/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2005-2009 Cavium Networks */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/msi.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <asm/octeon/octeon.h> #include <asm/octeon/cvmx-npi-defs.h> #include <asm/octeon/cvmx-pci-defs.h> #include <asm/octeon/cvmx-npei-defs.h> #include <asm/octeon/cvmx-pexp-defs.h> #include <asm/octeon/pci-octeon.h> /* * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is * in use. */ static uint64_t msi_free_irq_bitmask; /* * Each bit in msi_multiple_irq_bitmask tells that the device using * this bit in msi_free_irq_bitmask is also using the next bit. This * is used so we can disable all of the MSI interrupts when a device * uses multiple. */ static uint64_t msi_multiple_irq_bitmask; /* * This lock controls updates to msi_free_irq_bitmask and * msi_multiple_irq_bitmask. */ static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock); /** * Called when a driver request MSI interrupts instead of the * legacy INT A-D. This routine will allocate multiple interrupts * for MSI devices that support them. A device can override this by * programming the MSI control bits [6:4] before calling * pci_enable_msi(). * * @dev: Device requesting MSI interrupts * @desc: MSI descriptor * * Returns 0 on success. */ int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc) { struct msi_msg msg; uint16_t control; int configured_private_bits; int request_private_bits; int irq; int irq_step; uint64_t search_mask; /* * Read the MSI config to figure out how many IRQs this device * wants. Most devices only want 1, which will give * configured_private_bits and request_private_bits equal 0. */ pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS, &control); /* * If the number of private bits has been configured then use * that value instead of the requested number. This gives the * driver the chance to override the number of interrupts * before calling pci_enable_msi(). */ configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4; if (configured_private_bits == 0) { /* Nothing is configured, so use the hardware requested size */ request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1; } else { /* * Use the number of configured bits, assuming the * driver wanted to override the hardware request * value. */ request_private_bits = configured_private_bits; } /* * The PCI 2.3 spec mandates that there are at most 32 * interrupts. If this device asks for more, only give it one. */ if (request_private_bits > 5) request_private_bits = 0; try_only_one: /* * The IRQs have to be aligned on a power of two based on the * number being requested. */ irq_step = 1 << request_private_bits; /* Mask with one bit for each IRQ */ search_mask = (1 << irq_step) - 1; /* * We're going to search msi_free_irq_bitmask_lock for zero * bits. This represents an MSI interrupt number that isn't in * use. */ spin_lock(&msi_free_irq_bitmask_lock); for (irq = 0; irq < 64; irq += irq_step) { if ((msi_free_irq_bitmask & (search_mask << irq)) == 0) { msi_free_irq_bitmask |= search_mask << irq; msi_multiple_irq_bitmask |= (search_mask >> 1) << irq; break; } } spin_unlock(&msi_free_irq_bitmask_lock); /* Make sure the search for available interrupts didn't fail */ if (irq >= 64) { if (request_private_bits) { pr_err("arch_setup_msi_irq: Unable to find %d free " "interrupts, trying just one", 1 << request_private_bits); request_private_bits = 0; goto try_only_one; } else panic("arch_setup_msi_irq: Unable to find a free MSI " "interrupt"); } /* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */ irq += OCTEON_IRQ_MSI_BIT0; switch (octeon_dma_bar_type) { case OCTEON_DMA_BAR_TYPE_SMALL: /* When not using big bar, Bar 0 is based at 128MB */ msg.address_lo = ((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff; msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32; case OCTEON_DMA_BAR_TYPE_BIG: /* When using big bar, Bar 0 is based at 0 */ msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff; msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32; break; case OCTEON_DMA_BAR_TYPE_PCIE: /* When using PCIe, Bar 0 is based at 0 */ /* FIXME CVMX_NPEI_MSI_RCV* other than 0? */ msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff; msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32; break; default: panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type\n"); } msg.data = irq - OCTEON_IRQ_MSI_BIT0; /* Update the number of IRQs the device has available to it */ control &= ~PCI_MSI_FLAGS_QSIZE; control |= request_private_bits << 4; pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS, control); set_irq_msi(irq, desc); write_msi_msg(irq, &msg); return 0; } /** * Called when a device no longer needs its MSI interrupts. All * MSI interrupts for the device are freed. * * @irq: The devices first irq number. There may be multple in sequence. */ void arch_teardown_msi_irq(unsigned int irq) { int number_irqs; uint64_t bitmask; if ((irq < OCTEON_IRQ_MSI_BIT0) || (irq > OCTEON_IRQ_MSI_BIT63)) panic("arch_teardown_msi_irq: Attempted to teardown illegal " "MSI interrupt (%d)", irq); irq -= OCTEON_IRQ_MSI_BIT0; /* * Count the number of IRQs we need to free by looking at the * msi_multiple_irq_bitmask. Each bit set means that the next * IRQ is also owned by this device. */ number_irqs = 0; while ((irq+number_irqs < 64) && (msi_multiple_irq_bitmask & (1ull << (irq + number_irqs)))) number_irqs++; number_irqs++; /* Mask with one bit for each IRQ */ bitmask = (1 << number_irqs) - 1; /* Shift the mask to the correct bit location */ bitmask <<= irq; if ((msi_free_irq_bitmask & bitmask) != bitmask) panic("arch_teardown_msi_irq: Attempted to teardown MSI " "interrupt (%d) not in use", irq); /* Checks are done, update the in use bitmask */ spin_lock(&msi_free_irq_bitmask_lock); msi_free_irq_bitmask &= ~bitmask; msi_multiple_irq_bitmask &= ~bitmask; spin_unlock(&msi_free_irq_bitmask_lock); } /* * Called by the interrupt handling code when an MSI interrupt * occurs. */ static irqreturn_t octeon_msi_interrupt(int cpl, void *dev_id) { uint64_t msi_bits; int irq; if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) msi_bits = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_RCV0); else msi_bits = cvmx_read_csr(CVMX_NPI_NPI_MSI_RCV); irq = fls64(msi_bits); if (irq) { irq += OCTEON_IRQ_MSI_BIT0 - 1; if (irq_desc[irq].action) { do_IRQ(irq); return IRQ_HANDLED; } else { pr_err("Spurious MSI interrupt %d\n", irq); if (octeon_has_feature(OCTEON_FEATURE_PCIE)) { /* These chips have PCIe */ cvmx_write_csr(CVMX_PEXP_NPEI_MSI_RCV0, 1ull << (irq - OCTEON_IRQ_MSI_BIT0)); } else { /* These chips have PCI */ cvmx_write_csr(CVMX_NPI_NPI_MSI_RCV, 1ull << (irq - OCTEON_IRQ_MSI_BIT0)); } } } return IRQ_NONE; } /* * Initializes the MSI interrupt handling code */ int octeon_msi_initialize(void) { if (octeon_has_feature(OCTEON_FEATURE_PCIE)) { if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt, IRQF_SHARED, "MSI[0:63]", octeon_msi_interrupt)) panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed"); } else if (octeon_is_pci_host()) { if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt, IRQF_SHARED, "MSI[0:15]", octeon_msi_interrupt)) panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt, IRQF_SHARED, "MSI[16:31]", octeon_msi_interrupt)) panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt, IRQF_SHARED, "MSI[32:47]", octeon_msi_interrupt)) panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt, IRQF_SHARED, "MSI[48:63]", octeon_msi_interrupt)) panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed"); } return 0; } subsys_initcall(octeon_msi_initialize);