/* * Code to handle IP32 IRQs * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000 Harald Koerfgen * Copyright (C) 2001 Keith M Wesolowski */ #include <linux/init.h> #include <linux/kernel_stat.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/bitops.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/random.h> #include <linux/sched.h> #include <asm/mipsregs.h> #include <asm/signal.h> #include <asm/system.h> #include <asm/time.h> #include <asm/ip32/crime.h> #include <asm/ip32/mace.h> #include <asm/ip32/ip32_ints.h> /* issue a PIO read to make sure no PIO writes are pending */ static void inline flush_crime_bus(void) { crime->control; } static void inline flush_mace_bus(void) { mace->perif.ctrl.misc; } #undef DEBUG_IRQ #ifdef DEBUG_IRQ #define DBG(x...) printk(x) #else #define DBG(x...) #endif /* O2 irq map * * IP0 -> software (ignored) * IP1 -> software (ignored) * IP2 -> (irq0) C crime 1.1 all interrupts; crime 1.5 ??? * IP3 -> (irq1) X unknown * IP4 -> (irq2) X unknown * IP5 -> (irq3) X unknown * IP6 -> (irq4) X unknown * IP7 -> (irq5) 0 CPU count/compare timer (system timer) * * crime: (C) * * CRIME_INT_STAT 31:0: * * 0 -> 1 Video in 1 * 1 -> 2 Video in 2 * 2 -> 3 Video out * 3 -> 4 Mace ethernet * 4 -> S SuperIO sub-interrupt * 5 -> M Miscellaneous sub-interrupt * 6 -> A Audio sub-interrupt * 7 -> 8 PCI bridge errors * 8 -> 9 PCI SCSI aic7xxx 0 * 9 -> 10 PCI SCSI aic7xxx 1 * 10 -> 11 PCI slot 0 * 11 -> 12 unused (PCI slot 1) * 12 -> 13 unused (PCI slot 2) * 13 -> 14 unused (PCI shared 0) * 14 -> 15 unused (PCI shared 1) * 15 -> 16 unused (PCI shared 2) * 16 -> 17 GBE0 (E) * 17 -> 18 GBE1 (E) * 18 -> 19 GBE2 (E) * 19 -> 20 GBE3 (E) * 20 -> 21 CPU errors * 21 -> 22 Memory errors * 22 -> 23 RE empty edge (E) * 23 -> 24 RE full edge (E) * 24 -> 25 RE idle edge (E) * 25 -> 26 RE empty level * 26 -> 27 RE full level * 27 -> 28 RE idle level * 28 -> 29 unused (software 0) (E) * 29 -> 30 unused (software 1) (E) * 30 -> 31 unused (software 2) - crime 1.5 CPU SysCorError (E) * 31 -> 32 VICE * * S, M, A: Use the MACE ISA interrupt register * MACE_ISA_INT_STAT 31:0 * * 0-7 -> 33-40 Audio * 8 -> 41 RTC * 9 -> 42 Keyboard * 10 -> X Keyboard polled * 11 -> 44 Mouse * 12 -> X Mouse polled * 13-15 -> 46-48 Count/compare timers * 16-19 -> 49-52 Parallel (16 E) * 20-25 -> 53-58 Serial 1 (22 E) * 26-31 -> 59-64 Serial 2 (28 E) * * Note that this means IRQs 5-7, 43, and 45 do not exist. This is a * different IRQ map than IRIX uses, but that's OK as Linux irq handling * is quite different anyway. */ /* Some initial interrupts to set up */ extern irqreturn_t crime_memerr_intr(int irq, void *dev_id); extern irqreturn_t crime_cpuerr_intr(int irq, void *dev_id); struct irqaction memerr_irq = { crime_memerr_intr, IRQF_DISABLED, CPU_MASK_NONE, "CRIME memory error", NULL, NULL }; struct irqaction cpuerr_irq = { crime_cpuerr_intr, IRQF_DISABLED, CPU_MASK_NONE, "CRIME CPU error", NULL, NULL }; /* * For interrupts wired from a single device to the CPU. Only the clock * uses this it seems, which is IRQ 0 and IP7. */ static void enable_cpu_irq(unsigned int irq) { set_c0_status(STATUSF_IP7); } static void disable_cpu_irq(unsigned int irq) { clear_c0_status(STATUSF_IP7); } static void end_cpu_irq(unsigned int irq) { if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS))) enable_cpu_irq (irq); } static struct irq_chip ip32_cpu_interrupt = { .name = "IP32 CPU", .ack = disable_cpu_irq, .mask = disable_cpu_irq, .mask_ack = disable_cpu_irq, .unmask = enable_cpu_irq, .end = end_cpu_irq, }; /* * This is for pure CRIME interrupts - ie not MACE. The advantage? * We get to split the register in half and do faster lookups. */ static uint64_t crime_mask; static void enable_crime_irq(unsigned int irq) { crime_mask |= 1 << (irq - 1); crime->imask = crime_mask; } static void disable_crime_irq(unsigned int irq) { crime_mask &= ~(1 << (irq - 1)); crime->imask = crime_mask; flush_crime_bus(); } static void mask_and_ack_crime_irq(unsigned int irq) { /* Edge triggered interrupts must be cleared. */ if ((irq >= CRIME_GBE0_IRQ && irq <= CRIME_GBE3_IRQ) || (irq >= CRIME_RE_EMPTY_E_IRQ && irq <= CRIME_RE_IDLE_E_IRQ) || (irq >= CRIME_SOFT0_IRQ && irq <= CRIME_SOFT2_IRQ)) { uint64_t crime_int; crime_int = crime->hard_int; crime_int &= ~(1 << (irq - 1)); crime->hard_int = crime_int; } disable_crime_irq(irq); } static void end_crime_irq(unsigned int irq) { if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS))) enable_crime_irq(irq); } static struct irq_chip ip32_crime_interrupt = { .name = "IP32 CRIME", .ack = mask_and_ack_crime_irq, .mask = disable_crime_irq, .mask_ack = mask_and_ack_crime_irq, .unmask = enable_crime_irq, .end = end_crime_irq, }; /* * This is for MACE PCI interrupts. We can decrease bus traffic by masking * as close to the source as possible. This also means we can take the * next chunk of the CRIME register in one piece. */ static unsigned long macepci_mask; static void enable_macepci_irq(unsigned int irq) { macepci_mask |= MACEPCI_CONTROL_INT(irq - 9); mace->pci.control = macepci_mask; crime_mask |= 1 << (irq - 1); crime->imask = crime_mask; } static void disable_macepci_irq(unsigned int irq) { crime_mask &= ~(1 << (irq - 1)); crime->imask = crime_mask; flush_crime_bus(); macepci_mask &= ~MACEPCI_CONTROL_INT(irq - 9); mace->pci.control = macepci_mask; flush_mace_bus(); } static void end_macepci_irq(unsigned int irq) { if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS))) enable_macepci_irq(irq); } static struct irq_chip ip32_macepci_interrupt = { .name = "IP32 MACE PCI", .ack = disable_macepci_irq, .mask = disable_macepci_irq, .mask_ack = disable_macepci_irq, .unmask = enable_macepci_irq, .end = end_macepci_irq, }; /* This is used for MACE ISA interrupts. That means bits 4-6 in the * CRIME register. */ #define MACEISA_AUDIO_INT (MACEISA_AUDIO_SW_INT | \ MACEISA_AUDIO_SC_INT | \ MACEISA_AUDIO1_DMAT_INT | \ MACEISA_AUDIO1_OF_INT | \ MACEISA_AUDIO2_DMAT_INT | \ MACEISA_AUDIO2_MERR_INT | \ MACEISA_AUDIO3_DMAT_INT | \ MACEISA_AUDIO3_MERR_INT) #define MACEISA_MISC_INT (MACEISA_RTC_INT | \ MACEISA_KEYB_INT | \ MACEISA_KEYB_POLL_INT | \ MACEISA_MOUSE_INT | \ MACEISA_MOUSE_POLL_INT | \ MACEISA_TIMER0_INT | \ MACEISA_TIMER1_INT | \ MACEISA_TIMER2_INT) #define MACEISA_SUPERIO_INT (MACEISA_PARALLEL_INT | \ MACEISA_PAR_CTXA_INT | \ MACEISA_PAR_CTXB_INT | \ MACEISA_PAR_MERR_INT | \ MACEISA_SERIAL1_INT | \ MACEISA_SERIAL1_TDMAT_INT | \ MACEISA_SERIAL1_TDMAPR_INT | \ MACEISA_SERIAL1_TDMAME_INT | \ MACEISA_SERIAL1_RDMAT_INT | \ MACEISA_SERIAL1_RDMAOR_INT | \ MACEISA_SERIAL2_INT | \ MACEISA_SERIAL2_TDMAT_INT | \ MACEISA_SERIAL2_TDMAPR_INT | \ MACEISA_SERIAL2_TDMAME_INT | \ MACEISA_SERIAL2_RDMAT_INT | \ MACEISA_SERIAL2_RDMAOR_INT) static unsigned long maceisa_mask; static void enable_maceisa_irq (unsigned int irq) { unsigned int crime_int = 0; DBG ("maceisa enable: %u\n", irq); switch (irq) { case MACEISA_AUDIO_SW_IRQ ... MACEISA_AUDIO3_MERR_IRQ: crime_int = MACE_AUDIO_INT; break; case MACEISA_RTC_IRQ ... MACEISA_TIMER2_IRQ: crime_int = MACE_MISC_INT; break; case MACEISA_PARALLEL_IRQ ... MACEISA_SERIAL2_RDMAOR_IRQ: crime_int = MACE_SUPERIO_INT; break; } DBG ("crime_int %08x enabled\n", crime_int); crime_mask |= crime_int; crime->imask = crime_mask; maceisa_mask |= 1 << (irq - 33); mace->perif.ctrl.imask = maceisa_mask; } static void disable_maceisa_irq(unsigned int irq) { unsigned int crime_int = 0; maceisa_mask &= ~(1 << (irq - 33)); if(!(maceisa_mask & MACEISA_AUDIO_INT)) crime_int |= MACE_AUDIO_INT; if(!(maceisa_mask & MACEISA_MISC_INT)) crime_int |= MACE_MISC_INT; if(!(maceisa_mask & MACEISA_SUPERIO_INT)) crime_int |= MACE_SUPERIO_INT; crime_mask &= ~crime_int; crime->imask = crime_mask; flush_crime_bus(); mace->perif.ctrl.imask = maceisa_mask; flush_mace_bus(); } static void mask_and_ack_maceisa_irq(unsigned int irq) { unsigned long mace_int; switch (irq) { case MACEISA_PARALLEL_IRQ: case MACEISA_SERIAL1_TDMAPR_IRQ: case MACEISA_SERIAL2_TDMAPR_IRQ: /* edge triggered */ mace_int = mace->perif.ctrl.istat; mace_int &= ~(1 << (irq - 33)); mace->perif.ctrl.istat = mace_int; break; } disable_maceisa_irq(irq); } static void end_maceisa_irq(unsigned irq) { if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS))) enable_maceisa_irq(irq); } static struct irq_chip ip32_maceisa_interrupt = { .name = "IP32 MACE ISA", .ack = mask_and_ack_maceisa_irq, .mask = disable_maceisa_irq, .mask_ack = mask_and_ack_maceisa_irq, .unmask = enable_maceisa_irq, .end = end_maceisa_irq, }; /* This is used for regular non-ISA, non-PCI MACE interrupts. That means * bits 0-3 and 7 in the CRIME register. */ static void enable_mace_irq(unsigned int irq) { crime_mask |= 1 << (irq - 1); crime->imask = crime_mask; } static void disable_mace_irq(unsigned int irq) { crime_mask &= ~(1 << (irq - 1)); crime->imask = crime_mask; flush_crime_bus(); } static void end_mace_irq(unsigned int irq) { if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS))) enable_mace_irq(irq); } static struct irq_chip ip32_mace_interrupt = { .name = "IP32 MACE", .ack = disable_mace_irq, .mask = disable_mace_irq, .mask_ack = disable_mace_irq, .unmask = enable_mace_irq, .end = end_mace_irq, }; static void ip32_unknown_interrupt(void) { printk ("Unknown interrupt occurred!\n"); printk ("cp0_status: %08x\n", read_c0_status()); printk ("cp0_cause: %08x\n", read_c0_cause()); printk ("CRIME intr mask: %016lx\n", crime->imask); printk ("CRIME intr status: %016lx\n", crime->istat); printk ("CRIME hardware intr register: %016lx\n", crime->hard_int); printk ("MACE ISA intr mask: %08lx\n", mace->perif.ctrl.imask); printk ("MACE ISA intr status: %08lx\n", mace->perif.ctrl.istat); printk ("MACE PCI control register: %08x\n", mace->pci.control); printk("Register dump:\n"); show_regs(get_irq_regs()); printk("Please mail this report to linux-mips@linux-mips.org\n"); printk("Spinning..."); while(1) ; } /* CRIME 1.1 appears to deliver all interrupts to this one pin. */ /* change this to loop over all edge-triggered irqs, exception masked out ones */ static void ip32_irq0(void) { uint64_t crime_int; int irq = 0; crime_int = crime->istat & crime_mask; irq = __ffs(crime_int); crime_int = 1 << irq; if (crime_int & CRIME_MACEISA_INT_MASK) { unsigned long mace_int = mace->perif.ctrl.istat; irq = __ffs(mace_int & maceisa_mask) + 32; } irq++; DBG("*irq %u*\n", irq); do_IRQ(irq); } static void ip32_irq1(void) { ip32_unknown_interrupt(); } static void ip32_irq2(void) { ip32_unknown_interrupt(); } static void ip32_irq3(void) { ip32_unknown_interrupt(); } static void ip32_irq4(void) { ip32_unknown_interrupt(); } static void ip32_irq5(void) { ll_timer_interrupt(IP32_R4K_TIMER_IRQ); } asmlinkage void plat_irq_dispatch(void) { unsigned int pending = read_c0_status() & read_c0_cause(); if (likely(pending & IE_IRQ0)) ip32_irq0(); else if (unlikely(pending & IE_IRQ1)) ip32_irq1(); else if (unlikely(pending & IE_IRQ2)) ip32_irq2(); else if (unlikely(pending & IE_IRQ3)) ip32_irq3(); else if (unlikely(pending & IE_IRQ4)) ip32_irq4(); else if (likely(pending & IE_IRQ5)) ip32_irq5(); } void __init arch_init_irq(void) { unsigned int irq; /* Install our interrupt handler, then clear and disable all * CRIME and MACE interrupts. */ crime->imask = 0; crime->hard_int = 0; crime->soft_int = 0; mace->perif.ctrl.istat = 0; mace->perif.ctrl.imask = 0; for (irq = 0; irq <= IP32_IRQ_MAX; irq++) { struct irq_chip *controller; if (irq == IP32_R4K_TIMER_IRQ) controller = &ip32_cpu_interrupt; else if (irq <= MACE_PCI_BRIDGE_IRQ && irq >= MACE_VID_IN1_IRQ) controller = &ip32_mace_interrupt; else if (irq <= MACEPCI_SHARED2_IRQ && irq >= MACEPCI_SCSI0_IRQ) controller = &ip32_macepci_interrupt; else if (irq <= CRIME_VICE_IRQ && irq >= CRIME_GBE0_IRQ) controller = &ip32_crime_interrupt; else controller = &ip32_maceisa_interrupt; set_irq_chip(irq, controller); } setup_irq(CRIME_MEMERR_IRQ, &memerr_irq); setup_irq(CRIME_CPUERR_IRQ, &cpuerr_irq); #define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4 | IE_IRQ5) change_c0_status(ST0_IM, ALLINTS); }