, prot_bits; kvm_pfn_t pfn; kvm_pte_t *ptep, new_pte; gfn_t gfn = gpa >> PAGE_SHIFT; struct kvm *kvm = vcpu->kvm; struct kvm_memory_slot *memslot; struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; struct page *page; /* Try the fast path to handle old / clean pages */ srcu_idx = srcu_read_lock(&kvm->srcu); err = kvm_map_page_fast(vcpu, gpa, write); if (!err) goto out; memslot = gfn_to_memslot(kvm, gfn); hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable); if (kvm_is_error_hva(hva) || (write && !writeable)) { err = -EFAULT; goto out; } /* We need a minimum of cached pages ready for page table creation */ err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES); if (err) goto out; retry: /* * Used to check for invalidations in progress, of the pfn that is * returned by pfn_to_pfn_prot below. */ mmu_seq = kvm->mmu_invalidate_seq; /* * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in * kvm_faultin_pfn() (which calls get_user_pages()), so that we don't * risk the page we get a reference to getting unmapped before we have a * chance to grab the mmu_lock without mmu_invalidate_retry() noticing. * * This smp_rmb() pairs with the effective smp_wmb() of the combination * of the pte_unmap_unlock() after the PTE is zapped, and the * spin_lock() in kvm_mmu_invalidate_invalidate_() before * mmu_invalidate_seq is incremented. */ smp_rmb(); /* Slow path - ask KVM core whether we can access this GPA */ pfn = kvm_faultin_pfn(vcpu, gfn, write, &writeable, &page); if (is_error_noslot_pfn(pfn)) { err = -EFAULT; goto out; } /* Check if an invalidation has taken place since we got pfn */ spin_lock(&kvm->mmu_lock); if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) { /* * This can happen when mappings are changed asynchronously, but * also synchronously if a COW is triggered by * kvm_faultin_pfn(). */ spin_unlock(&kvm->mmu_lock); kvm_release_page_unused(page); if (retry_no > 100) { retry_no = 0; schedule(); } retry_no++; goto retry; } /* * For emulated devices such virtio device, actual cache attribute is * determined by physical machine. * For pass through physical device, it should be uncachable */ prot_bits = _PAGE_PRESENT | __READABLE; if (pfn_valid(pfn)) prot_bits |= _CACHE_CC; else prot_bits |= _CACHE_SUC; if (writeable) { prot_bits |= _PAGE_WRITE; if (write) prot_bits |= __WRITEABLE; } /* Disable dirty logging on HugePages */ level = 0; if (fault_supports_huge_mapping(memslot, hva, write)) { /* Check page level about host mmu*/ level = host_pfn_mapping_level(kvm, gfn, memslot); if (level == 1) { /* * Check page level about secondary mmu * Disable hugepage if it is normal page on * secondary mmu already */ ptep = kvm_populate_gpa(kvm, NULL, gpa, 0); if (ptep && !kvm_pte_huge(*ptep)) level = 0; } if (level == 1) { gfn = gfn & ~(PTRS_PER_PTE - 1); pfn = pfn & ~(PTRS_PER_PTE - 1); } } /* Ensure page tables are allocated */ ptep = kvm_populate_gpa(kvm, memcache, gpa, level); new_pte = kvm_pfn_pte(pfn, __pgprot(prot_bits)); if (level == 1) { new_pte = kvm_pte_mkhuge(new_pte); /* * previous pmd entry is invalid_pte_table * there is invalid tlb with small page * need flush these invalid tlbs for current vcpu */ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); ++kvm->stat.hugepages; } else if (kvm_pte_huge(*ptep) && write) ptep = kvm_split_huge(vcpu, ptep, gfn); else ++kvm->stat.pages; kvm_set_pte(ptep, new_pte); kvm_release_faultin_page(kvm, page, false, writeable); spin_unlock(&kvm->mmu_lock); if (prot_bits & _PAGE_DIRTY) mark_page_dirty_in_slot(kvm, memslot, gfn); out: srcu_read_unlock(&kvm->srcu, srcu_idx); return err; } int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) { int ret; ret = kvm_map_page(vcpu, gpa, write); if (ret) return ret; /* Invalidate this entry in the TLB */ vcpu->arch.flush_gpa = gpa; kvm_make_request(KVM_REQ_TLB_FLUSH_GPA, vcpu); return 0; } void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) { } void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, const struct kvm_memory_slot *memslot) { kvm_flush_remote_tlbs(kvm); }