#ifndef _PARISC_DMA_MAPPING_H #define _PARISC_DMA_MAPPING_H #include #include #include /* See Documentation/PCI/PCI-DMA-mapping.txt */ struct hppa_dma_ops { int (*dma_supported)(struct device *dev, u64 mask); void *(*alloc_consistent)(struct device *dev, size_t size, dma_addr_t *iova, gfp_t flag); void *(*alloc_noncoherent)(struct device *dev, size_t size, dma_addr_t *iova, gfp_t flag); void (*free_consistent)(struct device *dev, size_t size, void *vaddr, dma_addr_t iova); dma_addr_t (*map_single)(struct device *dev, void *addr, size_t size, enum dma_data_direction direction); void (*unmap_single)(struct device *dev, dma_addr_t iova, size_t size, enum dma_data_direction direction); int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction); void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nhwents, enum dma_data_direction direction); void (*dma_sync_single_for_cpu)(struct device *dev, dma_addr_t iova, unsigned long offset, size_t size, enum dma_data_direction direction); void (*dma_sync_single_for_device)(struct device *dev, dma_addr_t iova, unsigned long offset, size_t size, enum dma_data_direction direction); void (*dma_sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction); void (*dma_sync_sg_for_device)(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction); }; /* ** We could live without the hppa_dma_ops indirection if we didn't want ** to support 4 different coherent dma models with one binary (they will ** someday be loadable modules): ** I/O MMU consistent method dma_sync behavior ** ============= ====================== ======================= ** a) PA-7x00LC uncachable host memory flush/purge ** b) U2/Uturn cachable host memory NOP ** c) Ike/Astro cachable host memory NOP ** d) EPIC/SAGA memory on EPIC/SAGA flush/reset DMA channel ** ** PA-7[13]00LC processors have a GSC bus interface and no I/O MMU. ** ** Systems (eg PCX-T workstations) that don't fall into the above ** categories will need to modify the needed drivers to perform ** flush/purge and allocate "regular" cacheable pages for everything. */ #ifdef CONFIG_PA11 extern struct hppa_dma_ops pcxl_dma_ops; extern struct hppa_dma_ops pcx_dma_ops; #endif extern struct hppa_dma_ops *hppa_dma_ops; static inline void * dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) { return hppa_dma_ops->alloc_consistent(dev, size, dma_handle, flag); } static inline void * dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) { return hppa_dma_ops->alloc_noncoherent(dev, size, dma_handle, flag); } static inline void dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle) { hppa_dma_ops->free_consistent(dev, size, vaddr, dma_handle); } static inline void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle) { hppa_dma_ops->free_consistent(dev, size, vaddr, dma_handle); } static inline dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, enum dma_data_direction direction) { return hppa_dma_ops->map_single(dev, ptr, size, direction); } static inline void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction direction) { hppa_dma_ops->unmap_single(dev, dma_addr, size, direction); } static inline int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction) { return hppa_dma_ops->map_sg(dev, sg, nents, direction); } static inline void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, enum dma_data_direction direction) { hppa_dma_ops->unmap_sg(dev, sg, nhwentries, direction); } static inline dma_addr_t dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction) { return dma_map_single(dev, (page_address(page) + (offset)), size, direction); } static inline void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, enum dma_data_direction direction) { dma_unmap_single(dev, dma_address, size, direction); } static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { if(hppa_dma_ops->dma_sync_single_for_cpu) hppa_dma_ops->dma_sync_single_for_cpu(dev, dma_handle, 0, size, direction); } static inline void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { if(hppa_dma_ops->dma_sync_single_for_device) hppa_dma_ops->dma_sync_single_for_device(dev, dma_handle, 0, size, direction); } static inline void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction) { if(hppa_dma_ops->dma_sync_single_for_cpu) hppa_dma_ops->dma_sync_single_for_cpu(dev, dma_handle, offset, size, direction); } static inline void dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction) { if(hppa_dma_ops->dma_sync_single_for_device) hppa_dma_ops->dma_sync_single_for_device(dev, dma_handle, offset, size, direction); } static inline void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction) { if(hppa_dma_ops->dma_sync_sg_for_cpu) hppa_dma_ops->dma_sync_sg_for_cpu(dev, sg, nelems, direction); } static inline void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction) { if(hppa_dma_ops->dma_sync_sg_for_device) hppa_dma_ops->dma_sync_sg_for_device(dev, sg, nelems, direction); } static inline int dma_supported(struct device *dev, u64 mask) { return hppa_dma_ops->dma_supported(dev, mask); } static inline int dma_set_mask(struct device *dev, u64 mask) { if(!dev->dma_mask || !dma_supported(dev, mask)) return -EIO; *dev->dma_mask = mask; return 0; } static inline int dma_is_consistent(struct device *dev, dma_addr_t dma_addr) { return (hppa_dma_ops->dma_sync_single_for_cpu == NULL); } static inline void dma_cache_sync(struct device *dev, void *vaddr, size_t size, enum dma_data_direction direction) { if(hppa_dma_ops->dma_sync_single_for_cpu) flush_kernel_dcache_range((unsigned long)vaddr, size); } static inline void * parisc_walk_tree(struct device *dev) { struct device *otherdev; if(likely(dev->platform_data != NULL)) return dev->platform_data; /* OK, just traverse the bus to find it */ for(otherdev = dev->parent; otherdev; otherdev = otherdev->parent) { if(otherdev->platform_data) { dev->platform_data = otherdev->platform_data; break; } } BUG_ON(!dev->platform_data); return dev->platform_data; } #define GET_IOC(dev) (HBA_DATA(parisc_walk_tree(dev))->iommu); #ifdef CONFIG_IOMMU_CCIO struct parisc_device; struct ioc; void * ccio_get_iommu(const struct parisc_device *dev); int ccio_request_resource(const struct parisc_device *dev, struct resource *res); int ccio_allocate_resource(const struct parisc_device *dev, struct resource *res, unsigned long size, unsigned long min, unsigned long max, unsigned long align); #else /* !CONFIG_IOMMU_CCIO */ #define ccio_get_iommu(dev) NULL #define ccio_request_resource(dev, res) insert_resource(&iomem_resource, res) #define ccio_allocate_resource(dev, res, size, min, max, align) \ allocate_resource(&iomem_resource, res, size, min, max, \ align, NULL, NULL) #endif /* !CONFIG_IOMMU_CCIO */ #ifdef CONFIG_IOMMU_SBA struct parisc_device; void * sba_get_iommu(struct parisc_device *dev); #endif /* At the moment, we panic on error for IOMMU resource exaustion */ #define dma_mapping_error(dev, x) 0 #endif