/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000 Ani Joshi * Copyright (C) 2000, 2001, 06 Ralf Baechle * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT) /* User defined DMA coherency from command line. */ enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT; EXPORT_SYMBOL_GPL(coherentio); int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */ static int __init setcoherentio(char *str) { coherentio = IO_COHERENCE_ENABLED; pr_info("Hardware DMA cache coherency (command line)\n"); return 0; } early_param("coherentio", setcoherentio); static int __init setnocoherentio(char *str) { coherentio = IO_COHERENCE_DISABLED; pr_info("Software DMA cache coherency (command line)\n"); return 0; } early_param("nocoherentio", setnocoherentio); #endif static inline struct page *dma_addr_to_page(struct device *dev, dma_addr_t dma_addr) { return pfn_to_page( plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT); } /* * The affected CPUs below in 'cpu_needs_post_dma_flush()' can * speculatively fill random cachelines with stale data at any time, * requiring an extra flush post-DMA. * * Warning on the terminology - Linux calls an uncached area coherent; * MIPS terminology calls memory areas with hardware maintained coherency * coherent. * * Note that the R14000 and R16000 should also be checked for in this * condition. However this function is only called on non-I/O-coherent * systems and only the R10000 and R12000 are used in such systems, the * SGI IP28 Indigo² rsp. SGI IP32 aka O2. */ static inline int cpu_needs_post_dma_flush(struct device *dev) { return !plat_device_is_coherent(dev) && (boot_cpu_type() == CPU_R10000 || boot_cpu_type() == CPU_R12000 || boot_cpu_type() == CPU_BMIPS5000); } static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp) { gfp_t dma_flag; /* ignore region specifiers */ gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); #ifdef CONFIG_ISA if (dev == NULL) dma_flag = __GFP_DMA; else #endif #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA) if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(32)) dma_flag = __GFP_DMA; else if (dev->coherent_dma_mask < DMA_BIT_MASK(64)) dma_flag = __GFP_DMA32; else #endif #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA) if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(64)) dma_flag = __GFP_DMA32; else #endif #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32) if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8)) dma_flag = __GFP_DMA; else #endif dma_flag = 0; /* Don't invoke OOM killer */ gfp |= __GFP_NORETRY; return gfp | dma_flag; } static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t * dma_handle, gfp_t gfp) { void *ret; gfp = massage_gfp_flags(dev, gfp); ret = (void *) __get_free_pages(gfp, get_order(size)); if (ret != NULL) { memset(ret, 0, size); *dma_handle = plat_map_dma_mem(dev, ret, size); } return ret; } static void *mips_dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { void *ret; struct page *page = NULL; unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; /* * XXX: seems like the coherent and non-coherent implementations could * be consolidated. */ if (attrs & DMA_ATTR_NON_CONSISTENT) return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp); gfp = massage_gfp_flags(dev, gfp); if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp)) page = dma_alloc_from_contiguous(dev, count, get_order(size)); if (!page) page = alloc_pages(gfp, get_order(size)); if (!page) return NULL; ret = page_address(page); memset(ret, 0, size); *dma_handle = plat_map_dma_mem(dev, ret, size); if (!plat_device_is_coherent(dev)) { dma_cache_wback_inv((unsigned long) ret, size); ret = UNCAC_ADDR(ret); } return ret; } static void mips_dma_free_noncoherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle) { plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL); free_pages((unsigned long) vaddr, get_order(size)); } static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, unsigned long attrs) { unsigned long addr = (unsigned long) vaddr; unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; struct page *page = NULL; if (attrs & DMA_ATTR_NON_CONSISTENT) { mips_dma_free_noncoherent(dev, size, vaddr, dma_handle); return; } plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL); if (!plat_device_is_coherent(dev)) addr = CAC_ADDR(addr); page = virt_to_page((void *) addr); if (!dma_release_from_contiguous(dev, page, count)) __free_pages(page, get_order(size)); } static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; unsigned long addr = (unsigned long)cpu_addr; unsigned long off = vma->vm_pgoff; unsigned long pfn; int ret = -ENXIO; if (!plat_device_is_coherent(dev)) addr = CAC_ADDR(addr); pfn = page_to_pfn(virt_to_page((void *)addr)); if (attrs & DMA_ATTR_WRITE_COMBINE) vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); else vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) return ret; if (off < count && user_count <= (count - off)) { ret = remap_pfn_range(vma, vma->vm_start, pfn + off, user_count << PAGE_SHIFT, vma->vm_page_prot); } return ret; } static inline void __dma_sync_virtual(void *addr, size_t size, enum dma_data_direction direction) { switch (direction) { case DMA_TO_DEVICE: dma_cache_wback((unsigned long)addr, size); break; case DMA_FROM_DEVICE: dma_cache_inv((unsigned long)addr, size); break; case DMA_BIDIRECTIONAL: dma_cache_wback_inv((unsigned long)addr, size); break; default: BUG(); } } /* * A single sg entry may refer to multiple physically contiguous * pages. But we still need to process highmem pages individually. * If highmem is not configured then the bulk of this loop gets * optimized out. */ static inline void __dma_sync(struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction) { size_t left = size; do { size_t len = left; if (PageHighMem(page)) { void *addr; if (offset + len > PAGE_SIZE) { if (offset >= PAGE_SIZE) { page += offset >> PAGE_SHIFT; offset &= ~PAGE_MASK; } len = PAGE_SIZE - offset; } addr = kmap_atomic(page); __dma_sync_virtual(addr + offset, len, direction); kunmap_atomic(addr); } else __dma_sync_virtual(page_address(page) + offset, size, direction); offset = 0; page++; left -= len; } while (left); } static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction direction, unsigned long attrs) { if (cpu_needs_post_dma_flush(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) __dma_sync(dma_addr_to_page(dev, dma_addr), dma_addr & ~PAGE_MASK, size, direction); plat_post_dma_flush(dev); plat_unmap_dma_mem(dev, dma_addr, size, direction); } static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction, unsigned long attrs) { int i; struct scatterlist *sg; for_each_sg(sglist, sg, nents, i) { if (!plat_device_is_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) __dma_sync(sg_page(sg), sg->offset, sg->length, direction); #ifdef CONFIG_NEED_SG_DMA_LENGTH sg->dma_length = sg->length; #endif sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) + sg->offset; } return nents; } static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction, unsigned long attrs) { if (!plat_device_is_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) __dma_sync(page, offset, size, direction); return plat_map_dma_mem_page(dev, page) + offset; } static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nhwentries, enum dma_data_direction direction, unsigned long attrs) { int i; struct scatterlist *sg; for_each_sg(sglist, sg, nhwentries, i) { if (!plat_device_is_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && direction != DMA_TO_DEVICE) __dma_sync(sg_page(sg), sg->offset, sg->length, direction); plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction); } } static void mips_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { if (cpu_needs_post_dma_flush(dev)) __dma_sync(dma_addr_to_page(dev, dma_handle), dma_handle & ~PAGE_MASK, size, direction); plat_post_dma_flush(dev); } static void mips_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { if (!plat_device_is_coherent(dev)) __dma_sync(dma_addr_to_page(dev, dma_handle), dma_handle & ~PAGE_MASK, size, direction); } static void mips_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction) { int i; struct scatterlist *sg; if (cpu_needs_post_dma_flush(dev)) { for_each_sg(sglist, sg, nelems, i) { __dma_sync(sg_page(sg), sg->offset, sg->length, direction); } } plat_post_dma_flush(dev); } static void mips_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction) { int i; struct scatterlist *sg; if (!plat_device_is_coherent(dev)) { for_each_sg(sglist, sg, nelems, i) { __dma_sync(sg_page(sg), sg->offset, sg->length, direction); } } } int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { return 0; } int mips_dma_supported(struct device *dev, u64 mask) { return plat_dma_supported(dev, mask); } void dma_cache_sync(struct device *dev, void *vaddr, size_t size, enum dma_data_direction direction) { BUG_ON(direction == DMA_NONE); if (!plat_device_is_coherent(dev)) __dma_sync_virtual(vaddr, size, direction); } EXPORT_SYMBOL(dma_cache_sync); static const struct dma_map_ops mips_default_dma_map_ops = { .alloc = mips_dma_alloc_coherent, .free = mips_dma_free_coherent, .mmap = mips_dma_mmap, .map_page = mips_dma_map_page, .unmap_page = mips_dma_unmap_page, .map_sg = mips_dma_map_sg, .unmap_sg = mips_dma_unmap_sg, .sync_single_for_cpu = mips_dma_sync_single_for_cpu, .sync_single_for_device = mips_dma_sync_single_for_device, .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu, .sync_sg_for_device = mips_dma_sync_sg_for_device, .mapping_error = mips_dma_mapping_error, .dma_supported = mips_dma_supported }; const struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops; EXPORT_SYMBOL(mips_dma_map_ops); #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) static int __init mips_dma_init(void) { dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); return 0; } fs_initcall(mips_dma_init);