/* * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Copyright (C) 2011-2012 John Crispin */ #include #include #include #include #include #include #include #include "../clk.h" #include "../prom.h" /* clock control register */ #define CGU_IFCCR 0x0018 #define CGU_IFCCR_VR9 0x0024 /* system clock register */ #define CGU_SYS 0x0010 /* pci control register */ #define CGU_PCICR 0x0034 #define CGU_PCICR_VR9 0x0038 /* ephy configuration register */ #define CGU_EPHY 0x10 /* power control register */ #define PMU_PWDCR 0x1C /* power status register */ #define PMU_PWDSR 0x20 /* power control register */ #define PMU_PWDCR1 0x24 /* power status register */ #define PMU_PWDSR1 0x28 /* power control register */ #define PWDCR(x) ((x) ? (PMU_PWDCR1) : (PMU_PWDCR)) /* power status register */ #define PWDSR(x) ((x) ? (PMU_PWDSR1) : (PMU_PWDSR)) /* clock gates that we can en/disable */ #define PMU_USB0_P BIT(0) #define PMU_PCI BIT(4) #define PMU_DMA BIT(5) #define PMU_USB0 BIT(6) #define PMU_ASC0 BIT(7) #define PMU_EPHY BIT(7) /* ase */ #define PMU_SPI BIT(8) #define PMU_DFE BIT(9) #define PMU_EBU BIT(10) #define PMU_STP BIT(11) #define PMU_GPT BIT(12) #define PMU_AHBS BIT(13) /* vr9 */ #define PMU_FPI BIT(14) #define PMU_AHBM BIT(15) #define PMU_ASC1 BIT(17) #define PMU_PPE_QSB BIT(18) #define PMU_PPE_SLL01 BIT(19) #define PMU_PPE_TC BIT(21) #define PMU_PPE_EMA BIT(22) #define PMU_PPE_DPLUM BIT(23) #define PMU_PPE_DPLUS BIT(24) #define PMU_USB1_P BIT(26) #define PMU_USB1 BIT(27) #define PMU_SWITCH BIT(28) #define PMU_PPE_TOP BIT(29) #define PMU_GPHY BIT(30) #define PMU_PCIE_CLK BIT(31) #define PMU1_PCIE_PHY BIT(0) #define PMU1_PCIE_CTL BIT(1) #define PMU1_PCIE_PDI BIT(4) #define PMU1_PCIE_MSI BIT(5) #define pmu_w32(x, y) ltq_w32((x), pmu_membase + (y)) #define pmu_r32(x) ltq_r32(pmu_membase + (x)) static void __iomem *pmu_membase; void __iomem *ltq_cgu_membase; void __iomem *ltq_ebu_membase; static u32 ifccr = CGU_IFCCR; static u32 pcicr = CGU_PCICR; /* legacy function kept alive to ease clkdev transition */ void ltq_pmu_enable(unsigned int module) { int err = 1000000; pmu_w32(pmu_r32(PMU_PWDCR) & ~module, PMU_PWDCR); do {} while (--err && (pmu_r32(PMU_PWDSR) & module)); if (!err) panic("activating PMU module failed!"); } EXPORT_SYMBOL(ltq_pmu_enable); /* legacy function kept alive to ease clkdev transition */ void ltq_pmu_disable(unsigned int module) { pmu_w32(pmu_r32(PMU_PWDCR) | module, PMU_PWDCR); } EXPORT_SYMBOL(ltq_pmu_disable); /* enable a hw clock */ static int cgu_enable(struct clk *clk) { ltq_cgu_w32(ltq_cgu_r32(ifccr) | clk->bits, ifccr); return 0; } /* disable a hw clock */ static void cgu_disable(struct clk *clk) { ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~clk->bits, ifccr); } /* enable a clock gate */ static int pmu_enable(struct clk *clk) { int retry = 1000000; pmu_w32(pmu_r32(PWDCR(clk->module)) & ~clk->bits, PWDCR(clk->module)); do {} while (--retry && (pmu_r32(PWDSR(clk->module)) & clk->bits)); if (!retry) panic("activating PMU module failed!\n"); return 0; } /* disable a clock gate */ static void pmu_disable(struct clk *clk) { pmu_w32(pmu_r32(PWDCR(clk->module)) | clk->bits, PWDCR(clk->module)); } /* the pci enable helper */ static int pci_enable(struct clk *clk) { unsigned int val = ltq_cgu_r32(ifccr); /* set bus clock speed */ if (of_machine_is_compatible("lantiq,ar9") || of_machine_is_compatible("lantiq,vr9")) { val &= ~0x1f00000; if (clk->rate == CLOCK_33M) val |= 0xe00000; else val |= 0x700000; /* 62.5M */ } else { val &= ~0xf00000; if (clk->rate == CLOCK_33M) val |= 0x800000; else val |= 0x400000; /* 62.5M */ } ltq_cgu_w32(val, ifccr); pmu_enable(clk); return 0; } /* enable the external clock as a source */ static int pci_ext_enable(struct clk *clk) { ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~(1 << 16), ifccr); ltq_cgu_w32((1 << 30), pcicr); return 0; } /* disable the external clock as a source */ static void pci_ext_disable(struct clk *clk) { ltq_cgu_w32(ltq_cgu_r32(ifccr) | (1 << 16), ifccr); ltq_cgu_w32((1 << 31) | (1 << 30), pcicr); } /* enable a clockout source */ static int clkout_enable(struct clk *clk) { int i; /* get the correct rate */ for (i = 0; i < 4; i++) { if (clk->rates[i] == clk->rate) { int shift = 14 - (2 * clk->module); int enable = 7 - clk->module; unsigned int val = ltq_cgu_r32(ifccr); val &= ~(3 << shift); val |= i << shift; val |= enable; ltq_cgu_w32(val, ifccr); return 0; } } return -1; } /* manage the clock gates via PMU */ static void clkdev_add_pmu(const char *dev, const char *con, unsigned int module, unsigned int bits) { struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL); clk->cl.dev_id = dev; clk->cl.con_id = con; clk->cl.clk = clk; clk->enable = pmu_enable; clk->disable = pmu_disable; clk->module = module; clk->bits = bits; clkdev_add(&clk->cl); } /* manage the clock generator */ static void clkdev_add_cgu(const char *dev, const char *con, unsigned int bits) { struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL); clk->cl.dev_id = dev; clk->cl.con_id = con; clk->cl.clk = clk; clk->enable = cgu_enable; clk->disable = cgu_disable; clk->bits = bits; clkdev_add(&clk->cl); } /* pci needs its own enable function as the setup is a bit more complex */ static unsigned long valid_pci_rates[] = {CLOCK_33M, CLOCK_62_5M, 0}; static void clkdev_add_pci(void) { struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL); struct clk *clk_ext = kzalloc(sizeof(struct clk), GFP_KERNEL); /* main pci clock */ clk->cl.dev_id = "17000000.pci"; clk->cl.con_id = NULL; clk->cl.clk = clk; clk->rate = CLOCK_33M; clk->rates = valid_pci_rates; clk->enable = pci_enable; clk->disable = pmu_disable; clk->module = 0; clk->bits = PMU_PCI; clkdev_add(&clk->cl); /* use internal/external bus clock */ clk_ext->cl.dev_id = "17000000.pci"; clk_ext->cl.con_id = "external"; clk_ext->cl.clk = clk_ext; clk_ext->enable = pci_ext_enable; clk_ext->disable = pci_ext_disable; clkdev_add(&clk_ext->cl); } /* xway socs can generate clocks on gpio pins */ static unsigned long valid_clkout_rates[4][5] = { {CLOCK_32_768K, CLOCK_1_536M, CLOCK_2_5M, CLOCK_12M, 0}, {CLOCK_40M, CLOCK_12M, CLOCK_24M, CLOCK_48M, 0}, {CLOCK_25M, CLOCK_40M, CLOCK_30M, CLOCK_60M, 0}, {CLOCK_12M, CLOCK_50M, CLOCK_32_768K, CLOCK_25M, 0}, }; static void clkdev_add_clkout(void) { int i; for (i = 0; i < 4; i++) { struct clk *clk; char *name; name = kzalloc(sizeof("clkout0"), GFP_KERNEL); sprintf(name, "clkout%d", i); clk = kzalloc(sizeof(struct clk), GFP_KERNEL); clk->cl.dev_id = "1f103000.cgu"; clk->cl.con_id = name; clk->cl.clk = clk; clk->rate = 0; clk->rates = valid_clkout_rates[i]; clk->enable = clkout_enable; clk->module = i; clkdev_add(&clk->cl); } } /* bring up all register ranges that we need for basic system control */ void __init ltq_soc_init(void) { struct resource res_pmu, res_cgu, res_ebu; struct device_node *np_pmu = of_find_compatible_node(NULL, NULL, "lantiq,pmu-xway"); struct device_node *np_cgu = of_find_compatible_node(NULL, NULL, "lantiq,cgu-xway"); struct device_node *np_ebu = of_find_compatible_node(NULL, NULL, "lantiq,ebu-xway"); /* check if all the core register ranges are available */ if (!np_pmu || !np_cgu || !np_ebu) panic("Failed to load core nodes from devicetree"); if (of_address_to_resource(np_pmu, 0, &res_pmu) || of_address_to_resource(np_cgu, 0, &res_cgu) || of_address_to_resource(np_ebu, 0, &res_ebu)) panic("Failed to get core resources"); if ((request_mem_region(res_pmu.start, resource_size(&res_pmu), res_pmu.name) < 0) || (request_mem_region(res_cgu.start, resource_size(&res_cgu), res_cgu.name) < 0) || (request_mem_region(res_ebu.start, resource_size(&res_ebu), res_ebu.name) < 0)) pr_err("Failed to request core reources"); pmu_membase = ioremap_nocache(res_pmu.start, resource_size(&res_pmu)); ltq_cgu_membase = ioremap_nocache(res_cgu.start, resource_size(&res_cgu)); ltq_ebu_membase = ioremap_nocache(res_ebu.start, resource_size(&res_ebu)); if (!pmu_membase || !ltq_cgu_membase || !ltq_ebu_membase) panic("Failed to remap core resources"); /* make sure to unprotect the memory region where flash is located */ ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_BUSCON0) & ~EBU_WRDIS, LTQ_EBU_BUSCON0); /* add our generic xway clocks */ clkdev_add_pmu("10000000.fpi", NULL, 0, PMU_FPI); clkdev_add_pmu("1e100400.serial", NULL, 0, PMU_ASC0); clkdev_add_pmu("1e100a00.gptu", NULL, 0, PMU_GPT); clkdev_add_pmu("1e100bb0.stp", NULL, 0, PMU_STP); clkdev_add_pmu("1e104100.dma", NULL, 0, PMU_DMA); clkdev_add_pmu("1e100800.spi", NULL, 0, PMU_SPI); clkdev_add_pmu("1e105300.ebu", NULL, 0, PMU_EBU); clkdev_add_clkout(); /* add the soc dependent clocks */ if (of_machine_is_compatible("lantiq,vr9")) { ifccr = CGU_IFCCR_VR9; pcicr = CGU_PCICR_VR9; } else { clkdev_add_pmu("1e180000.etop", NULL, 0, PMU_PPE); } if (!of_machine_is_compatible("lantiq,ase")) { clkdev_add_pmu("1e100c00.serial", NULL, 0, PMU_ASC1); clkdev_add_pci(); } if (of_machine_is_compatible("lantiq,ase")) { if (ltq_cgu_r32(CGU_SYS) & (1 << 5)) clkdev_add_static(CLOCK_266M, CLOCK_133M, CLOCK_133M); else clkdev_add_static(CLOCK_133M, CLOCK_133M, CLOCK_133M); clkdev_add_cgu("1e180000.etop", "ephycgu", CGU_EPHY), clkdev_add_pmu("1e180000.etop", "ephy", 0, PMU_EPHY); } else if (of_machine_is_compatible("lantiq,vr9")) { clkdev_add_static(ltq_vr9_cpu_hz(), ltq_vr9_fpi_hz(), ltq_vr9_fpi_hz()); clkdev_add_pmu("1d900000.pcie", "phy", 1, PMU1_PCIE_PHY); clkdev_add_pmu("1d900000.pcie", "bus", 0, PMU_PCIE_CLK); clkdev_add_pmu("1d900000.pcie", "msi", 1, PMU1_PCIE_MSI); clkdev_add_pmu("1d900000.pcie", "pdi", 1, PMU1_PCIE_PDI); clkdev_add_pmu("1d900000.pcie", "ctl", 1, PMU1_PCIE_CTL); clkdev_add_pmu("1d900000.pcie", "ahb", 0, PMU_AHBM | PMU_AHBS); clkdev_add_pmu("1e108000.eth", NULL, 0, PMU_SWITCH | PMU_PPE_DPLUS | PMU_PPE_DPLUM | PMU_PPE_EMA | PMU_PPE_TC | PMU_PPE_SLL01 | PMU_PPE_QSB | PMU_PPE_TOP); } else if (of_machine_is_compatible("lantiq,ar9")) { clkdev_add_static(ltq_ar9_cpu_hz(), ltq_ar9_fpi_hz(), ltq_ar9_fpi_hz()); clkdev_add_pmu("1e180000.etop", "switch", 0, PMU_SWITCH); } else { clkdev_add_static(ltq_danube_cpu_hz(), ltq_danube_fpi_hz(), ltq_danube_fpi_hz()); } }