/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) 2000, 2001 Kanoj Sarcar * Copyright (C) 2000, 2001 Ralf Baechle * Copyright (C) 2000, 2001 Silicon Graphics, Inc. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ EXPORT_SYMBOL(__cpu_number_map); int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ EXPORT_SYMBOL(__cpu_logical_map); /* Number of TCs (or siblings in Intel speak) per CPU core */ int smp_num_siblings = 1; EXPORT_SYMBOL(smp_num_siblings); /* representing the TCs (or siblings in Intel speak) of each logical CPU */ cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_sibling_map); /* representing the core map of multi-core chips of each logical CPU */ cpumask_t cpu_core_map[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_core_map); static DECLARE_COMPLETION(cpu_running); /* * A logcal cpu mask containing only one VPE per core to * reduce the number of IPIs on large MT systems. */ cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_foreign_map); /* representing cpus for which sibling maps can be computed */ static cpumask_t cpu_sibling_setup_map; /* representing cpus for which core maps can be computed */ static cpumask_t cpu_core_setup_map; cpumask_t cpu_coherent_mask; #ifdef CONFIG_GENERIC_IRQ_IPI static struct irq_desc *call_desc; static struct irq_desc *sched_desc; #endif static inline void set_cpu_sibling_map(int cpu) { int i; cpumask_set_cpu(cpu, &cpu_sibling_setup_map); if (smp_num_siblings > 1) { for_each_cpu(i, &cpu_sibling_setup_map) { if (cpu_data[cpu].package == cpu_data[i].package && cpu_core(&cpu_data[cpu]) == cpu_core(&cpu_data[i])) { cpumask_set_cpu(i, &cpu_sibling_map[cpu]); cpumask_set_cpu(cpu, &cpu_sibling_map[i]); } } } else cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); } static inline void set_cpu_core_map(int cpu) { int i; cpumask_set_cpu(cpu, &cpu_core_setup_map); for_each_cpu(i, &cpu_core_setup_map) { if (cpu_data[cpu].package == cpu_data[i].package) { cpumask_set_cpu(i, &cpu_core_map[cpu]); cpumask_set_cpu(cpu, &cpu_core_map[i]); } } } /* * Calculate a new cpu_foreign_map mask whenever a * new cpu appears or disappears. */ void calculate_cpu_foreign_map(void) { int i, k, core_present; cpumask_t temp_foreign_map; /* Re-calculate the mask */ cpumask_clear(&temp_foreign_map); for_each_online_cpu(i) { core_present = 0; for_each_cpu(k, &temp_foreign_map) if (cpu_data[i].package == cpu_data[k].package && cpu_core(&cpu_data[i]) == cpu_core(&cpu_data[k])) core_present = 1; if (!core_present) cpumask_set_cpu(i, &temp_foreign_map); } for_each_online_cpu(i) cpumask_andnot(&cpu_foreign_map[i], &temp_foreign_map, &cpu_sibling_map[i]); } const struct plat_smp_ops *mp_ops; EXPORT_SYMBOL(mp_ops); void register_smp_ops(const struct plat_smp_ops *ops) { if (mp_ops) printk(KERN_WARNING "Overriding previously set SMP ops\n"); mp_ops = ops; } #ifdef CONFIG_GENERIC_IRQ_IPI void mips_smp_send_ipi_single(int cpu, unsigned int action) { mips_smp_send_ipi_mask(cpumask_of(cpu), action); } void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) { unsigned long flags; unsigned int core; int cpu; local_irq_save(flags); switch (action) { case SMP_CALL_FUNCTION: __ipi_send_mask(call_desc, mask); break; case SMP_RESCHEDULE_YOURSELF: __ipi_send_mask(sched_desc, mask); break; default: BUG(); } if (mips_cpc_present()) { for_each_cpu(cpu, mask) { core = cpu_core(&cpu_data[cpu]); if (core == cpu_core(¤t_cpu_data)) continue; while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { mips_cm_lock_other(core, 0); mips_cpc_lock_other(core); write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); mips_cpc_unlock_other(); mips_cm_unlock_other(); } } } local_irq_restore(flags); } static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) { scheduler_ipi(); return IRQ_HANDLED; } static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) { generic_smp_call_function_interrupt(); return IRQ_HANDLED; } static struct irqaction irq_resched = { .handler = ipi_resched_interrupt, .flags = IRQF_PERCPU, .name = "IPI resched" }; static struct irqaction irq_call = { .handler = ipi_call_interrupt, .flags = IRQF_PERCPU, .name = "IPI call" }; static void smp_ipi_init_one(unsigned int virq, struct irqaction *action) { int ret; irq_set_handler(virq, handle_percpu_irq); ret = setup_irq(virq, action); BUG_ON(ret); } static unsigned int call_virq, sched_virq; int mips_smp_ipi_allocate(const struct cpumask *mask) { int virq; struct irq_domain *ipidomain; struct device_node *node; node = of_irq_find_parent(of_root); ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); /* * Some platforms have half DT setup. So