/* MN10300 Arch-specific interrupt handling * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public Licence * as published by the Free Software Foundation; either version * 2 of the Licence, or (at your option) any later version. */ #include <linux/module.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/seq_file.h> #include <asm/setup.h> unsigned long __mn10300_irq_enabled_epsw = EPSW_IE | EPSW_IM_7; EXPORT_SYMBOL(__mn10300_irq_enabled_epsw); atomic_t irq_err_count; /* * MN10300 interrupt controller operations */ static void mn10300_cpupic_ack(unsigned int irq) { u16 tmp; *(volatile u8 *) &GxICR(irq) = GxICR_DETECT; tmp = GxICR(irq); } static void mn10300_cpupic_mask(unsigned int irq) { u16 tmp = GxICR(irq); GxICR(irq) = (tmp & GxICR_LEVEL); tmp = GxICR(irq); } static void mn10300_cpupic_mask_ack(unsigned int irq) { u16 tmp = GxICR(irq); GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_DETECT; tmp = GxICR(irq); } static void mn10300_cpupic_unmask(unsigned int irq) { u16 tmp = GxICR(irq); GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_ENABLE; tmp = GxICR(irq); } static void mn10300_cpupic_unmask_clear(unsigned int irq) { /* the MN10300 PIC latches its interrupt request bit, even after the * device has ceased to assert its interrupt line and the interrupt * channel has been disabled in the PIC, so for level-triggered * interrupts we need to clear the request bit when we re-enable */ u16 tmp = GxICR(irq); GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_ENABLE | GxICR_DETECT; tmp = GxICR(irq); } /* * MN10300 PIC level-triggered IRQ handling. * * The PIC has no 'ACK' function per se. It is possible to clear individual * channel latches, but each latch relatches whether or not the channel is * masked, so we need to clear the latch when we unmask the channel. * * Also for this reason, we don't supply an ack() op (it's unused anyway if * mask_ack() is provided), and mask_ack() just masks. */ static struct irq_chip mn10300_cpu_pic_level = { .name = "cpu_l", .disable = mn10300_cpupic_mask, .enable = mn10300_cpupic_unmask_clear, .ack = NULL, .mask = mn10300_cpupic_mask, .mask_ack = mn10300_cpupic_mask, .unmask = mn10300_cpupic_unmask_clear, }; /* * MN10300 PIC edge-triggered IRQ handling. * * We use the latch clearing function of the PIC as the 'ACK' function. */ static struct irq_chip mn10300_cpu_pic_edge = { .name = "cpu_e", .disable = mn10300_cpupic_mask, .enable = mn10300_cpupic_unmask, .ack = mn10300_cpupic_ack, .mask = mn10300_cpupic_mask, .mask_ack = mn10300_cpupic_mask_ack, .unmask = mn10300_cpupic_unmask, }; /* * 'what should we do if we get a hw irq event on an illegal vector'. * each architecture has to answer this themselves. */ void ack_bad_irq(int irq) { printk(KERN_WARNING "unexpected IRQ trap at vector %02x\n", irq); } /* * change the level at which an IRQ executes * - must not be called whilst interrupts are being processed! */ void set_intr_level(int irq, u16 level) { u16 tmp; if (in_interrupt()) BUG(); tmp = GxICR(irq); GxICR(irq) = (tmp & GxICR_ENABLE) | level; tmp = GxICR(irq); } /* * mark an interrupt to be ACK'd after interrupt handlers have been run rather * than before * - see Documentation/mn10300/features.txt */ void set_intr_postackable(int irq) { set_irq_chip_and_handler(irq, &mn10300_cpu_pic_level, handle_level_irq); } /* * initialise the interrupt system */ void __init init_IRQ(void) { int irq; for (irq = 0; irq < NR_IRQS; irq++) if (irq_desc[irq].chip == &no_irq_type) /* due to the PIC latching interrupt requests, even * when the IRQ is disabled, IRQ_PENDING is superfluous * and we can use handle_level_irq() for edge-triggered * interrupts */ set_irq_chip_and_handler(irq, &mn10300_cpu_pic_edge, handle_level_irq); unit_init_IRQ(); } /* * handle normal device IRQs */ asmlinkage void do_IRQ(void) { unsigned long sp, epsw, irq_disabled_epsw, old_irq_enabled_epsw; int irq; sp = current_stack_pointer(); if (sp - (sp & ~(THREAD_SIZE - 1)) < STACK_WARN) BUG(); /* make sure local_irq_enable() doesn't muck up the interrupt priority * setting in EPSW */ old_irq_enabled_epsw = __mn10300_irq_enabled_epsw; local_save_flags(epsw); __mn10300_irq_enabled_epsw = EPSW_IE | (EPSW_IM & epsw); irq_disabled_epsw = EPSW_IE | MN10300_CLI_LEVEL; __IRQ_STAT(smp_processor_id(), __irq_count)++; irq_enter(); for (;;) { /* ask the interrupt controller for the next IRQ to process * - the result we get depends on EPSW.IM */ irq = IAGR & IAGR_GN; if (!irq) break; local_irq_restore(irq_disabled_epsw); generic_handle_irq(irq >> 2); /* restore IRQ controls for IAGR access */ local_irq_restore(epsw); } __mn10300_irq_enabled_epsw = old_irq_enabled_epsw; irq_exit(); } /* * Display interrupt management information through /proc/interrupts */ int show_interrupts(struct seq_file *p, void *v) { int i = *(loff_t *) v, j, cpu; struct irqaction *action; unsigned long flags; switch (i) { /* display column title bar naming CPUs */ case 0: seq_printf(p, " "); for (j = 0; j < NR_CPUS; j++) if (cpu_online(j)) seq_printf(p, "CPU%d ", j); seq_putc(p, '\n'); break; /* display information rows, one per active CPU */ case 1 ... NR_IRQS - 1: spin_lock_irqsave(&irq_desc[i].lock, flags); action = irq_desc[i].action; if (action) { seq_printf(p, "%3d: ", i); for_each_present_cpu(cpu) seq_printf(p, "%10u ", kstat_cpu(cpu).irqs[i]); seq_printf(p, " %14s.%u", irq_desc[i].chip->name, (GxICR(i) & GxICR_LEVEL) >> GxICR_LEVEL_SHIFT); seq_printf(p, " %s", action->name); for (action = action->next; action; action = action->next) seq_printf(p, ", %s", action->name); seq_putc(p, '\n'); } spin_unlock_irqrestore(&irq_desc[i].lock, flags); break; /* polish off with NMI and error counters */ case NR_IRQS: seq_printf(p, "NMI: "); for (j = 0; j < NR_CPUS; j++) if (cpu_online(j)) seq_printf(p, "%10u ", nmi_count(j)); seq_putc(p, '\n'); seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count)); break; } return 0; }