if we found irq node but * didn't find an ipidomain, try to search for one that is not in the * DT. */ if (node && !ipidomain) ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); /* * There are systems which use IPI IRQ domains, but only have one * registered when some runtime condition is met. For example a Malta * kernel may include support for GIC & CPU interrupt controller IPI * IRQ domains, but if run on a system with no GIC & no MT ASE then * neither will be supported or registered. * * We only have a problem if we're actually using multiple CPUs so fail * loudly if that is the case. Otherwise simply return, skipping IPI * setup, if we're running with only a single CPU. */ if (!ipidomain) { BUG_ON(num_present_cpus() > 1); return 0; } virq = irq_reserve_ipi(ipidomain, mask); BUG_ON(!virq); if (!call_virq) call_virq = virq; virq = irq_reserve_ipi(ipidomain, mask); BUG_ON(!virq); if (!sched_virq) sched_virq = virq; if (irq_domain_is_ipi_per_cpu(ipidomain)) { int cpu; for_each_cpu(cpu, mask) { smp_ipi_init_one(call_virq + cpu, &irq_call); smp_ipi_init_one(sched_virq + cpu, &irq_resched); } } else { smp_ipi_init_one(call_virq, &irq_call); smp_ipi_init_one(sched_virq, &irq_resched); } return 0; } int mips_smp_ipi_free(const struct cpumask *mask) { struct irq_domain *ipidomain; struct device_node *node; node = of_irq_find_parent(of_root); ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); /* * Some platforms have half DT setup. So if we found irq node but * didn't find an ipidomain, try to search for one that is not in the * DT. */ if (node && !ipidomain) ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); BUG_ON(!ipidomain); if (irq_domain_is_ipi_per_cpu(ipidomain)) { int cpu; for_each_cpu(cpu, mask) { remove_irq(call_virq + cpu, &irq_call); remove_irq(sched_virq + cpu, &irq_resched); } } irq_destroy_ipi(call_virq, mask); irq_destroy_ipi(sched_virq, mask); return 0; } static int __init mips_smp_ipi_init(void) { if (num_possible_cpus() == 1) return 0; mips_smp_ipi_allocate(cpu_possible_mask); call_desc = irq_to_desc(call_virq); sched_desc = irq_to_desc(sched_virq); return 0; } early_initcall(mips_smp_ipi_init); #endif /* * First C code run on the secondary CPUs after being started up by * the master. */ asmlinkage void start_secondary(void) { unsigned int cpu; cpu_probe(); per_cpu_trap_init(false); mips_clockevent_init(); mp_ops->init_secondary(); cpu_report(); maar_init(); /* * XXX parity protection should be folded in here when it's converted * to an option instead of something based on .cputype */ calibrate_delay(); preempt_disable(); cpu = smp_processor_id(); cpu_data[cpu].udelay_val = loops_per_jiffy; cpumask_set_cpu(cpu, &cpu_coherent_mask); notify_cpu_starting(cpu); set_cpu_online(cpu, true); set_cpu_sibling_map(cpu); set_cpu_core_map(cpu); calculate_cpu_foreign_map(); complete(&cpu_running); synchronise_count_slave(cpu); /* * irq will be enabled in ->smp_finish(), enabling it too early * is dangerous. */ WARN_ON_ONCE(!irqs_disabled()); mp_ops->smp_finish(); cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); } static void stop_this_cpu(void *dummy) { /* * Remove this CPU: */ set_cpu_online(smp_processor_id(), false); calculate_cpu_foreign_map(); local_irq_disable(); while (1); } void smp_send_stop(void) { smp_call_function(stop_this_cpu, NULL, 0); } void __init smp_cpus_done(unsigned int max_cpus) { } /* called from main before smp_init() */ void __init smp_prepare_cpus(unsigned int max_cpus) { init_new_context(current, &init_mm); current_thread_info()->cpu = 0; mp_ops->prepare_cpus(max_cpus); set_cpu_sibling_map(0); set_cpu_core_map(0); calculate_cpu_foreign_map(); #ifndef CONFIG_HOTPLUG_CPU init_cpu_present(cpu_possible_mask); #endif cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); } /* preload SMP state for boot cpu */ void smp_prepare_boot_cpu(void) { set_cpu_possible(0, true); set_cpu_online(0, true); } int __cpu_up(unsigned int cpu, struct task_struct *tidle) { mp_ops->boot_secondary(cpu, tidle); /* * We must check for timeout here, as the CPU will not be marked * online until the counters are synchronised. */ if (!wait_for_completion_timeout(&cpu_running, msecs_to_jiffies(1000))) { pr_crit("CPU%u: failed to start\n", cpu); return -EIO; } synchronise_count_master(cpu); return 0; } /* Not really SMP stuff ... */ int setup_profiling_timer(unsigned int multiplier) { return 0; } static void flush_tlb_all_ipi(void *info) { local_flush_tlb_all(); } void flush_tlb_all(void) { on_each_cpu(flush_tlb_all_ipi, NULL, 1); } static void flush_tlb_mm_ipi(void *mm) { local_flush_tlb_mm((struct mm_struct *)mm); } /* * Special Variant of smp_call_function for use by TLB functions: * * o No return value * o collapses to normal function call on UP kernels * o collapses to normal function call on systems with a single shared * primary cache. */ static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) { smp_call_function(func, info, 1); } static inline void smp_on_each_tlb(void (*func) (void *info), void *info) { preempt_disable(); smp_on_other_tlbs(func, info); func(info); preempt_enable(); } /* * The following tlb flush calls are invoked when old translations are * being torn down, or pte attributes are changing. For single threaded * address spaces, a new context is obtained on the current cpu, and tlb * context on other cpus are invalidated to force a new context allocation * at switch_mm time, should the mm ever be used on other cpus. For * multithreaded address spaces, intercpu interrupts have to be sent. * Another case where intercpu interrupts are required is when the target * mm might be active on another cpu (eg debuggers doing the flushes on * behalf of debugees, kswapd stealing pages from another process etc). * Kanoj 07/00. */ void flush_tlb_mm(struct mm_struct *mm) { preempt_disable(); if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { smp_on_other_tlbs(flush_tlb_mm_ipi, mm); } else { unsigned int cpu; for_each_online_cpu(cpu) { if (cpu != smp_processor_id() && cpu_context(cpu, mm)) cpu_context(cpu, mm) = 0; } } local_flush_tlb_mm(mm); preempt_enable(); } struct flush_tlb_data { struct vm_area_struct *vma; unsigned long addr1; unsigned long addr2; }; static void flush_tlb_range_ipi(void *info) { struct flush_tlb_data *fd = info; local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); } void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; preempt_disable(); if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { struct flush_tlb_data fd = { .vma = vma, .addr1 = start, .addr2 = end, }; smp_on_other_tlbs(flush_tlb_range_ipi, &fd); } else { unsigned int cpu; int exec = vma->vm_flags & VM_EXEC; for_each_online_cpu(cpu) { /* * flush_cache_range() will only fully flush icache if * the VMA is executable, otherwise we must invalidate * ASID without it appearing to has_valid_asid() as if * mm has been completely unused by that CPU. */ if (cpu != smp_processor_id() && cpu_context(cpu, mm)) cpu_context(cpu, mm) = !exec; } } local_flush_tlb_range(vma, start, end); preempt_enable(); } static void flush_tlb_kernel_range_ipi(void *info) { struct flush_tlb_data *fd = info; local_flush_tlb_kernel_range(fd->addr1, fd->addr2); } void flush_tlb_kernel_range(unsigned long start, unsigned long end) { struct flush_tlb_data fd = { .addr1 = start, .addr2 = end, }; on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); } static void flush_tlb_page_ipi(void *info) { struct flush_tlb_data *fd = info; local_flush_tlb_page(fd->vma, fd->addr1); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { preempt_disable(); if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { struct flush_tlb_data fd = { .vma = vma, .addr1 = page, }; smp_on_other_tlbs(flush_tlb_page_ipi, &fd); } else { unsigned int cpu; for_each_online_cpu(cpu) { /* * flush_cache_page() only does partial flushes, so * invalidate ASID without it appearing to * has_valid_asid() as if mm has been completely unused * by that CPU. */ if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) cpu_context(cpu, vma->vm_mm) = 1; } } local_flush_tlb_page(vma, page); preempt_enable(); } static void flush_tlb_one_ipi(void *info) { unsigned long vaddr = (unsigned long) info; local_flush_tlb_one(vaddr); } void flush_tlb_one(unsigned long vaddr) { smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); } EXPORT_SYMBOL(flush_tlb_page); EXPORT_SYMBOL(flush_tlb_one); #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd); void tick_broadcast(const struct cpumask *mask) { atomic_t *count; struct call_single_data *csd; int cpu; for_each_cpu(cpu, mask) { count = &per_cpu(tick_broadcast_count, cpu); csd = &per_cpu(tick_broadcast_csd, cpu); if (atomic_inc_return(count) == 1) smp_call_function_single_async(cpu, csd); } } static void tick_broadcast_callee(void *info) { int cpu = smp_processor_id(); tick_receive_broadcast(); atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); } static int __init tick_broadcast_init(void) { struct call_single_data *csd; int cpu; for (cpu = 0; cpu < NR_CPUS; cpu++) { csd = &per_cpu(tick_broadcast_csd, cpu); csd->func = tick_broadcast_callee; } return 0; } early_initcall(tick_broadcast_init); #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */